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Synchronization Analysis for Stochastic Delayed
Multilayer Network With Additive Couplings

Jinsen Zhuang, Jinde Cao

Abstract—This paper is concerned with the synchronization of
stochastic delayed multilayer networks with additive couplings.
Multilayer networks are a kind of complex networks with
different layers, which consist of different kinds of interactions or
multiple subnetworks. Additive couplings are designed to capture
the different layered connections. Based on additive couplings,
several sufficient conditions are obtained to guarantee the syn-
chronization of chaotic stochastic delayed coupled multilayer
network. More specifically, on one hand, we obtain some sufficient
conditions to guarantee that the stochastic multilayer network
can be synchronized almost surely without control input. On the
other hand, we propose three synchronization schemes by design-
ing controllers. Scheme I: It is assumed that only a part of the
nodes are allowed to be controlled directly. Scheme II: Control
all nodes of the complex system by using only one controller.
Scheme III: Pinning adaptive controller. Finally, an example and
its simulations are given to show the effectiveness of our control
schemes.

Index Terms—Multilayer network, synchronization, synchro-
nization control.
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I. INTRODUCTION

N 1988, Chua and Yang [1] proposed the theory of cellu-

lar neural networks (CNNs). They found many important
applications in signal processing and pattern recognition prob-
lems, especially in image treatment (see [2]). Since it has
great significance in both theory and application, many results
on the stability of CNN have been obtained with or without
delays. The classical CNN model was described by differential
equations

X(t) = —=Cx(t) + Af (x(1)) + 1

where x = (x1,x2,...,x)7 € R, C = diag{cy,c,
...,cp) > 0, A € R"™ is a constant real matrix. Most of
the previous existing results are considering the stability of
CNNs. In the real world, time delays occur when the neural
networks are usually implemented by VLSI electronic circuits.
But, it has been proved that the time delays can cause chaos
(see [3]-[7]). Therefore, an important and natural question
is about how to control chaos. Pacora and Carroll [8] and
Ott et al. [9] initially proposed the concept of synchronization
and designed a scheme to control chaos. In view of its great
practical and theoretic significance, many schemes have been
proposed for the synchronization of chaotic systems. These
schemes include the adaptive feedback control, the coupling
control, the scalar driving method, the manifold-based
method, the impulsive control, the adaptive design control,
pinning control, and so on. For examples, one can refer
to [4], [5], and [9]-[32].

We mentioned that the complex systems are described by the
traditional networks in the above works. However, in the real-
world applications, the complex network is more complicated
than the traditional one. The conventional complex network
oversimplifies many important properties and characters in
modeling real-world phenomenon. To provide a more gen-
eral and more realistic description of complex systems in real
world, it is very important to propose and study the multilayer
networks. Multilayer networks are networks with different lay-
ers. Multilayer networks take different kinds of interactions
or multiple subnetworks into considerations. There are few
papers considering the synchronization of dynamic multilayer
networks [33]-[35]. Recently, He et al. [35] investigated the
synchronization of multiagent systems with different types of
interactions. A specific kind of interaction corresponds to a
specific layer of the multilayer networks, which forms multiple
network topology. Synchronization with additive coupling was
proposed in [35]. In fact, on the synchronization problem, a
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lot of interesting models with additive coupling have been
reported in [13]-[15], [28], and [36]. To study the multiple
network topologies, He er al. [35] proposed and studied the
following system with additive couplings:

Xi(t) = Axi(t) +f(f xi(1))

+ch2a( 'Di(xi(t — ) —xi(t — 1)) (1)

However, the realistic environments are usually affected by
unpredictable disturbance. This uncertain disturbance can be
seen as random, probability, stochastic process, etc. (see [27],
[37], [38]). Thus, it is necessary to take the stochastic effects
into complex neural networks.

