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Abstract— This article studies the stability in probability of
probabilistic Boolean networks and stabilization in the probabil-
ity of probabilistic Boolean control networks. To simulate more
realistic cellular systems, the probability of stability/stabilization
is not required to be a strict one. In this situation, the target state
is indefinite to have a probability of transferring to itself. Thus,
it is a challenging extension of the traditional probability-one
problem, in which the self-transfer probability of the target
state must be one. Some necessary and sufficient conditions are
proposed via the semitensor product of matrices. Illustrative
examples are also given to show the effectiveness of the derived
results.

Index Terms— Probabilistic Boolean network (PBN), semiten-
sor product (STP), stability/stabilization in probability, state
feedback control.

I. INTRODUCTION

W ITH the rapid development of biomolecular technolo-
gies, the research of complex regulatory systems has

been a hot topic in recent years. To obtain a comprehen-
sive understanding of these biological systems, mathemati-
cal models have become an efficient tool. Some static and
dynamic methods, such as the Bayesian network [1], Boolean
logic [2], [3], and differential equations [4], have been pro-
posed. In addition to these approaches, special attention has
been drawn to Boolean networks (BNs).

A BN is a sequential dynamical network, in which time and
states are discrete. It was first introduced by Kauffman [5]
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to describe the intricate internal dynamics of gene-regulatory
systems. In BNs, each component can be either active or
inactive to represent a label “expressed” or “not expressed”
to an individual gene. The highly structured interactions of
genes can be described by Boolean functions, which deter-
mine the state of each gene by its neighboring genes using
logical rules. Numerous works have shown that BNs are a
powerful technique to investigate genetic networks [6]. Lately,
the semitensor product (STP) of matrix was introduced [7]
and became popular due to its remarkable effectiveness in
the study of BNs, such as the topological structure [8],
controllability [9], [10], and synchronization [11], [12]. The
stability and stabilization, as important control-related issues,
are studied via the STP method as well. In [13], the sta-
bility and stabilization of a fixed state of Boolean control
networks (BCNs) were investigated. Later, the state feedback
stabilization [14], output feedback stabilization [15], and set
stabilization [16], [17] for a collection of BCNs were also
discussed. Recently, Lyapunov stability theory, known as a
powerful technique for nonlinear systems, has been introduced
for the study of BNs. In [18] and [19], a new framework of the
Lyapunov theory was established for BNs and BCNs. Thanks
to it, the (control) Lyapunov function can be built to propose
stability conditions.

In spite of the great success in applications, the obvious lim-
itation of traditional BNs is their intrinsic determinism. How-
ever, due to the inescapable noises and much smaller number
of samples compared with that of parameters to be inferred,
it is irrational to assume that the state of a gene is determined
by only one logical rule. The Boolean functions may have
different modes to reflect the actual regulatory effects [20].
Consequently, probabilistic BNs (PBNs) and probabilistic
BCNs (PBCNs) have gained widespread attention both in the
academic literature and in practice. In [20], the PBN was first
introduced to deal with the uncertainty. From then on, sub-
stantial efforts have been devoted to the research of PBNs and
PBCNs, such as controllability and stabilizability [21]–[23],
optimal control [24], [25], synchronization [26], [27], and
some other applications [28], [29].

So far, most existing research (see [30]–[32] and references
therein) of PBNs and PBCNs have focused on stability/
stabilization with probability one. Unfortunately, deterministic
events with probability one are relatively subtle in biological
systems, due to the inherent randomness of gene expres-
sion [33]. For transcriptional regulatory networks, it has been
repeatedly observed that a high proportion of globular pro-
teins are neither highly stable nor unstable [34]. The protein
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concentration controlled by similar genes fluctuates greatly
depending on exact conditions. It indicates that the transcrip-
tional process can randomize expression rates, which implies
that predicting cell dynamics in a deterministic manner is
very unlikely [35]. For example, the apoptotic pathway, which
allows an organism to remove damaged or unwanted cells,
can be activated by binding TNFα to death receptor TNFR1.
In the absence of tumor necrosis factor (TNF), the cell can be
bistable at two distinct states: survival and initiating apoptosis
[36]. However, the decision of one or the other state mainly
depends on the initial conditions, which randomly vary from
cell to cell. Thus, all the cells are very unlikely to stabilize
at either state with a probability of 100%. It is reasonable to
compute the probability of convergence to each steady state
[37]. Another fact is that genes have different impacts on
the predictor. A significant task is to distinguish which genes
have a major impact. It is highly desirable to calculate the
probability of a gene or the joint probability of several selected
genes which will be expressed in the long run [38]. As for an
example of PBCNs, the function of anticancer drugs is to break
the originally stable cellular state of a tumor cell and enforce
it into the apoptosis or back into the differentiation state by
intervening with some other genes. Both results are probable.
Neither of them can be achieved definitely [39]. Therefore,
it is extremely desirable to consider a more general likelihood
of the dynamics of PBNs and PBCNs, instead of absolute
determinism. This is the main purpose of this article to study
stability/stabilization in probability, which has been greatly
overlooked despite its wide practical uses in various fields,
such as predicting the possibility of a spreading contagion in
a financial crisis [40] and modeling manufacturing systems to
improve design reliability and system resilience [41].

Stability in probability was first introduced for the stochastic
systems with continuous value [42], and has been intensively
studied for delayed systems [43], discrete-time systems [44],
and so on. Recently, this concept has been extended to BNs.
In [45], asymptotic stability in probability was investigated for
stochastic BNs, based on some Lyapunov functions. As for
PBNs, the synchronization in probability was first introduced
in [46] for master–slave PBNs to deal with the situation
that there exists one possible trajectory of the slave PBN
coinciding with the trajectory of the master BN. After that,
some other works, such as [26] and [47], were devoted to syn-
chronization in probability for realization-dependent PBNs and
asynchronous PBNs, respectively. However, these works just
discussed the synchronization problem for PBNs with special
structures. Is it possible to investigate stability in probability
for more general PBNs? Besides, these researches handled the
in-probability problem strikingly similar to the probability-one
problem. Is the former one just a trivial extension of the
latter one, or can we point out their essential differences and
give more accurate characterization? Moreover, these works
did not involve the control issue. Thus, how can we design
a state-feedback controller for a PBN, when it cannot be
stabilized in probability by itself?

Motivated by the above-mentioned challenges, in this arti-
cle, we aim to study the stability and stabilization in proba-
bility for PBNs and PBCNs. For both problems, the whole
network is needed to stabilize to a target state with a

positive probability, instead of a strict one. The addressed
problems cannot be seemed as a trivial extension of stability/
stabilization with probability one. The main difficulty lies in
the fact that even if the target state has zero probability of
transferring to itself, the network still has a chance to stabilize
at the target state. It is quite different from the probability-one
problem, in which the target state is required to transfer to
itself with probability one. Thus, the indeterminate process
becomes a definite one, which makes the probability-one
problem much easier. To overcome this difficulty, we construct
a sequence of reachable sets from the target state according to
probability transferring. Although the inclusion relation may
not exist at the beginning of the sequence, we show that it must
start from some point providing that stability in probability can
be achieved.

