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Soft computing strategies are drawing widespread interest in engineering and science fields,
particularly so because of their capacity to reason and learn in a domain of inherent uncer-
tainty, approximation, and unpredictability. However, soft computing research devoted to finite
precision effects in chaotic system simulations is still in a nascent stage, and there are ample
opportunities for new discoveries. In this paper, we consider the error that is due to finite pre-
cision in the simulation of chaotic systems. We present a generalized version of the lower bound
error using an arbitrary number of natural interval extensions. The lower bound error has been
used to simulate a chaotic system with lower and upper bounds. The width of this interval does
not diverge, which is an advantage compared to other techniques. We illustrate our approach
on three systems, namely the logistic map, the Singer map and the Chua circuit. Moreover, we
validate the method by calculating the largest Lyapunov exponent.

Keywords : Soft computing; chaos; nonlinear dynamics; computer simulation; computer arith-
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1. Introduction

Soft computing has become a set of tools of great
importance in several areas of science and engineer-
ing [Kumari, 2017; Zadeh, 1994; Bonissone, 1997;
Dote & Ovaska, 2001]. This widespread interest is
due to its ability to reason and learn in an envi-
ronment of uncertainty, approximation and impre-
cision. These techniques play an important role
in nonlinear science, with applications in system
identification and modeling [Kawaji & Chen, 2000;
Kawaji, 2002; Kroll & Schulte, 2014; Sozhamadevi
et al., 2015; Lu et al., 2007; Kumar et al., 2017],
control design [Castillo & Melin, 2009; Campo
et al., 2015; Kurczyk & Pawe�lczyk, 2018; Nithya
et al., 2008] and cryptography [Wang et al., 2011;
Sarkar & Mandal, 2014].

Since chaotic systems are so hard to interpret
analytically, numerical simulations play a key role
in their study [Parker & Chua, 1987]. According to
Shannon [1976], simulation is defined as “the pro-
cess of designing a computerized model of a sys-
tem (or process) and conducting experiments with
this model for the purpose either of understanding
the behavior of the system or of evaluating various
strategies for the operation of the system.” Many
works have been devoted to investigating the effects
of finite precision in the simulation of dynamical
systems [Hammel et al., 1987; Yao, 2010; Lozi, 2013;
Galias, 2013; Nepomuceno, 2014; Butusov et al.,
2015; Karimov et al., 2015; Nepomuceno et al.,
2018a; Nepomuceno et al., 2018b]. Chaotic systems
implemented with finite precision in digital comput-
ers may exhibit totally different dynamical prop-
erties when compared to their original version in
the continuous setting [Li et al., 2005]. An impor-
tant consequence of this has been studied as chaos
degradation, which refers to the short cycle length
[Cao et al., 2015]. A number of works have focused
on chaos degradation [Min et al., 2015; Cao et al.,
2015; Hu et al., 2014; Deng et al., 2015; Liu et al.,
2017, 2014; Liu & Miao, 2017].

Nevertheless, little work can be found in the
soft computing literature on finite precision effects
in chaotic system simulation. Among these studies,
Cacciola et al. [2008] have applied soft computing
and chaos theory for the prediction of special events
in Tokamak reactors. Yang and Lee [2008] have
developed a technique using statistics to soft com-
puting to calculate the most likely forecasted value
of a chaotic time series. In addition, Sarkar and
Mandal [2014] have used soft computing in key