Thus, in this paper, we propose the following stochastic
multilayer networks with additive couplings [28], [35], [39].
This is the first paper considering the stochastic multilayer
networks. It is assumed that the connections on different layers
make positively contribution to the synchronization. The state
of each node is evolved according to the following equation:

dxi(t) = | Axi(8) +f (@, xi (1), xi(t — T(1)))
M N
+ > Yl Dilir — T(0) — xit — T(1))) |dt
k=1 j=I
+ ui(H)dt + g(t, x;(2), x;(t — ©(2)))dB(?)
i=1,2,....N )

where N is the number of coupled nodes, x; =
i1 (0), xp (D), ..., xin()T € R" denotes the state vector,
A € R™" is a constant real matrix, f(-) € R"” is a con-
tinuous vector function, ¢x > 0 is the strength of coupling,
AD = (a(k)) € RV*N is the outer coupling matrix (adjacency
matrix), Dk € R™ " is the kth layer inner coupling matrix and
7(¢) is the transmission delay, u;(f) € R" represents the con-
trol input to ith node and will be designed in the sequel, B(¢)
is an m-dimensional Brownian motion which is defined on a
probability space (€2, F, P) with the natural filtration {F;};>0
generated by {B(s),0 < s < 1}, g(-) € R™ is the noise
intensity matrix.

This paper is organized as follows. Model assumptions
and preliminary lemmas are given in the next section. We
devote ourselves to state our main theorems and their proofs
in Section III, which has two sections. One is to obtain
some sufficient conditions to guarantee that system (2) can be
synchronized almost surely without control input. The other
section is to propose three synchronization schemes by design-
ing controllers. Scheme I: It is assumed that only a part of the
nodes are allowed to be controlled directly. Scheme II: Control
all nodes of the complex system by using only one controller.
Scheme III: Pinning adaptive controller. In Section IV, some
numerical simulations are given to show the feasibility and
effectiveness of our synchronization schemes.
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IT. MODEL DESCRIPTION, ASSUMPTIONS, AND
PRELIMINARY LEMMAS

Notations: I, is the identity matrix with order n. The matrix
Py — P; is said to be positive semi-definite (positive defi-
nite, negative semi-definite, and negative definite, resp.) if the
symmetric matrices satisfy P; and P, P1 > P> (P > P>,
Py < P, and P; < P»). Moreover, (22, F,P) is some
probability space. Let T be a constant positive real number.
The set of all continuous functions from [—t,0] onto R"
is denoted by C([—7,0]; R"). Let CZ-O([—I, 0]; R™) denote
the set of all bounded and JFy-measurable stochastic variables
§=1{0)—1t=6=0}

Throughout this paper, we assume that the initial condition
to system (2) is described by

xi(1) = Y1), i) € Cx (-7, 0; R")

where i = 1,2,...,N. Moreover, for the matrix A®, the
associated Laplacian matrix LK = (ll@ )nxn 1s defined by

Z a(k)

J=Lj#i

1 = —al, fori#j, and [’ =

and satisfies Zjv_ | ll(k) = 0 (the diffusion property).
Definition 1: The multilayer complex network (2) is syn-
chronized almost surely if

t_leoo(xi(t) —xj(1)) =0, as.

holds for i,j=1,2,...,N.

Without loss of generality, we choose node 1 as the tar-
get node and study the almost sure synchronization of the
multilayer complex system (2).

Remark 1: Trivially, as remarked in [39], the almost sure
synchronization is equivalent to that

lim (x;(r) —x1(t)) =0, a.s.
t——+00

holds foreachi=1,2,...,N.
Let e;(t) = x;(f) —x1(¢), then one obtains the following error
system:

de;(1) = (Aei(t) + (f(t, xi(1), xi(t — (1))
—f(t, x1(®), x1(t — r(t))))
+ Zk 1 Ck Z =14 l]
(ej(t — (1) —ei(t — r(t))) + ui(t) — u1 (1))dt
+ (g, xi(t), xi(t — T(1)))
— g(t,x1 (), x1(t — ©(1))))dB(r)
= Yi(t) = Y1 (1), t€[—7(0),0]

x;i(1)
3)

where i = 2, ..., N. Note that,

Za(") (ejt — T() — eit — (1))

—Za(k)e](t (1)) — Za(k)e,(t—r(t))

j=1
N
_ Zz< Yej(t —v@) = = P et — 1)

=2
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where ej (t — t(¢)) = 0. Therefore, the error system (3) can be
written in the following form:

de(t) = (-1 ® A)e(t) + F(t, e(t), e(t = (1))