Overall, the novelties of this article can be summarized as
the following four aspects: 1) the stability in probability is first
studied for PBNs. Some necessary and sufficient conditions are
given. 2) Compared with the probability-one problem, the dif-
ficulty of the in-probability problem is discussed. That is,
the target state may be impossible to transfer to itself. If such
transferring is possible, a more feasible condition can be
proposed. 3) The state-feedback controller is designed. Thanks
to it, some necessary and sufficient conditions are derived to
ensure the stabilization in the probability of PBCNs. Similarly,
if the target state is possible to transfer to itself, a more
efficient method can be proposed to design the controller.
4) Two real examples are used to verify our theory. The coin-
cidence between simulation and the observed results indicates
the effectiveness.

II. PROBLEM FORMULATION AND PRELIMINARIES

A. Notations and Definitions

R denotes the set of real numbers, Rm×n is the set of all
m × n real matrices, |A| represents the cardinal number of
the set A, In represents the n × n identity matrix, 1n is an
n dimensional vector with all elements 1, and D := {0, 1},
�n := {δk

n:k = 1, . . . , n}, where δk
n denotes the kth column

of the identity matrix In . An n × m matrix M is called a
logical matrix, if M = [δi1

n δi2
n , . . . , δ

im
n ], which can be

briefly denoted as M = δn[i1 i2, . . . , im]; Ln×m represents
the set of all n × m logical matrices; Bn×m represents the set
of n × m Boolean matrices, i.e., all of the matrices X = (xi j )
with xi j ∈ D . Assume that X = (xi j ) and Yi j = (yi j ) ∈
Bm×n . Then, X ∧ Y := (xi j ∧ yi j ), and the Boolean addition
is defined as X +B Y := (xi j ∨ yi j ); (B)

�n
i=1 Xi = X1 +B

X2 +B · · · +B Xn ∀Xi ∈ Bm×n . Supposing X = (xi j ) ∈
Bn×m and Y = (yi j ) ∈ Bm×p , the Boolean product is defined
as X ×B Y = (

�m
l=1 xil ∧ yl j ) ∈ Bn×p . ∧ and ∨ are the

symbols of logic operation AND and OR, respectively. For any
F ∈ Bm×n , a logical matrix F ∈ Lm×n is called a logical
submatrix of F, if F ∧ F = F ; T (F) denotes the set of all of
the logical submatrices of F, i.e., T (F) := {F ∈ Lm×n |F ∧
F = F}. For convenience, define T �(x) := T (x�) for any
x ∈ B1×n . Coli (A) denotes the i th column of the matrix A,
P{·} is the probability of a random variable, and P{A|B} is
the conditional probability of event A, under the condition that
event B is occurred.
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Definition 1 [7]: Let A ∈ Rm×n and B ∈ Rp×q . Then,
the STP of A and B is defined as

A � B � (A ⊗ It/n)(B ⊗ It/p)

where t = lcm(n, p) is the least common multiplier of n and
p; ⊗ is the Kronecker product of matrices.

Remark 1: When n = p, A � B = (A ⊗ I1)(B ⊗ I1) =
AB . Thus, the STP degenerates to the conventional matrix
product AB . The symbol � may be omitted without causing
confusion. Similarly, the Boolean STP can be defined as A�B
B := (A ⊗ I t

n
) ×B (B ⊗ I t

p
), where t = l cm(n, p).

By identifying 1 ∼ δ1
2 and 0 ∼ δ2

2, we have � ∼ D ,
where “∼" denotes two different forms of the same object.
Usually, we use δ1

2 and δ2
2 to express the two logical values

and call them the vector form of logical variables.
Lemma 1 [7]: Let Y = f (X): Dm → Dn be a

logical function, where X = (x1, x2, . . . , xm) ∈ Dm and
Y = (y1, y2, . . . , yn) ∈ Dn . Then, there exists a unique
matrix M f ∈ L2n×2m , called the structural matrix of f , such
that

�n
i=1 yi = M f �m

j=1 x j , x j , yi ∈ D . (1)

Lemma 2: For ∀a ∈ B2n×1 and ∀b ∈ L2n×1, a�b = 0 if
and only if b ∈ �2n \T (a).

Proof: b ∈ �2n \T (a) ⇔ b ∈ T (12n − a) ⇔ (12n −
a)�b = 1 ⇔ 1 − a�b = 1 ⇔ a�b = 0.

B. Algebraic Forms of PBNs and PBCNs

Consider the following PBN with n nodes:
X (t + 1) = f (X (t)), t = 1, 2, . . . (2)

where X (t) = [x1(t), x2(t), . . . , xn(t)]� ∈ Dn is the states of
the PBN, f : Dn → Dn is chosen from the set { f1, f2, . . . , fr }
at every time step, and P{ f = fi } = pi > 0, where
fi : Dn → Dn , i = 1, 2, . . . , r are given logical functions,
and

�r
i=1 pi = 1.

Using the vector form of logical variables, we set x(t) =
�n

i=1xi (t) ∈ �2n . By Lemma 1, one can obtain the structural
matrices of fi (i = 1, 2, . . . , r ) as Li ∈ L2n×2n (i =
1, 2, . . . , r ). Then, (2) can be converted into

x(t + 1) = Lx(t) (3)

where L ∈ L2n×2n is chosen from the set {L1, L2, . . . , Lr }
at every time step with P{L = Li } = pi . Similarly, a PBCN
with n state nodes and m controllers can be expressed as

X (t + 1) = f (X (t), U(t)) (4)

where U(t) = [u1(t), u2(t), . . . , um(t)]� is the state feed-
back control input of the PBCN with the form of U(t) =
g(X (t)); g: Dn → Dm is the control function, which will
be designed; f : Dn+m → Dn is randomly chosen from the
set { f1, f2, . . . , fr } at every time step, and fi : Dn+m → Dn ,
i = 1, 2, . . . , r . Based on Lemma 1, the PBCN (4) can be
rewritten as

x(t + 1) = Lu(t)x(t) (5)

where u := u1 � u2 · · · � um ∈ �2m can be given as
u(t) = Gx(t), G ∈ L2m×2n is the structural matrix of the

control function g, and L ∈ L2n×2n+m is selected from the set
{L1, L2, . . . , Lr } with P{L = Li } = pi .

In this article, the stability and stabilization problems for
PBNs (3) and PBCNs (5) will be studied in probability,
instead of 100 %determinism. It is an important generalization
of traditional stability and stabilization with probability one,
which are much more difficult to be satisfied in real systems.
More specifically, the concerned definitions are given follows.