generation for secure communication. They used
chaotic systems as the pseudo-random number gen-
erator. The reader can refer to [Khondekar et al.,
2013], wherein the authors have analyzed various
researches already undertaken from the theoretical
perspective in the field of soft computing based time
series analysis, characterization of chaos, and theory
of fractals. Although these works have been success-
ful in their purposes, the effects of computer finite
precision in the simulation of chaotic systems have
not yet been carefully considered. In this work, we
propose a soft computing simulation of chaotic sys-
tems considering uncertainty due to finite precision
error. We have presented a generalized version of
the lower bound error [Nepomuceno & Martins,
2016; Nepomuceno et al., 2017] using an arbitrary
number of natural interval extensions. The lower
bound error has been used to simulate a chaotic sys-
tem with lower and upper bounds. We have shown
that the widths of these bounds do not diverge,
which is an advantage compared with other tech-
niques based on arithmetic interval [Moore et al.,
2009]. Our approach has been illustrated with three
systems: the logistic map [May, 1976], Singer map
[Aguirregabiria, 2009] and Chua’s circuit [Chua,
1992; Chua et al., 1993]. The method has been vali-
dated using the computation of the largest positive
Lyapunov exponent [Mendes & Nepomuceno, 2016;
Kodba et al., 2005].

The rest of the paper is laid out as follows. In
Sec. 2, recursive functions, natural interval exten-
sion, orbits and pseudo-orbits, and the lower bound
error are briefly reviewed. The proposed method
based on the lower bound error for an arbitrary
number of interval extensions is presented in Sec. 3.
To illustrate this approach, examples using the well-
known logistic map, Singer map and Chua’s cir-
cuit are given in Sec. 4. Section 5 presents the
conclusions.

2. Background

In this section, concepts of recursive functions, nat-
ural interval extension, orbits and pseudo-orbits,
and lower bound error for two pseudo-orbits are
briefly described.

2.1. Recursive functions

Let n ∈ N, a metric space M ⊂ R, the relation

xn+1 = f(xn), (1)
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where f : M → M is a recursive function or a map
of a state space into itself and xn denotes the state
at the discrete time n. Given an initial condition x0,
successive applications of the function f compute
the sequence {xn}. The initial condition x0 is called
the orbit of x0 [Gilmore & Lefranc, 2012].

2.2. Natural interval extension

The definition of natural interval extension of a
function is presented in [Moore et al., 2009] and
it is as follows.

Definition 2.1 (Natural Interval Extension). Let f
be a function of real variable x. A function F is
a natural interval extension of f , if for degenerate
interval arguments, F agrees with f :

F ([x, x]) = f(x). (2)

The natural interval extension is achieved by
changing the function f(x) through basic arithmetic
properties. When this change is exclusively made by
the multiplicative associative property, the natural
extensions present equivalent intervals, as shown in
[Nepomuceno et al., 2017].

2.3. Orbits and pseudo-orbits

The definition of orbit associated to a map is given
as in [Hammel et al., 1987]:

Definition 2.2 (Orbit). The true orbit {xn}N
n=0 sat-

isfies xn+1 = f(xn). We have the sequence of values
of the map represented by {xn} = [x1, x2, . . . , xn].

The calculation of an orbit is often performed
by a finite precision computer, resulting in a pseudo-
orbit. A pseudo-orbit of a map approximates a
mathematical orbit in a specific hardware or soft-
ware. For this reason, the pseudo-orbit cannot be
unique [Lambers & Sumner, 2016].

Definition 2.3 (Pseudo-Orbit). Given a map xn+1 =
f(xn), an ith pseudo-orbit {x̂i,n} is an approxima-
tion of an orbit given by

{x̂i,n} = [x̂i,0, x̂i,1, . . . , x̂i,n],

such that

|xn − x̂i,n| ≤ δi,n, (3)

where δi,n ∈ R is an error bound and δi,n ≥ 0.

An interval related to each value of a pseudo-
orbit is described as:

Ii,n = [x̂i,n − δi,n, x̂i,n + δi,n]. (4)

From Eqs. (3) and (4) it is clear that

xn ∈ Ii,n for all i ∈ N. (5)

2.4. The lower bound error

The lower bound error consists of a tool to ana-
lyze the error propagation in numerical simula-
tions. Considering only two pseudo-orbits, the lower
bound error is described in Theorem 1, the proof of
which can be found in [Nepomuceno et al., 2017].