S (Lﬁ") ® Dk)e(t — (1) + U(t))dt
+ G(t, e(t), e(t — t(2)))dB(2)
e(t)y =¥(), te[—1(),0]
4)

where (1) = (e} (1), e (1), ..., el ()T, Fi(t, ei(D), ei(t— (1))
= [, xi(0), xi(t—7 () =f (1, x1(1), x1 (1—7 (1)) = f(1, €i(O)+
x1(0), ei(t — () +x1(t — (1)) —f(t, x1 (1), x1 1 — (1)), F (2,
e(n),e(t—1(1)) = (F2(t, e2(0), e2(t — T(1))), . .., Fn (1, en(1),
en(t — T, Gi(t, ei(®), ei(t — T(1) = g, xi(0), xi(t —
() — gt x1(0), x1(t — (1)) = gt, ei(t) + x1(0), ei(r —
() + x1(t — () — g, x1(1), x1(t — (1)), G, e(0),
et — () = (Gt e2(n), 2t — T(D), ...,
Gy (1, en (), en(t—t (M), UN) = (uh () —u] (1), ..., ug (1) —
uf N, W@ = Wy O = Y@, ..., v50 — ¥ @), and
Lgk) is a matrix formed by removing the first row and the
first column of the Laplacian matrix L®).

For the sake of proving main results, we make the assump-
tions as follows.

HI: Suppose that there are two constants M; > 0 and
M> > 0 such that

If (2, €1(D), E1( — T(2))) — (1, £2(0), E2(2 — T
< MillE1() — &0 + Mall&1 (t — T(D) — &t — T()|1?

for any & (f), &2(f) € R" and ¢ > 0. This assumption was given
by [24] and [40].

H2: Assume that there are two matrices Ry and R, which
are positive definite and

trace((g(t, &1, m1) — g(t, &2, m2))" (g(t, &1, m) — g(t, &2, m2)))
< E —E)RIE — &)+ (n —m) Ra(m — m2)

for any &(),& @), n1(t),n2(t) € R" and ¢+ > 0. This
assumption was motivated by [32].

H3: There are constants T > 0 and p > 0 such that
0<t(@) <tand 0 <1(¢) <p < 1, respectively.

Moreover, we may need several lemmas to prove our main
result. Assume that A = (a;)yxn is an adjacency matrix of
some graph where a; > 0 if and only if the jth node can
receive information from the ith node and vice versa. Recall
that the Laplacian matrix L = ([;j)nyxn is defined by

N
li = Z ajj, and [ = —aj;, fori#j
J=1j#

and satisfies Zﬁvzl lij = 0. Denote L; as the matrix obtained
by removing the first column and first row of the Laplacian
matrix L.

Lemma 1 [39], [41], [42]: The symmetric matrix L has a
single eigenvalue O and all the other eigenvalues are positive.

Remark 2: We can su/gpose that the eigenvalues of matrix
LPare 0 =2y <2 < <% k=12..Mm,
respectively.
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Lemma 2 (Interlacing Theorem [41], [43]): Assume
that a real symmetric matrix Lyxy has eigenvalues Ay (L) <
< A1(L). Then for any principal submatrix L, of L
obtained by removing m same rows and columns in L, the
eigenvalues of L,, interlace with those of L as

domti(L) < dilLyn) < 4i(L), forany 1 <i<N—m.

Therefore, for any Laplacian matrix L, 0 < Amax(L1) < A1(L)
where L is the matrix obtained by removing the first column
and first row of L.

Lemma 3: For any positive constant «, two vectors x and
y and a square matrix P with compatible dimensions

2Py < a 'XTPPTx + ayTy. (5)

The proof of this lemma is trivial and is omitted.