Definition 2 (Stability in Probability): For a given target
state x∗ ∈ �2n , the PBN (3) is said to be stable in probability,
if there exists an integer T > 0 such that for any initial state
x0 ∈ �2n

P{x(t) = x∗|x(0) = x0} > 0 (6)

holds for ∀t ≥ T .
Definition 3 (Stabilization in probability): For a given ref-

erence state x∗ ∈ �2n , the PBCN (5) can realize stabilization
in probability, if there exist an integer T > 0 and a controller
in the form of u(t) = g(x(t)) such that for any initial state
x0 ∈ �2n

P{x(t) = x∗|x(0) = x0, u(τ ) = g(x(τ ))} > 0 (7)

holds for ∀t ≥ T .
Remark 2: The dynamics of PBNs can be studied by using

Markov chains, whose steady-state distributions are employed
to depict the long-run behavior of networks. Although stability
in probability also refers to the long-run behavior of PBNs,
there are two main differences between these two problems.
First, the steady-state distribution is an equilibrium of the
Markov chain. However, for stability in probability, such equi-
librium is not required. The probability can arbitrarily vary,
as long as it is positive. Second, the steady-state distribution
gives long-run probabilities for all the states, which means
that we cannot discuss a single state separately. Whereas,
the in-probability problem can be studied for distinct states.
It is common that some of them are stable in probability, while
some others are not.

III. MAIN RESULTS

In this section, the stability in probability for PBNs (3) and
stabilization in probability for PBCNs (5) are studied for the
first time. They are meaningful and challenging generaliza-
tions of the traditional stability/stabilization with probability
one. Several remarks are given to illustrate the difficulties.
Some necessary and sufficient conditions are proposed in
Sections III-A and III-B, respectively. Furthermore, the design
algorithm for controllers is proposed.

A. Stability in Probability

First, we will iteratively define a sequence of sets
{Ck(L, x∗)}k=1,2,... for any given x∗ ∈ �2n and L ∈ L2n×2n

as follows:
C1(L, x∗) = �2n \T �(x∗�L) (8)

Ck+1(L, x∗) = �2n \T �((12n − Ak)
� �B L) (9)

where Ak = �
a∈Ck(L ,x∗) a. Considering the PBN (3), let

L = (B)
�r

s=1 Ls . The following lemma reveals the relation
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between Ck(L, x∗) and the probabilities of state transferring
in the PBNs.

Lemma 3: P{x(t) = x∗|x(0) = a} = 0 if and only if a ∈
Ct (L, x∗) for any integer t ≥ 1.

Proof: We will prove the conclusion by induction. For the
case t = 1, we have

P{x(1) = x∗|x(0) = a} = 0

⇔ x∗ 
= Ls � a, for ∀ s ∈ {1, 2, . . . , r}
⇔ x∗�Ls � a = 0, for ∀ s ∈ {1, 2, . . . , r}
⇔ x∗�L � a = 0

⇔ a ∈ �2n \T �(x∗�L) = C1(L, x∗). (by Lemma 2)

Assume that the conclusion holds for some t = k. For the
case k + 1, we have

P{x(k + 1) = x∗|x(0) = a} = 0

⇔
�

a1∈�2n

P{x(k + 1) = x∗|x(1) = a1}

× P{x(1) = a1|x(0) = a} = 0

⇔
�

a1 /∈Ck (L,x∗)
P{x(k + 1) = x∗|x(1) = a1}

× P{x(1) = a1|x(0) = a} = 0

⇔ P{x(1) = a1|x(0) = a} = 0 for ∀ a1 /∈ Ck(L, x∗)
⇔ a ∈ �2n \T ��

a�
1 L�

for ∀ a1 /∈ Ck(L, x∗)
⇔ a ∈

�
a1 /∈Ck(L,x∗)

�2n \T ��
a�

1 L�

⇔ a ∈ �2n \
�

a1 /∈Ck (L,x∗)
T ��

a�
1 L�

⇔ a ∈ �2n \T �((12n − Ak)
� �B L) = Ck+1(L, x∗).

Thus, the conclusion holds for the case t = k+1. By induction,
the conclusion holds for all integer t ≥ 1.

Lemma 3 shows that Ct (L, x∗) is substantially a nonreach-
able set of the state x∗. If there exists an integer T > 0 such
that CT (L, x∗) = ∅, we can declare that the PBN is stable in
probability. However, we still need to estimate the bound of T .
This work involves another property of the set Ct (L, x∗). It is
discussed in next lemma.

Lemma 4:
1) If Ck+1(L, x∗) ⊆ Ck(L, x∗), then Ck+2(L, x∗) ⊆

Ck+1(L, x∗) holds, for any integer k ≥ 1.
2) If Ck(L, x∗) = Ck+1(L, x∗), then Ck(L, x∗) =

C j (L, x∗) holds, for any integer j ≥ k.
Proof: For the Conclusion 1), it follows from

Ck+1(L, x∗) ⊆ Ck(L, x∗) that Ak+1 = Ak ∧ Ak+1. Thus,
12n − Ak = (12n − Ak) ∧ (12n − Ak+1). It implies that
T ((12n − Ak)

� �B L) ⊆ T ((12n − Ak+1)
� �B L), which

further means that Ck+2(L, x∗) ⊆ Ck+1(L, x∗).
We will prove the Conclusion 2) by induction. When j = k,

it is trivial. Assume that Ck(L, x∗) = C j (L, x∗) holds for some
fixed j > k. Thus, we have Ak = A j . It yields that

C j+1(L, x∗) = �2n \T �((12n − A j )
� �B L)

= �2n \T �((12n − Ak)
� �B L)

= Ck+1(L, x∗).

That is, Ck(L, x∗) = Ck+1(L, x∗) = C j+1(L, x∗). By induc-
tion, the Conclusion 2) holds for all j ≥ k.

Combined with the above-mentioned lemmas, a necessary
and sufficient condition is proposed in the following theorem
to guarantee the stability in probability of PBNs.

Theorem 1: Given a reference state x∗ ∈ �2n , the PBN (3)
can realize stability in probability at x∗, if and only if
there exist two minimum integers S and T (S ≤ T ),
such that CS+1(L, x∗) ⊆ CS(L, x∗), CT (L, x∗) = ∅ and
T ≤ |CS(L, x∗)| + S.

Proof: From Lemmas 3 and 4, the PBN (3) can stabilize
at x∗ in probability, if and only if there exists an integer T
such that CT (L, x∗) = ∅.