Theorem 1. Let two pseudo-orbits {x̂a,n} and
{x̂b,n} be derived from two natural interval exten-
sions. Let �Ω,n = |x̂a,n − x̂b,n|/2 be the lower bound
error associated to the set of pseudo-orbits Ω =
[{x̂a,n}, {x̂b,n}] of a map, then γa,n = γb,n ≥ �Ω,n.

3. Methodology

The key point of this paper is to incorporate the
error bound generated at each iteration step in the
simulation. We have used the lower bound error to
estimate this bound. To assure that the lower bound
error is an efficient technique, we have extended the
results presented in [Nepomuceno & Martins, 2016;
Nepomuceno et al., 2017] for an arbitrary number
of natural interval extensions. This result is shown
in the following theorem.

Theorem 2. Let an arbitrary number k ∈ Z
+ of

pseudo-orbits be derived from interval extensions.
The lower bound error for an arbitrary number of
pseudo-orbits is given by

ζn =
max|(x̂i,n − x̂j,n)|

2
, (6)

where i �= j, i, j ∈ Z
+, i ≤ k and j ≤ k. n stands

for each value of a pseudo-orbit.

Proof. The proof is conducted by reductio ad
absurdum. Conversely, let us assume that it is pos-
sible to have a lower bound error described by

βn <
max|(x̂i,n − x̂j,n)|

2
.

Then,

Ii,n = [x̂i,n − βi,n, x̂i,n + βi,n]
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and

Ij,n = [x̂j,n − βj,n, x̂j,n + βj,n],

for all i and j. If it is true, considering the two
pseudo-orbits, let us say, a and b, for which we have
maximum distance between them, this implies that
Ii,n ∩ Ij,n = ∅ which is a contradiction. And that
completes the proof. �

Theorem 2 restricted for two pseudo-orbits has
been shown in [Nepomuceno et al., 2017]. Then, ζn

can be used as a lower and upper bound for each
iteration of a pseudo-orbit, incorporating the error
in computational simulations. Here, we show these
lower and upper bounds using shadow areas around
the pseudo-orbit of chaotic systems.

4. Numerical Experiments

In this section, our approach has been illustrated
with three systems: logistic map, Singer map and
Chua’s circuit.

4.1. Logistic map

The logistic map is given by [May, 1976]:

xn+1 = rxn(1 − xn), (7)

where r is the control parameter, which belongs to
the interval 1 ≤ r ≤ 4 and xn to the interval 0 ≤
xn ≤ 1.

Let us consider three equivalent interval exten-
sions for the logistic map:

F (Xn) = rXn(1 − Xn), (8)

G(Xn) = r(Xn(1 − Xn)), (9)

H(Xn) = Xn(r(1 − Xn)). (10)

Equations (8) to (10) are mathematically equiv-
alent. However, they are written slightly differently,
as indicated by the underlined terms. Consider the
solution of the logistic map with r = 3.9 and initial
condition x0 = 0.1. Figure 1(a) shows the result
for the interval extension of the logistic map for
n ∈ [60, 100]. After around n = 80, the pseudo-
orbits diverge totally from each other. Figure 1(b)
shows the lower bound error for three pseudo-
orbits and the associated Lyapunov exponent; the
divergence between pseudo-orbits grows exponen-
tially. The Lyapunov exponent was calculated using
the method developed in [Mendes & Nepomuceno,

2016], furnishing a value of 0.627 bits/n, which is in
good agreement with the literature (0.693 bits/n)
[Rosenstein et al., 1993].

It is interesting to note that after around
80 iterations the system does not present reliabil-
ity of the numerical simulation. This is a clear rela-
tionship between the Lyapunov exponent and loss
of significant bits. In other words, the expression
0.627n − 52.775 approaches zero as n is around 80.
As we have focused our attention on floating-point
representation in a typical 64-bit environment, we
started, our simulation with the maximum preci-
sion, that is 52 bits (significant). As the number of
iterations increases, the simulation loses its preci-
sion at a rate of 0.627 bits per iteration. This ratio-
nale can be conducted in a similar way for other
examples in this paper. For more on this issue, the
reader is invited to see [Nepomuceno & Mendes,
2017; Nepomuceno et al., 2018a]. As previously
reported, the lower bound error describes the error
propagation in numerical simulations. Figure 2(a)
shows the bound of simulation for the logistic map
given by Eq. (8).