Finally, to prove our main result, we recall the following
LaSalle-type invariance principle [44] for stochastic differ-
ential delay equations. Consider the following n-dimensional
stochastic differential delayed equation:

dx(t) = f(x(2), x(t — 1), )dt + o (x(1), x(t — 1), )dB(¢). (6)

Let C>!(R" x Ry ; R, ) denote the family of all non-negative
functions V (¢, x) on R" x R, which are twice continuously
differentiable in x and once in . For each V € C>!(R" x
R4; R,), define an operator LV from Ry x R” to R” by

LV(t,x,y) = Vi(t, x) + Vi(t, X)f (x, y, 1)
1
+ Etrace(ar(x, ¥, OV (x, y, 1))

where Vi(t,x) = [(0V(t,x))/dt], Vi (t,x) = ([(dV(t,x))/
ax1], ... [V, 0))/0x5]), Vir = ([(B*V(t, X))/ (0xi)) Dxcn-

Lemma 4 [44]: Assume that system (6) has a unique solu-
tion x(z, &) on t > O for any given initial data {x(0) : — 1 <
0} = & € C?_-O([—r, 0]; R™). Moreover, both f(x,y,?) and
o (x,y, t) are locally bounded in (x, y) and uniformly bounded
in t. If there exist a function V € C2’1(R” X R4 Ry),
B € L'R,,Ry) and w;,w; € CR™;R,) such that for
(t,x,y) e R" x R* x R+

LV(t,x,y) < B(1) — o1(x) + 02(y) )
w1(x) > w2(x), Vx # 0 (8)
lim inf V(t,x) = oo. ©)]

[|x]|— 00 0<t<o0

Then

lim x(#,£) =0 a.s.
—00

for every & € Cg_-o([—r, 0]; R™).

IIT. MAIN RESULTS AND PROOFS
A. Synchronization Without Control Input

First of all, we will obtain some sufficient conditions to
guarantee that system (2) can be synchronized almost surely
without control input. That is, to say, we study the almost
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sure stability of system (4) without control input. In this case,
system (4) reduces to the following system of error:

de(t) = ((Un-1 ® A)e(t) + F(t, (1), e(t = (1))
M ck(Lﬁ") ® Dk)e(t _ t(t)))dt
+ G(t, e(t), e(t — t()))dB(z)
e(t)y =¥, te[—1t(),0].
(10)

Now, we are in a position to state our result on the
synchronization without control input.

Theorem 1: Under assumptions H1-H3, system (10) can be
asymptotically stable almost surely, i.e., system (2) can be syn-
chronized almost surely, if there are positive constants o > 0,
B > 0 and positive definite matrices P, R € R™*" such that

P < ply (11)
and
O1.11 P P
P —al, 0 <0 (12)
P 0 - Af n
2 k=1 Ck

where @1 11 = PA+ ATP + pR + (M| + Mp)al, + ju(Ry +

k
Ro)+ B 224:1(?»5 H2Dy.
Proof: Choose the Lyapunov functional as follows:

V(t,e(1) = e () (In—1 ® P)e(t)
t
+ / el (5)(In—1 ® R)e(s)ds.
t—t(1)

Therefore,

LV(t, e(t), e(t — 1(1)))

=2¢" () (Iy-1 ® P)[(IN_l ® A)e(t) + F(t, e(t), e(t — (1))

M
- Y (1P @ Di)et - r(t))i|dt

k=1
+ trace(G” (t, e(t), e(t — T(1))(Iy—1 ® P)
G(t, e(1), e(t — T(1)))) + " () (In—1 ® R)e(?)
— (1 =9 (t — 1) Un-1 ® Re(t — T(1))
=" (t)(Iy-1 ® (PA+ AP +R))e(?)
+ 2" (1) (In-1 ® P)F(t, e(D), e(t — T(1)))

M
= 2Ty 1 ® P) Y (L @ Di)ett — (1)
k=1

— (1 =Dl (1 — 1) Un-1 @ R)e(t — T(1))
+ trace(G' (1, e(t), e(t — T(1))(Iy—1 ® P)
G(t, e(D), e(t — 1(1)))).

Meanwhile, for any « > 0, using Lemma 3

2" () (In—1 ® P)F(t, e(1), e(t — T(1)))

N
= 2] OPFi(t. ei(0). ei(t = 7(1)))

i=2
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N
< Z <a_ ! eiT (t)PPTe,-(t)
i=2

+ aF] (1 ein), et = TO)Filt, i), exlt = 7 (1))
<a e () (In—1 ® PPT)e(r)
+ Myae! (He(t) + Moae! (1 — T(1))e(t — T(1)).