Next, we will show the existence of the minimum integer S.
If CT (L, x∗) = ∅, we have CT (L, x∗) ⊆ CT −1(L, x∗).
Thus, a minimum integer S(≤ T ) always exists to sat-
isfy CS+1(L, x∗) ⊆ CS(L, x∗). On the other hand, if the
PBN (3) can stabilize at x∗ in probability, we will show
CS+1(L, x∗) ⊆ CS(L, x∗) by contradiction. Assume that
Ct (L, x∗) � Ct−1(L, x∗) for all integer t > 1, which is
equivalent to ∃at ∈ Ct (L, x∗)\Ct−1(L, x∗). It contradicts to the
fact that there exists an integer T , such that CT (L, x∗) = ∅.
Thus, CS+1(L, x∗) ⊆ CS(L, x∗) must hold for some integer
S ≤ T .

To prove T ≤ |CS(L, x∗)| + S, it is enough to show that
|Ct (L, x∗)| ≥ |Ct+1(L, x∗)| + 1, for all S ≤ t ≤ T − 1.
Actually, if S = T , it is trivial; if S < T , adding these
T − S inequalities together, it follows that |CS(L, x∗)| ≥
|CT (L, x∗)|+T −S, which further implies T ≤ |CS(L, x∗)|+S.
Assume |Ct (L, x∗)| < |Ct+1(L, x∗)| + 1, i.e., |Ct (L, x∗)| =
|Ct+1(L, x∗)|. Due to Ct (L, x∗) ⊆ Ct+1(L, x∗), we have
Ct (L, x∗) = Ct+1(L, x∗). Based on the Conclusion 2) of
Lemma 4, it implies that CS(L, x∗) = CT (L, x∗) = ∅,
which contradicts that T is the minimum integer such that
CT (L, x∗) = ∅. Thus, we have |Ct (L, x∗)| ≥ |Ct+1(L, x∗)|+1.

It should be pointed out that P{x(t +1) = x∗|x(t) = x∗} >
0 is not a necessary condition for the in-probability problem.
That is, despite P{x(t + 1) = x∗|x(t) = x∗} = 0, the PBN
may still realize stability in probability. For example, let L1 =
δ4[4, 4, 1, 3], L2 = δ4[4, 3, 4, 3] and p1 = p2 = 0.5. Thus

L = L1 +B L2 =

⎡
⎢⎢⎣

0 0 1 0
0 0 0 0
0 1 0 1
1 1 1 0

⎤
⎥⎥⎦ .

Assume x∗ = δ1
4. Based on (8) and (9), we can have that

C1(L, x∗) = {δ1
4, δ2

4, δ4
4}, C2(L, x∗) = {δ1

4, δ
3
4}, C3(L, x∗) =

{δ4
4}, C4(L, x∗) = {δ1

4} and C5(L, x∗) = ∅. From Theorem 1,
the PBN (3) is stable at x∗ in probability. However, it can be
easily observed that P{x(t + 1) = x∗|x(t) = x∗} = 0. It is
quite a different feature compared to the stability of PBNs with
probability one, in which P{x(t +1) = x∗|x(t) = x∗} = 1 is a
necessary condition [30], [32]. This feature makes the stability
in probability of PBNs a much more complicated problem.
Without P{x(t + 1) = x∗|x(t) = x∗} > 0, which is equivalent
to x∗ /∈ C1(L, x∗), it is impossible to build a series of inclusion
relation CT (L, x∗) ⊆ · · · ⊆ C2(L, x∗) ⊆ C1(L, x∗), such as
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Algorithm 1 Checking Stability in Probability of a PBN

Step 1 Set A = 12n − x∗ and L = (B)
�r

s=1 Ls .
Step 2 Compute B = 12n − L� �B (12n − A).

Step 3 If B = 02n , set f lag = 1 and go to End;
elseif B = A, set f lag = 0 and go to End;
else, set A = B and jump to Step 2.

End If f lag = 1, the PBN is stable in probability
at x∗;
else, PBN is not stable in probability at x∗.

the probability-one problem (see [30, Th. 1]). The size of
Ck(L, x∗) fluctuates, until some S can be found such that
CS+1(L, x∗) ⊆ CS(L, x∗).

If the PBN is assumed to satisfy P{x(t + 1) = x∗|x(t) =
x∗} > 0, some more easily verifiable conditions for stability
in probability can be proposed as follows.

Corollary 1: Given a target state x∗ ∈ �2n , under the
assumption that P{x(t +1) = x∗|x(t) = x∗} > 0, the PBN (3)
can realize stability in probability at x∗, if and only if there
exists an integer T ≤ |C1(L, x∗)|+1, such that CT (L, x∗) = ∅.

Proof: We only need to prove T ≤ |C1(L, x∗)|+1. Based
on Lemma 3, P{x(t + 1) = x∗|x(t) = x∗} > 0 is equivalent
to x∗ /∈ C1(L, x∗). For any a ∈ C2(L, x∗), it follows from
Lemma 2 and (9) that ((12n − A1)

� �B L) � a = 0. Due
to x∗ /∈ C1(L, x∗), it yields that x∗ ∈ T (12n − A1). Thus,
(x∗L) � a = 0, which further means that a ∈ C1(L, x∗).
It can be obtained C2(L, x∗) ⊆ C1(L, x∗). Thus, S = 1 in
Theorem 1, i.e., T ≤ |C1(L, x∗)| + 1.

Remark 3: The integer T is the number of the sequence of
sets {Ck(L, x∗)}, which is needed to be estimated. In Corol-
lary 1, an upper bound of T is given. Thus, the theoretical
results can be easily verified by checking whether the set
Ck(L, x∗) is empty or not at most |C1(L, x∗)| + 1 times.
However, in Theorem 1, the upper bound of T cannot be
obtained without knowing S. It is still a lack of feasible
methods to estimate S. Furthermore, the value range of S is
very wide (up to 22n − 1). In many works [30], the estimation
depends on the inclusion relation of reachable sets, which may
not be satisfied in Theorem 1. Thus, some new methods, which
are not based on the reachable sets, are needed. Our future
work will try to solve it. Note that the inclusion property is
satisfied in Corollary 1. Thus, the upper bound of T can be
given. It is much easier to verify Corollary 1 than Theorem 1.

Based on the above-mentioned discussions, we can design
Algorithm 1 a feasible algorithm to check stability in prob-
ability according to the condition proposed in Corollary 1,
assuming that P{x(t + 1) = x∗|x(t) = x∗} > 0 holds for
PBNs.

B. Stabilization in Probability

In this section, stabilization in probability is investigated for
PBCNs. Based on the study of stability in probability, a nec-
essary and sufficient condition is given. However, the result is
hard to verify, since it is lack of efficient methods to build a
controller. Then, the time-varying controller is designed as an

alternative to overcome it. Finally, the problem is simplified
by assuming that P{x(t + 1) = x∗|x(t) = x∗, u} > 0 holds
for some u.