4.2. Singer map

The singer map is a one-dimensional system. This
map is described as follows [Aguirregabiria, 2009]:

xn+1 = µ(7.86xn − 23.31x2
n + 28.75x3

n − 13.3x4
n),

(11)

where xn ∈ (0, 1), initial condition x0 ∈ (0, 1) and
µ ∈ [0.9, 1.08].

Let us see three natural interval extensions for
the Singer map:

I(Xn) = µ(7.86Xn − 23.31X2
n

+ 28.75X3
n − 13.3X4

n), (12)

J(Xn) = µ(7.86Xn − 23.31X2
n

+ 28.75XnX2
n − 13.3X4

n), (13)

K(Xn) = µ(7.86Xn − 23.31X2
n

+ 28.75XnXnXn − 13.3X4
n). (14)

Consider the solution of the Singer map with
µ = 1.07 and initial condition x0 = 0.4. Figure 1(c)
shows the result of the interval extensions for the
Singer map for n ∈ [60, 100]. As can be seen, after
n = 65 the divergence between the pseudo-orbits is
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Fig. 1. (a), (c) and (e): Free run simulation of three interval extensions for the logistic map, Singer map and Chua’s circuit,
respectively. (b), (d) and (f): Evolution of lower bound error ζn for the pseudo-orbits of the logistic map, Singer map and
Chua’s circuit, respectively. The details of the simulation are as follows. (a) Simulation of Eqs. (8)–(10) with r = 3.9 and
initial condition x0 = 0.1. (c) Simulation of Eqs. (12)–(14) with µ = 1.07 and initial condition x0 = 0.4. (e) Simulation of
Eq. (15) with changes proposed in Eqs. (17)–(19). These figures show the efficiency of the proposed technique as they present
Lyapunov exponents in good agreement with the literature as summarized in Table 1.
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(a) (b)

(c)

Fig. 2. Representation of uncertainty in the simulation of chaotic systems: (a) logistic map represented by F (Xn) [Eq. (8)],
(b) Singer map represented by I(Xn) [Eq. (12)] and (c) Chua’s circuit represented by Eq. (15). For (a) and (b) the x-axis is
the number of iterations n, while in (c), the x-axis is time given in seconds. The gray shadow represents the bounds derived
from the lower bound error according to Eq. (6). As expected for chaotic systems, the gray shadow grows exponentially.
Nevertheless, an advantage of the proposed technique is that the maximum error does not diverge. This is possible, as the
error is related to the lower bound error. The reader can refer to [Nepomuceno & Martins, 2016; Nepomuceno et al., 2017] for
more details.
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visible. Figure 1(d) shows the lower bound error for
three pseudo-orbits and the associated Lyapunov
exponent calculated as 0.710 bits/n, while a value
in literature is 0.690 bits/n [Feng et al., 2017]. Fig-
ure 2(b) depicts the pseudo-orbit, where the lower
bound error is indicated by a gray shadow.

4.3. Chua’s circuit

Chua’s circuit equations are described as follows
[Chua et al., 1993]:



C1
dvc1

dt
=

vc2 − vc1

R
− iR(vc1)

C2
dvc2

dt
=

vc1 − vc2

R
+ iL

L
diL
dt

= −vc2

(15)

The current through the nonlinear element,
iR(vC1) is given by:

iR(vc1) =




m0υ1 + Bp(m0 − m1) vc1 < −Bp,

m1υ1 |vc1 | ≤ Bp,

m0υ1 + Bp(m1 − m0) vc1 > −Bp,

(16)

where m0, m1 and Bp are the slopes and the break-
ing points of the nonlinear element, respectively.
Let three arithmetic interval extensions of Eq. (15)
be given by (only the equations related to vC1 are
shown):