Similarly, for any given 8 > 0

M
2T () (UIy-1®P) Y < (L(l") ® Dk)e(t — (1)
k=1

M=

ek 26T OUy-1 ® P) (=L @ Dy et — (1)

»
Il

1

M=

(BT O Un-1 ® P)Iy-1 ® Pye(t)

»
Il
-

+ e’ (1= T (L1 ® D) (LI @ De)et — T )

=

e (BT (Iv-1 ® P)e

»
Il

1
+ e’ (1 = T 0) (L1 @ D) (LI @ De)et — T

Moreover, using (11)

trace(G (1, e(1), e(t — T(1)))(In—1 ® P)G(t, e(1), e(t — T(1))))

N
= trace (Z GiTPG,-)
i=2
N

< )\.max (P) Z trace(GiTGi)
i=2

N
< max(P) Y _(ef (OR1ei(0) + e] (t — T())Raei(t — (1))
i=2
= Jmax(P) (e’ (1) U1 ® R1)e(r)
+ e (t—T(1)Un-1 ® Ry)e(t — T(1)))
< (e (O Un-1 ® R)e(®)
+ e (1 — 7)) (In-1 ® Rp)e(t — (1))

where G; stands for G;(t, e;(t), e;(t — T(1))).
Combining all preceding results, we obtain that

LV(t,e(t))
<e'(t) (INI ® (PA +ATP+R+a P’ + Mjal,

M

+B7 Yl + MR1>>6(I)

k=1

+el(t— () (1N1 ® (Maal, + pRy — (1 — 1)R)
M
+8Y (1P en) (1P e Dk)> e(t — T(1))

k=1
=—el (N 1e@) + €' (1 — T(1) et — T(1))
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where

M =—-Iy 1 ® (PA +ATP+ R+ o 'P? + Myal,

M
+ 87> aPr + uRl)

k=1
I = Iy—1 ® (Maal, + uRy — (1 — T)R)

M
+ 8y (L @ D) (L1 @ Dy).
k=1
Furthermore, by the assumption H3 and Lemma 2
Mo =T = Iy @ (PA+ATP+ iR+ o' P2
+ (M + Mol + (R + Ro))

+p7! %Ck(IN—l ®P2>
k=1

M
+8Y (1 @) (L @ 1)
k=
<y @ (PA+ATP+ iR+ o' P?

+ (M) + Myal, + u(Ry + Rz))

+p7! ick(IN—l ®P2>

k=1 ; i
+ B Z(M'”)) <1N—1 ® D%)
k=1

M
<Iy_1 ® (PA +ATP+ pR + (a—‘ + 87! ch>P2
k=1

+ (M1 + Ma)al, + n(Ri + R2)

+ ﬂé(xﬁ’”))zDg).

Using the Schur complete lemma [32], one obtains that
[T, < Iy if the inequality (12) holds. Thus, system (3) is
asymptotically stable almost surely, i.e., system (2) without
the control input is synchronized almost surely. The proof is
completed.

B. Synchronization Controller Design

In this section, we consider the synchronization problem by
the method of designing controllers. Some appropriate con-
trollers are designed such that the multilayer complex network
can be synchronized almost surely.

Scheme I—It Is Assumed That Only a Part of the Nodes Are
Allowed to Be Controlled Directly: Without loss of generality,
let the indices of these nodes be i =2,3,...,/+ 1,1 <[ <
N — 1, respectively. Motivated by [18], [32], and [39], we set
the controller as

ui(t) = —kie;(t) (13)
i.e.,

U = —[K1 @ I]e(n) (14)
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where K| = diag{ks, k3, ..., ki+1,0,...,0}, each k; > 0 is the
control gain to be designed. Thus, the corresponding system
of error is obtained as

de(t) = (Uy-1 ® A)e(t) — [Ki @ Lle(r)
+ F(t,e(t), e(t — (1))
~ 3 (1P @ D)ett —c@p)ar (19
+ G(t, e(t), e(t — t(2)))dB(?)
e(t)y =W(), te[—1(1),0].

Using similar reasoning as that of Theorem 1, the following
theorem can be obtained.