Theorem 2: Let L = (B)
�r

s=1 Ls ∈ B2n×2n+m . The
PBCN (5) can realize stabilization at x∗ ∈ �2n in probability
with the state feedback controller u(t) = Gx(t), if and only if
for ∀i ∈ {1, 2, . . . , 2n}, there exists di ∈ {1, 2, . . . , 2m}, such
that to construct a matrix L ∈ L2n×2n as

Coli (L) = Coli (Blkdi (L))

and build a sequence of sets Ck(L, x∗) as (8) and (9), we have
CT (L, x∗) = ∅ for some integer T ≥ 1. The state feedback
control matrix can be given as G = δ2m [d1, d2, . . . , d2n ].

Proof: For ∀δi
2n ∈ �2n , let u = Gδi

2n . According to the
definition of the matrix L, it follows that:

Luδi
2n = Lδ

di
2m δi

2n = Coli (Blkdi (L)) = Coli (L) = Lδi
2n .

We claim that δi
2n ∈ Ct (L, x∗) if and only if for any integer

t ≥ 1, P{x(t) = x∗|x(0) = δi
2n , u(τ ) = Gx(τ )} = 0. We will

prove it by induction.
When t = 1, it follows from Lemma 2 that:

P{x(1) = x∗|x(0) = δi
2n , u(0) = Gδi

2n } = 0

⇔ x∗�Lδ
di
2m δi

2n = 0

⇔ x∗�Lδi
2n = 0

⇔ δi
2n ∈ �2n \T �(x∗�L) = C1(L, x∗).

Assume the conclusion holds for the case t = k. When
t = k + 1, we have

P{x(k + 1) = x∗|x(0) = δi
2n , u(τ ) = Gx(τ )} = 0

⇔
�

a1∈�2n

P{x(k + 1) = x∗|x(1) = a1, u(τ ) = Gx(τ )}

× P{x(1) = a1|x(0) = δi
2n , u(0) = Gδi

2n } = 0

⇔
�

a1 /∈Ct (L,x∗)
P{x(k + 1) = x∗|x(1) = a1, u(τ ) = Gx(τ )}

× P{x(1) = a1|x(0) = δi
2n , u(0) = Gδi

2n } = 0

⇔ P{x(1) = a1|x(0) = δi
2n , u(0) = Gδi

2n } = 0

∀a1 /∈ Ct (L, x∗)
⇔ a�

1 Lδi
2n = 0 ∀a1 /∈ Ct (L, x∗)

⇔ (12n − At )
� �B Lδi

2n = 0 (since At =
�

a∈Ct (L,x∗)
a)

⇔ δi
2n ∈ �2n \T �((12n − At )

� �B L) (by Lemma 2)

⇔ δi
2n ∈ Ct+1(L, x∗).

Thus, from the claim, we can see that the PBCN (5) can
realize stabilization at x in probability with the controller
u(t) = Gx(t), if and only if there exists an integer T such
that CT (L, x∗) = ∅. This completes the proof.

Remark 4: To construct the controller, the matrix L should
be found with CT (L, x∗) = ∅ for some T . The total number
of all the possible combinations to build L is (2m)2n

, since
for each i ∈ {1, 2, . . . , 2n}, di has 2m choices. Unfortunately,
efficient algorithms are still rare to find L. The reason is also
that the reachable sets may not have the inclusion property,
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as discussed in Remark 3. When n or m is large, it is
impossible to investigate the stabilizability of the PBCN.
To overcome this problem, we will consider a time-varying
controller to stabilize the PBCN as an alternative.

Considering the PBCN (5), let L = (B)
�r

s=1 Ls ∈
B2n×2n+m . We define a sequence of sets {Hk(L, x∗)} for each
x∗ ∈ �2n as follows:

H0(L, x∗) = {x∗} (10)

Hk+1(L, x∗) =
2m�

s=1

T ��
B�

k �B Blks(L)
�

(11)

where k = 0, 1, . . . and Bk = �
a∈Hk(L,x∗) a, and Blks(L) is

the sth square block of the matrix L.
Theorem 3: For the PBCN (5) and any given target state

x∗ ∈ �2n , P{x(T ) = x∗|x(0) = x0, u(τ ) = G(τ )x(τ )} > 0
holds for any initial state x0 ∈ �2n , if and only if there
exists an integer T > 0, such that HT (L, x∗) = �2n .
The time-varying control matrix is constructed as G(τ ) =
δ2m [d1(τ ), d2(τ ), . . . , d2n (τ )] (τ = 0, 1, . . . , T − 1), where

di (τ ) ∈ {s|B�
T−τ−1 �B Blks(L) � δi

2n = 1} (12)

if the rhs set is nonempty; otherwise, di (τ ) can be arbitrarily
chosen from {1, 2, . . . , 2m}.

Proof: First, we will prove that for any integer t ≥ 0, δi
2n /∈

Ht (L, x∗) if and only if P{x(t) = x∗|x(0) = δi
2n , u(τ ) =

G(τ )x(τ )} = 0 for ∀G(τ ) ∈ L2m×2n by induction.
When t = 1, we have

δi
2n /∈ H1(L, x∗)
⇔ δi

2n ∈ �2n \T �(x∗�Blks(L)), for ∀s ∈ {1, . . . , 2m}
⇔ x∗�Blks(L)δi

2n = 0, for ∀s ∈ {1, . . . , 2m}
⇔ P

�
x(1) = x∗��x(0) = δi

2n , u(0) = G(0)δi
2n

� = 0,

for ∀G(0) ∈ L2m×2n .

Supposing that the conclusion holds for the case t = k,
we consider the case t = k + 1 as

δi
2n /∈ Hk+1(L, x∗)

⇔ δi
2n ∈ �2n \T ��

B�
k �B Blks(L)

�
,

for ∀s ∈ {1, . . . , 2m}
⇔ B�

k �B Blks(L)δi
2n = 0, for ∀s ∈ {1, . . . , 2m}

⇔ a�Blks(L)δi
2n = 0, for ∀s ∈ {1, . . . , 2m}

∀a ∈ Hk(L, x∗)
⇔ P{x(1) = a|x(0) = δi

2n , u(0) = G(0)δi
2n } = 0,

for ∀a ∈ Hk(L, x∗) and ∀G(0) ∈ L2m×2n

⇔ P{x(k + 1) = x∗|x(0) = δi
2n , u(τ ) = G(τ )x(τ )}

=
�

a /∈Hk (L,x∗)
P

�
x(1) = a|x(0) = δi

2n , u(0) = G(0)δi
2n

�

×P{x(k + 1) = x∗|x(1) = a, u(τ ) = G(τ )x(τ )},
for ∀G(0) ∈ L2m×2n

⇔ P
�

x(k + 1) = x∗|x(0) = δi
2n , u(τ ) = G(τ )x(τ )

� = 0,

for ∀G(τ ) ∈ L2m×2n and τ = 0, 1, . . . , k.