A :
dvc1

dt
=

1
C1

1
R

(vc2 − vc1) − 1
C1

iR(vc1),

(17)

B :
dvc1

dt
=

1
C1

(
1
R

(vc2 − vc1)
)
− 1

C1
iR(vc1),

(18)

C :
dvc1

dt
=

1
R

(
1
C1

(vc2 − vc1)
)
− 1

C1
iR(vc1).

(19)

The three models [Eqs. (17)–(19)] were achieved
by rearranging the expression that characterizes
the voltage in the capacitor C1. The simulation
was performed using the discretization method of
Runge–Kutta of fourth order [Quarteroni et al.,
2006] and step-size h = 10−6. The component values

Table 1. Calculation of the Lyapunov exponent comparing
the proposed method with the values obtained in the litera-
ture presented by Rosenstein [Rosenstein et al., 1993] (logistic
map), by Feng [Feng et al., 2017] (Singer map) and by Lavröd
[2014] (Chua’s circuit). For the discrete maps the Lyapunov
exponent is measured in bits per number of iterations n. For
the continuous systems, it is given in bits per milliseconds
(ms).

Systems Literature Proposed Method

Logistic map 0.693 bits/n 0.627 bits/n
Singer map 0.690 bits/n 0.710 bits/n
Chua’s circuit 2.091 bits/ms 2.199 bits/ms

and constants used are: C1 = 10 nF, C2 = 100 nF,
L = 19.2 mH, R = 1680 Ω, m0 = −0.37 mS, m1 =
−0.68 mS, Bp = 1.1 V. The initial condition (vc1 ,
vc2, iL) = (−0.6, 0, 0). Figure 1(e) shows the result
of the voltage in capacitor C1. The pseudo-orbits
diverge from each other significantly. Figure 1(f)
presents the lower bound error for these pseudo-
orbits, wherein the same pattern shown in previ-
ous cases is also observed, that is, an exponential
growth in the divergence of the pseudo-orbits. The
literature presents a Lyapunov exponent around
2.091 bits/ms [Lavröd, 2014], while the calculated
value is 2.199 bits/ms. The representation of uncer-
tainty due to finite precision is given in Fig. 2(c)
for this case. As we are using double precision,
all 52 bits of precision are lost in approximately
52/2.199 = 23.6 ms. A very similar result has been
found by Šalamon and Dogša [2004] (see Fig. 3 of
that work for more details).

Table 1 shows the largest positive Lyapunov
exponent for each studied system found from the
proposed method and those indicated in the litera-
ture. It shows that the proposed technique is able
to keep the chaotic property of the systems.

5. Conclusion

This paper has investigated the generalization of
the lower bound error for an arbitrary number of
pseudo-orbits to estimate the bounds of the sim-
ulation for chaotic systems. The method has been
tested in three systems: two discrete maps (logistic
and Singer) and a continuous one (Chua’s circuit).

The code used to calculate the error propaga-
tion is very simple and it is a low cost procedure.
Although, the interval grows exponentially as seen
in Figs. 2(a)–2(c), the bounds do not exceed the lim-
its of the attractor, as it has been already pointed
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out in [Nepomuceno & Mendes, 2017], which is in
accord with [Adler et al., 2001]. We verified our
results based on the Lyapunov exponent, using the
technique developed in [Mendes & Nepomuceno,
2016]. Table 1 shows that the results achieved here
are in accordance with those present in the litera-
ture, validating the proposed method.

It is also important to point out that this
method can be seen as a way to track potential
error accumulation, leading to a fail-safe operation
as discussed in [Parhami, 2012]. Here, we are con-
cerned with the error source related to finite pre-
cision. Future work should address simultaneously
other error sources as described in [Ben-Talha et al.,
2017].
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