Theorem 2: Under assumptions H1-H3, system (15) is
asymptotically stable almost surely, i.e., system (2) is syn-
chronized using the controller (13) almost surely, if there exist
positive constants o > 0, 8 > 0 and positive definite matrices
P, R € R™" such that

P < ul,
and
O3 11 In1®P In 1 ®P
In-1®P  —al,w-1) 0 <0
INn.1®P 0 —%Inw—l)

where ® 11 = 117{71 Q(PA+ATP+pR+ (M +Mo)al,+1 (R +
Ry)+pB ZkM=]()‘§))sz)—2K1®P=IN—1®®1,11_2K1®P.

Scheme II—Control All Nodes of the Complex System
by Using Only One Controller: In fact, Scheme II is

a special case of Scheme I. Thus, we can set the
controller as
N
u(t) =k eit)
=2
i.e.,
U(t) = —k(E® I,)e(t) (16)

where E is a square matrix with order N — 1 and all ele-
ments equal to 1, k > 0 is the control gain to be determined.
Therefore, we have the following system of error:

de(r) = ((IN,] ® A)e(t) — k(E ® I)e(t)
+ F(t,e(t), e(t — (1))
-l (Lﬁk) ® Dk)e(t - r(t)))dt a7
+ G(t, e(t), e(t — (1)))dB(1)
e() =V, te[-1@),0]

Using the controller (16), the following corollary can be
obtained from Theorem 2.

Corollary 1: Under assumptions HI-H3, system (17) is
asymptotically stable almost surely, i.e., system (2) is syn-
chronized almost surely using the controller (16), if there exist
positive definite matrices P, R € R"*" and positive constants
a > 0, B > 0 such that

P < ul,
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and
O3, 11 In-1®P In-1 QP
In-1 ®P  —alyn-1) ; 0 <0
In_ P 0 — =1
N-1® S -

where @3 11 = Iy—1 ® (PA+AT P+ pR+ (M +M)al,+ (R +
R)+B M (M) 2D —2k(E®P) = Iy- 1801 11— 2k(EQP).
Scheme III—Pinning Adaptive Controller: To obtain bet-
ter control performance, we will use the pinning adaptive
controller. Let the indices of nodes that are allowed to be
controlled be i =2,3,...,/+ 1,1 <[ <N — 1, respectively.
Motivated by [18], [32], and [39], we set the controller

u;i(t) = —ki(t)e;(t) (18)
and updated law as
ki(t) = 8llei(n)|1* (19)
ie.,
U(t) = —(K() ® I)e(t) (20)
where K (1) = diag{ks (1), k3(1), ..., ki11(1),0, ..., 0}, § is any

positive constant. Hence, one obtains the following complex
system of error:

de(r) = ((IN—I ®A — K(t) ® I)e(r)

+ F(t,e(t), e(t — (1))

~ (LY‘) ® Dk)e(t _ r(t)))dt
+ G(t, e(t), e(t — t(1)))dB(r)
K(t) = diag{sllex (I, 8lle3()|?

L 8llers1 (0112,
te[—1(1),0].

2L

0,...,0}

e(t)

For such system, we obtain the following theorem.

Theorem 3: Under assumptions HI1-H3, system (21) is
asymptotically stable almost surely, i.e., system (2) is syn-
chronized almost surely using the controller (18), if there are
positive constants o > 0, B > 0 and positive definite matrices
P, R € R™" gsuch that

= V().

P < ply (22)
and
@4’11 IN—l ® P IN—l ® P
In-1 ®@P  —alyn-1) 0 <0 (23)
In.1®P 0 _ZQZ CkIn(N—l)

where ©4 11 = 1/)/:1 ® (PA+AT P+ pR+ (M +My)al,+u (R +
R)+B Y4 02Dy — 2K @1, = In-1 ®O1.11 —2K2 ® .
Proof: Choose the Lyapunov functional as follows:

l

Vi(t, e(®) = V(¢ e(t)) + % Z(ki(t) - k*)2

i=2

where V(t,e(r)) is the same as that in the proof of
Theorem 1. Moreover, it is straightforward to find that the
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Fig. 1. Multilayer network with two layers and 100 nodes. (a) First layer: a
Watts—Strogatz small-world graph. (b) Second layer: a regular graph.

differential of Vi (¢, e(#)) along the trajectories of system (21)
satisfies

LVi(t, e(t)) < LV(t, e(r)) — 2e! (1) Kre(r).