By induction, we can conclude that for any integer t ≥ 0,
δi

2n /∈ Ht (L, x∗) if and only if P{x(t) = x∗|x(0) =

Algorithm 2 Designing a Time-varying Controller for a PBCN

Step 1 Set τ = T − 1, B = x∗ and L = (B)
�r

s=1 Ls .
Step 2 Set i = 1.
Step 3 Set di = 1 and s = 1.
Step 4 Compute f lag = B� �B Blks(L) � δi

2n .
Step 5 If f lag = 1, set di = s and go to Step 6;

elseif s = 2m , go to Step 6;
else set s = s + 1 and jump to Step 4.

Step 6 If i = 2n , set G(τ ) = δ2m [d1, d2, . . . , d2n ]
and continue to Step 7;
else set i = i + 1 and jump to Step 3.

Step 7 If τ = 0, continue to End;
else set τ = τ − 1, B = (L �B 12m )� �B B
and jump to Step 2.

End

δi
2n , u(τ ) = G(τ )x(τ )} = 0 for ∀G(τ ) ∈ L2m×2n . In other

words, HT (L, x∗) = �2n if and only if there exists a
time-varying matrix G(τ ) ∈ L2m×2n (0 ≤ τ < T ) such that
P{x(T ) = x∗|x(0) = x0, u(τ ) = G(τ )x(τ )} > 0 holds for
any initial state x0 ∈ �2n .

Secondly, we will show that the proposed time-varying
controller can guide any initial state to x∗ in probability at
time T . According to the definition of G(τ ), we have

B�
T−t−1 �B Blkdi (t)(L) � δi

2n = 1

⇔ a�
t+1 � L �

�
G(t) � δi

2n

�
� δi

2n = 1

⇔ P
�

x(t + 1) = at+1|x(t) = δi
2n , u(t) = G(t)δi

2n

�
> 0

for ∀δi
2n ∈ HT −t (L, x∗) and ∀at+1 ∈ HT −t−1(L, x∗). Note

that HT (L, x∗) = �2n guarantees Ht (L, x∗) 
= ∅ for any
integer 0 ≤ t < T . Thus, for any initial state x0 ∈ �2n , it can
be got that

P{x(T ) = x∗|x(0) = x0, u(τ ) = G(τ )x(τ )}
>

�
aT −1∈H1(L,x∗)

P{x(T ) = x∗|x(T − 1) = aT −1

u(T − 1) = G(T − 1)aT−1}
× · · · ×

�
a1∈HT −1(L,x∗)

P{x(1)=a1|x(0)= x0, u(0)=G(0)x0}

> 0.

Providing that HT (L, x∗) = �2n holds for some inte-
ger T > 0, the time-varying controller can be designed
by (12). The algorithm to implement the controller is given in
Algorithm 2.

Remark 5: The proposed condition of Theorem 3 ensures
that the whole network can arrive at x∗ in probability at time
T . However, it does not ensure the network stabilized at x∗
in probability. It is still very hard to design the controller for
the time t ≥ T . If we assume that P{x(t + 1) = x∗|x(t) =
x∗, u} > 0 holds for some u ∈ �2m , i.e., x∗ ∈ H1(L, x∗),
the stabilization condition can be derived. In addition, the con-
troller can be time invariant.
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Algorithm 3 Designing a Time-invariant Controller for a
PBCN

Step 1 Initialize t = 1, A = 02n , B0 = 02n , B = x∗
and L = (B)

�r
s=1 Ls .

Step 2 Set i = 1, A = A + B0, B0 = B
and B = (L �B 12m )� �B B0.

Step 3 If (B − A)� × δi
2n = 1, set s = 1

and continue to Step 4;
elseif i = 2n , jump to Step 5;
else, set i = i + 1 and go to Step 3.

Step 4 Compute f lag = B�
0 �B Blks(L) � δi

2n .
If f lag = 1, set di = s and go to Step 5;
else, set s = s + 1 and go to Step 4.

Step 5 If t = T , go to End;
else, set t = t + 1 and jump to Step 2.

End Set G = δ2m [d1, d2, . . . , d2n ].

By using almost the same method as that of Lemma 4,
the following results can be obtained. The proof is omitted
here.

Lemma 5: If Hk(L, x∗) ⊆ Hk+1(L, x∗), then
Hk+1(L, x∗) ⊆ Hk+2(L, x∗) holds, for any integer
k ≥ 0. Especially, if Hk(L, x∗) = Hk+1(L, x∗), then
Hk(L, x∗) = · · · = H j (L, x∗) holds, for any integer j ≥ k.

Theorem 4: Given a target state x∗ ∈ �2n , under the
assumption that x∗ ∈ H1(L, x∗), the PBCN (5) can stabilize
at x∗ in probability, if and only if there exists an integer
T ≤ 2n − 1, such that HT (L, x∗) = �2n . The control matrix
is constructed as G = δ2m [d1, d2, . . . , d2n ], where

di ∈ {s|B�
min{t≥1|δi

2n ∈Ht (L,x∗)}−1
�B Blks(L) � δi

2n = 1}
for i = 1, 2, . . . , 2n .

Proof: Based on Theorem 3, just letting G(t) ≡ G, we can
obtain that P{x(T ) = x∗|x(0) = x0, u(τ ) = Gx(τ )} > 0
holds for any initial state x0 ∈ �2n if and only if HT (L, x∗) =
�2n . The assumption x∗ ∈ H1(L, x∗) is equivalent to P{x(t +
1) = x∗|x(t) = x∗, u(t) = Gx∗} > 0. Thus, it yields that the
PBCN (5) can stabilize at x∗ in probability.

Next, we will show T ≤ 2n − 1. By using almost the
same method of Theorem 1, it follows from Lemma 5 that
|Hk+1(L, x∗)| ≥ |Hk(L, x∗)| + 1 (0 ≤ k < T ). Considering
that H0(L, x∗) = 1 and |HT (L, x∗)| = 2n , it follows that
T ≤ 2n − 1.

If the PBCNs can be stabilized in probability with the
assumption that P{x(t + 1) = x∗|x(t) = x∗, u} > 0 holds
for some u ∈ �2m , Theorem 4 gives a method to build the
controller. Based on it, a feasible algorithm to implement the
controller is proposed as Algorithm 3.

Remark 6: The computational complexity of Algorithm 3
mainly lies at Step 4, the Boolean matrix multiplication
B�

0 �B Blks(L) � δi
2n . It needs 2n+m multiplications.

Algorithm 3 can be easily conducted for moderate n and m.
However, the number of multiplication is T × 2n+m in
Algorithm 2, since it has to construct a feedback controller
at each time. Furthermore, the bound of T is hard to be
estimated. It may be quite large. Thus, Algorithm 3 is much

more feasible, whereas Algorithm 2 is a compromise. Despite
of not being as good as Algorithm 2, it is still an acceptable
method, when P{x(t + 1) = x∗|x(t) = x∗, u} = 0 for any u.

Remark 7: In this article, the probability pi corresponding
to each structural function fi is time invariant. It is interesting
to study the PBNs with time-varying transition probabilities,
while this issue is difficult. The reasons are twofold. First,
the dynamics of such kind of PBNs can be handled in the
probabilistic context of a nonhomogeneous Markov chain,
which is much harder than the homogeneous one. Second,
the probabilities {pi}i=1,...,r are obtained from experimen-
tal data by employing the coefficient of determination [20].
If the probabilities are time dependent, more training data are
needed. However, the insufficient amount of accessible data is
still a limitation of the research of BNs. Nevertheless, PBNs
with time-varying transition probabilities can represent more
realistic biological systems. Our future work will focus on it.

Remark 8: In very recent years, the stabilization problem
has been studied for PBCNs in many works, for example,
set stabilization [48]–[50], output feedback stabilization [51],
output feedback set stabilization [52] and sampled-data stabi-
lization [53]. In these articles, the reachable sets of the target
state (or set) are iteratively established for proposing stabiliza-
tion conditions. Since they all investigated the probability-one
problem, the target state (or set) must belong to the first
reachable set. It makes that the sequence of reachable sets
has the inclusion property. Then, the controller can be built
according to the difference in the set of two adjacent reachable
sets. As discussed earlier, the in-probability problem faces a
different situation, in which the inclusion relation may not
exist for reachable sets. Thus, it is difficult to design the
controller (see Remark 4). To overcome it, the time-varying
controller is constructed in Theorem 3 by employing reachable
sets directly. Furthermore, if the target state (or set) has
the probability of transferring to itself, we can also build a
time-invariant controller.

Remark 9: The in-probability stability/stabilization requires
the long-term probability of a target state is positive. It may
happen that a state with an extremely small probability can
also be referred to as a stable state. This is seemingly opposed
to common sense. Moreover, it would be practical to know
whether the long-term probability is greater than a given
threshold or not. Thus, more meaningful definitions of the
in-probability problems could be

P{x(t) = x∗|x(0) = x0} ≥ p

P{x(t) = x∗|x(0) = x0, u(τ ) = g(x(τ ))} ≥ p

where p > 0 is the given threshold probability. The probability
distributions may not be convergent, but the probability of the
target state must vary in a fixed range, i.e., the interval [p, 1).
It is not a trivial work. Our future work will try to discuss it.

IV. NUMERICAL EXAMPLES

In this section, two numerical examples (simulated by a PC
with an Intel Core-i7 1.80-GHz processor and 8-GB memory)
will be given to show the effectiveness of our theoretical
results. Algorithms 1–3 provide principles for programming
codes written in MATLAB.
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Example 1: In this example, we will verify our results about
the stability in probability via a real financial case. In [54],
the PBN is used to study the credit default data of different
industrial sectors. A series of 88 quarterly default data of three
industrial sectors (transport x1, energy x2 and consumer x3)
are extracted, where xi = δ1

2 represents no default in a quarter;
xi = δ2

2 represents default observed (i = 1, 2, 3). A PBN can
be built as follows, by solving an entrop optimization problem:
L1 = δ8{1, 6, 5, 2, 7, 6, 3, 8}, L2 = δ8{1, 2, 6, 2, 3, 8, 2, 6}
L3 = δ8{2, 5, 3, 3, 6, 8, 3, 8}, L4 = δ8{6, 4, 3, 8, 2, 5, 3, 8}
L5 = δ8{6, 2, 3, 8, 6, 2, 2, 6}, L6 = δ8{6, 3, 1, 3, 3, 4, 3, 6}

with p1 = 0.3295, p2 = 0.2273, p3 = 0.1477, p4 = 0.1364,
p5 = 0.1023, and p6 = 0.0568. By some easy computations,
it can be found that P{x(t + 1) = δi

8|x(t) = δi
8} < 1 for all

i = 1, 2, . . . , 8, based on [30, Th. 1]. None of the PBN’s states
can be stabilized with probability one, which conforms to the
common sense that no industrial sector can be expected to
boom or shrink with 100% certainty. Not to mention that they
can keep boom or shrink forever. A more reasonable perspec-
tive is to investigate the stability in probability. Considering
x∗ = δ7

8, let

L = (B)

6�
i=1

Li =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 0 0 0 0 0
1 1 0 1 1 1 1 0
0 1 1 1 1 0 1 0
0 1 0 0 0 1 0 0
0 1 1 0 0 1 0 0
1 1 1 0 1 1 0 1
0 0 0 0 1 0 0 0
0 0 0 1 0 1 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The sequence of sets {Ck(L, δ7
8)} can be obtained as

C1(L, δ7
8) = �

δ1
8, δ

2
8 , δ3

8, δ4
8, δ6

8, δ7
8, δ8

8

�

C2(L, δ7
8) = �

δ1
8, δ

4
8, δ5

8 , δ7
8, δ8

8

�

C3(L, δ7
8) = ∅.

Note that C2(L, δ7
8) � C1(L, δ7

8), due to P{x(t + 1) =
δ7

8 |x(t) = δ7
8} = 0. According to Theorem 1, the PBN is

stable at x∗ in probability with S = 2 and T = 3, although
x∗ has zero probability to transfer to itself. It means that no
matter what the initial state is, a possible economic situation
is that only the consumer sector has no credit default since
the third quarter. The numerical results of P{x(t) = x∗|x(0)}
are given in Table I.

Providing x∗ = δ8
8, the sequence of {Ci (L, x∗)} can

be built as: C1(L, δ8
8) = {δ1

8, δ2
8, δ3

8, δ5
8, δ7

8}, C2(L, δ8
8) =

{δ7
8}, C3(L, δ8

8) = ∅. It can be observed that C3(L, δ8
8) ⊆

C2(L, δ8
8) ⊆ C1(L, δ8

8), since P{x(t + 1) = δ8
8 |x(t) = δ8

8} =
0.6136 > 0. By employing Corollary 1, we know that the
state x∗ = δ8

8 (x1 = 1, x2 = 1 and x3 = 1) can be stable
in probability with T = 3 from any initial states. It coincides
with the fact that the quarter with credit default in all three
sectors will appear within a short period from any starting
quarter [55].