Therefore, LVi(t,e(t)) < 0 if (22) and (23) are true.
Thus, system (21) is asymptotically stable almost surely, i.e.,
system (2) with the control input (18) is synchronized almost
surely. The proof is completed.

Remark 3: Although Scheme I is easy to be implemented,
the control gains are constants and to be designed at the begin-
ning of synchronization control. Therefore, these control gains
may be too big and may not be economical. Scheme II use one
same controller for all the nodes except node 1. This may be
easy to program and be easily applied to small-scale networks.
Scheme III use adaptive control gains which are “adaptive”
with respect to the evolution of the error. Therefore, they are
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lle@ll

15 20 25 30

(b)

Fig. 2. Time evolutions of state variables and total errors for the multilayer
network. (a) Time evolutions of the state variables for 100 nodes. (b) Time
evolution of the total error.

economical, but a little bit more difficult to be implemented
comparing with Scheme I.

IV. NUMERICAL EXAMPLES AND SIMULATION
EXAMPLES

For each node, we use the same CNN as that provided
by [35]

D = a(xy — mixy +f(x1))

F=x1—-20+x3

axs _
7 = —bx

(24)

where the nonlinear function f is defined by
fx1) =0.50m —mo)(lx1 + 1] =[xy — 1])

and the parameters a = 6, b = 10/3, my = —1/7, m; = 2/7.
Therefore, in the assumption H1, M| = (27 /7)2 and M, = 0.
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Fig. 4. Evolution of the total error.

Example 1: Application to delayed multilayer network with
additive couplings and stochastic perturbations.

Consider a multilayer network with M = 2 layers and
N = 100 nodes, as shown in Fig. 1. The first layer is con-
structed using a Watts—Strogatz small-world graph [45] with
initial degree d = 4 and the rewiring probability p = 0.3,
yielding Agl) = 9.5829. The other layer is a regular graph
with degree d = 6 and 1\” = 8.6243. Trivially, the total error
function can be defined as

N n
le@l = | 33 (w0 —x1j)’

i=2 j=1

1/2

Moreover, we set Dy = D, = I,, t(t) = 0.5 and
g(t, xi (1), xi(t — 7)) = (0.02x;(?), 0.01x;(r — 7)) in system (2).
Thus, R, = 0.022], and R, = 0.01%], in assumption H2.
With the help of MATLAB LMI Toolbox, solving (11), (12)
and choosing ¢; = ¢3 = 0.5, the delayed multilayer network
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Fig. 5. Evolution of the total error using controller (16) with kp = k3 =
cee=ky =2
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Fig. 6. Evolution of the total error using controller (18) with § = 8.

achieves synchronization, as shown in Fig. 2. Moreover, Fig. 3
gives the evolution of first state variable and second state
variable for the node 1.

However, the network does not achieve synchronization with
c1 = 0.5, c; = 0.8, as shown in Fig. 4. In such case, we design
controllers using controllers (14) [or (16)] and (20), thus
Theorem 2 (or Corollary 1) and Theorem 3 can be applied,
respectively. Figs. 5 and 6 show the time evolutions of the
total error under these two controllers, respectively.

V. CONCLUSION

In this paper, we have investigated the synchronization
problem of stochastic delayed multilayer networks with addi-
tive couplings, where additive couplings are designed to cap-
ture the different layered interactions. In particular, we obtain
the sufficient conditions to achieve automatic synchronization
(i.e., synchronization without control input). When synchro-
nization does not have control input, we design three control

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 50, NO. 11, NOVEMBER 2020

schemes and obtain the sufficient conditions for synchroniza-
tion. Finally, we give an example to show the effectiveness of
our result.

There are still some open interesting problems. For exam-
ple, we do not obtain the synchronization speed with or
without control input. Moreover, the different control inputs
are quite restricted in this paper since they are continuous.
Discontinuous control inputs, such as the impulsive control
input, may also be studied in such model. We leave these
questions for future work.
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