Example 2: We now consider the following PBCN of an
apoptosis network [56] as an example for the stabilization in

TABLE I

STABILITY IN PROBABILITY OF THE PBN BUILT IN EXAMPLE 1

probability

f1 = (¬x2 ∧ u,¬x1 ∧ x3, x2 ∨ u), f2 = (x1, x2, x3)

f3 = (x1,¬x1 ∧ x3, x2 ∨ u), f4 = (¬x2 ∧ u, x2, x3)

f5 = (¬x2 ∧ u, x2, x2 ∨ u), f6 = (x1,¬x1 ∧ x3, x3)

f7 = (x1, x2, x2 ∨ u), f8 = (¬x2 ∧ u,¬x1 ∧ x3, x3)

with the probabilities p1 = 0.336, p2 = 0.024, p3 = 0.224,
p4 = 0.036, p5 = 0.144, p6 = 0.056, p7 = 0.096, and p8 =
0.084. Here, x1, x2, and x3 denote the concentration levels of
inhibitor of apoptosis proteins (IAP), active caspase 3 (C3a),
and active caspase 8 (C8a), respectively. The concentration
level of the TNF (a stimulus) is denoted by u, and is regarded
as the control input. By utilizing Lemma 1, we can have

L1 = δ8[7, 7, 3, 3, 5, 7, 1, 3, 7, 7, 8, 8, 5, 7, 6, 8]
L2 = δ8[1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8]
L3 = δ8[3, 3, 3, 3, 5, 7, 5, 7, 3, 3, 4, 4, 5, 7, 6, 8]
L4 = δ8[5, 6, 3, 4, 5, 6, 3, 4, 5, 6, 7, 8, 5, 6, 7, 8]
L5 = δ8[5, 5, 3, 3, 5, 5, 3, 3, 5, 5, 8, 8, 5, 5, 8, 8]
L6 = δ8[3, 4, 3, 4, 5, 8, 5, 8, 3, 4, 3, 4, 5, 8, 5, 8]
L7 = δ8[1, 1, 3, 3, 5, 5, 7, 7, 1, 1, 4, 4, 5, 5, 8, 8]
L8 = δ8[7, 8, 3, 4, 5, 8, 1, 4, 7, 8, 7, 8, 5, 8, 5, 8]

and L = (B)
�8

i=1 Li .
This PBCN has revealed that the system cannot be globally

stabilized with probability one to any state [30]. None of the
states can be definitely predicted with the stimulus TNF. From
the biological point of view, a cell may fall into either the
survival or the apoptotic in probability. However, let x∗ = δ5

8
and G = δ2[∗, ∗, 2, ∗, ∗, ∗, ∗, 1], where ∗ can be arbitrarily
selected as 1 or 2. Applying Theorem 2, the PBCN can be
stabilized at x∗ in probability with state feedback control.
For example, let G = δ2[1, 1, 2, 1, 1, 1, 1, 1] (i.e. u = x1 →
(x3 → x2)). The probabilities of any initial states transferring
to x∗ are listed in Table II.

It is worthy to point out that the network can only stabilize
in probability at the state δ5

8, which corresponds to x1 = 0,
x2 = 1, and x3 = 1. It indicates the system will head toward
a complex attractor (SCC 49) with activation of the caspases
and absence of IAP. Actually, it is known as the only attractor
that all trajectories starting from any state will eventually reach
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TABLE II

STABILIZATION IN PROBABILITY OF THE PBCN GIVEN IN EXAMPLE 2

it and remain in it for all subsequent time [57]. Within this
attractor, the apoptotic decision is highly related to the varying
stimulation of TNF. Both survival and apoptosis are possible,
depending on the cellular state.

Note that δ5
8 ∈ H1(L, δ5

8). The stabilization in probability
of the PBCN can be checked by Theorem 4, which is more
easily verifiable than Theorem 2. By some easy computations,
we can obtain that

H0 = �
δ5

8

�
B0 = [0 0 0 0 1 0 0 0]�

H1 = �
δ1

8, δ2
8, δ5

8, δ6
8, δ7

8

�
B1 = [1 1 0 0 1 1 1 0]�

H2 = �
δ1

8, δ2
8, δ3

8, δ5
8, δ6

8, δ7
8, δ8

8

�
B2 = [1 1 1 0 1 1 1 1]�

H3 = �23 B3 = [1 1 1 1 1 1 1 1]�.

It also indicates that the PBCN can stabilize at x∗ = δ5
8 in

probability from T = 3. According to Algorithm 3, the control
matrix G = δ2[d1, d2, . . . , d8] can be constructed as

d1 ∈ {s|B�
0 �B Blks(L) � δ1

8 = 1} = {1, 2}
d2 ∈ {s|B�

0 �B Blks(L) � δ2
8 = 1} = {1, 2}

d3 ∈ {s|B�
1 �B Blks(L) � δ3

8 = 1} = {2}
d4 ∈ {s|B�

2 �B Blks(L) � δ4
8 = 1} = {1, 2}

d5 ∈ {s|B�
0 �B Blks(L) � δ5

8 = 1} = {1, 2}
d6 ∈ {s|B�

0 �B Blks(L) � δ6
8 = 1} = {1, 2}

d7 ∈ {s|B�
0 �B Blks(L) � δ7

8 = 1} = {1, 2}
d8 ∈ {s|B�

1 �B Blks(L) � δ8
8 = 1} = {1}.

It is the same as the one solved from Theorem 2. However,
Theorem 4 gives a more feasible algorithm. It is an advantage,
provided the condition P{x(t + 1) = x∗|x(t) = x∗, u} > 0
satisfying for some u.

As discussed in Remark 3, for each given target state
x∗ ∈ �23 , the total number of possible controllers is
(2m)2n = 256. For each candidate controller, we further need
to check the condition derived in Theorem 1. Thus, it is
a huge computational cost. In this example, n and m are
relatively small. It still takes 3.14 s to obtain the result that
the only stabilizable state is δ5

8, and 64 feedback controllers
can stabilize it. If Algorithm 3 is applicable, the computation
burden will be reduced greatly (see Remark 6). Due to δ5

8 ∈
H1(L, δ5

8), Algorithm 3 can be employed in this example.

As displayed earlier, only three sets (H1, H2, and H3) are
needed to construct. The 64 controllers can also be obtained,
since d1, d2, and d4–d7 have two choices.

V. CONCLUSION

The stability in probability and stabilization in probability
have been respectively discussed for the PBNs and PBCNs
in this article. Compared with the traditional probability-one
problems, the network is not required to converge to a pre-
defined state in a determinate manner. Thus, it can be used
to simulate a more realistic cellular system. Resorting to
the STP technique, some necessary and sufficient conditions
have been derived, which ensure the stability/stabilization
in probability. Numerical examples have been built to illustrate
the effectiveness and efficiency of the theoretical results.

Constructing reachable sets is critical to analyze the
stability/stabilization of PBNs/PBCNs. Since the inclusion
relation may not be satisfied for the reachable sets, it makes
the lack of efficient algorithms to estimate the upper bound
of S in Theorem 1 and to build the matrix L in Theorem 2
(see Remarks 3 and 4). One of our future works is to propose
some new methods, which are not dependent on the reachable
sets, to solve these problems. The transition probability matrix
considering in this article is time invariant. It is interesting
to investigate PBNs with time-varying transition probability
matrices, which are more general and can reflect more realistic
systems. However, it is a difficult problem, since the nonho-
mogeneous Markov chain is involved. This will be another
future work.
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