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Synchronization in complex networks is an evergreen subject with many practical applications
across the natural and social sciences. The stability of synchronization is thereby crucial for
determining whether the dynamical behavior is stable or not. The master stability function
is commonly used to that effect. In this paper, we study whether there is a relation between
the stability of synchronization and the proximity to certain bifurcation types. We consider
four different nonlinear dynamical systems, and we determine their master stability functions
in dependence on key bifurcation parameters. We also calculate the corresponding bifurcation
diagrams. By means of systematic comparisons, we show that, although there are some variations
in the master stability functions in dependence on bifurcation proximity and type, there is in fact
no general relation between synchronization stability and bifurcation type. This has important
implication for the restrained generalizability of findings concerning synchronization in complex
networks for one type of node dynamics to others.
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1. Introduction

For studying the complex networks, the main
specifications for describing the network are the
microscale level (node dynamics) and the macro-
scale level (the whole network characteristics) [Are-
nas et al., 2006]. One of the most popular properties
at the macroscale level which is attracting the sci-
entists increasingly is the collective behavior of the
complex networks [Chavez et al., 2005; Boccaletti
et al., 2006]. One of the hottest topics in recent
years is the synchronized collective behavior in con-
trol and systems, inspired in many applications
such as physics, biology, and engineering [Math-
eny et al., 2014; Totz et al., 2015; Bolhasani et al.,
2017; Chowdhury et al., 2019; Parastesh et al., 2019;
Li et al., 2019a]. Synchronization is an emergent
phenomenon, resulting from the interaction of two
or more systems [Boccaletti et al., 2002; Pikovsky
et al., 2003; Arenas et al., 2008]. But there has been
a larger interest in the synchronization study of
networks composed of a large number of elements.
An important subject in this area is to determine
the stability of the synchronization state [Xie &
Chen, 1996; Gao et al., 2006; Russo & Di Bernardo,
2009; Rakshit et al., 2017; Li et al., 2019b]. In 1994,
Pecora and Carroll proposed the “Master Stability
Function” (MSF) method which gives the necessary
conditions for the linear stability of the synchroniza-
tion manifold in a network of identical oscillators
[Pecora & Carroll, 1998, 1999].

The local dynamics of the network elements
is an important factor in the emergent collective
behavior. Many of the scientists have concentrated
on the synchronization of chaotic systems with an
emphasis on the large-scale and complex networks
[Banerjee et al., 2017; Chen et al., 2018; Li et al.,
2019b]. The first chaotic system was discovered
in 1963 by Lorenz who found a three-dimensional
autonomous system with chaotic attractor during
his studies in atmospheric convection [Sparrow,
2012]. After that, Rössler [Rössler, 1976] proposed
another three-dimensional chaotic system, simpler
than Lorenz equations. Discoveries of the chaotic
systems led to a huge flow of research into the anal-
ysis of these systems. Some basic tools in this field
are the bifurcation diagram and the Lyapunov spec-
trum. These diagrams can exhibit different dynam-
ics of the system and dynamical transitions with
respect to a system parameter [Qi et al., 2005].

The dependence of the system’s dynamics to
the parameters’ values and also the relation of the

collective behaviors to the local dynamics of the
units of the network, raises this question: Is there
any relation between the stability of the synchro-
nized behavior of the elements and their dynamics?
To find the answer to this question, in this paper,
we calculate the MSF for various values of a system
parameter that can be considered as a bifurcation
parameter. Then the obtained conditions from MSF
solution are compared with the bifurcation diagram.
This process is done for four different systems with
different bifurcation diagrams.

The rest of the paper is organized as follows.
In Sec. 2, the master stability function method is
described. The results of calculating the MSF for
four systems are presented in Sec. 3. The conclu-
sions are given in Sec. 4.

2. Master Stability Function

In order to calculate the MSF, first consider that the
describing equation of the network can be written
as follows:

Ẋi = F (Xi) + σ
∑

j

GijH(Xj), (1)

where Xi is the m-dimensional vector of the dynam-
ical variable of the ith oscillator, F (Xi) is the
uncoupled dynamical system, and H is the coupling
function which determines which node’s variable is
used in the coupling. In this paper, we consider
H = [1 0 0; 0 0 0; 0 0 0]. σ is the cou-
pling strength and G represents the topology of the
connectivity in the network.

Then the relevant variational equation of
Eq. (1) is determined as follows:

ξ̇k = [DF + σγkDH ]ξk, (2)

where ξk is the variations on the ith node, and γk

is an eigenvalue of G, k = 0, 1, . . . , N . Note that in
Sec. 3, the parameter d equals γmax × σ. The max-
imum Lyapunov exponent of Eq. (2) is the MSF. If
MSF is negative, the network has a stable synchro-
nized state and if it is positive, the synchronization
is unstable.

3. Results

To investigate the relationship between system
dynamics and synchronization stability of networks,
we compare the bifurcation diagram of the system
and the MSF diagram in four different systems. The
MSF is calculated for different d values with respect
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to the bifurcation parameter. Therefore, a 2D dia-
gram is presented for the MSF solution. The results
of each system are presented in the following.

3.1. Rössler

The Rössler system is defined by three differential
equations as follows [Yu, 1997]:

ẋ = −y − z,

ẏ = x + ay,

ż = b + z(x − c),

(3)

where b = 0.6, c = 6 and parameter a is considered
as the bifurcation parameter in a = [0, 0.4].

To obtain the MSF diagram, the variational
equations for the Rössler system, defined in Eq. (3),
can be described as follows:

ξ̇1 = −dξ1 − ξ2 − ξ3,

ξ̇2 = ξ1 + aξ2,

ξ̇3 = zξ1 + (x − c)ξ3.

(4)

Figure 1(a) shows the bifurcation diagram of
the Rössler system according to the parameter a.
The system has a period-doubling route to chaos.
For plotting the bifurcation diagram, we have used
the initial conditions with forward continuation.
Figure 1(b) demonstrates the MSF diagram. The

Fig. 1. (a) The bifurcation diagram of Rössler system according to parameter a. (b) The MSF diagram, in the (a, d) plane.
The black curve in (b) shows where MSF equals to zero. The vertical lines connect the bifurcation points to their corresponding
points in the MSF diagram.
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y-axis describes d, and x-axis describes the bifurca-
tion parameter a. The black line shows where the
MSF equals to zero. The space above the black line
is MSF > 0, where the network is asynchronized
and the space below the black line is MSF < 0,
where the network is synchronized. Generally, as
the bifurcation parameter a grows, the black line
has a downward trend. It means that for higher val-
ues of a, the network is synchronized for the lower
value of d. The trend is smooth and there are no
sharp jumps in the line. Therefore, the changes in
the dynamics of the elements have no effect on syn-
chronization stability.

3.2. Hindmarsh–Rose

The Hindmarsh–Rose neuron model is described by
Eq. (5) [Hindmarsh & Rose, 1984]:

ẋ = y − x3 + ax2 + I − z,

ẏ = b + cx2 − y,

ż = r(s(x − x1) − z),

(5)

where a = 3, b = 1, c = −5, s = 4, x1 = 1.6, I =
3.25 and r = [0, 0.5] is considered as a bifurcation
parameter.

Fig. 2. (a) The bifurcation diagram of Hindmarsh–Rose system according to parameter r. (b) The MSF diagram, in the
(r, d) plane. The black curve in (b) shows where MSF equals to zero. The vertical lines connect the bifurcation points to their
corresponding points in the MSF diagram.
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The variational equations of HR neuron model,
based on Eq. (2), are described in Eq. (6):

ξ̇1 = (−d − 3x2 + 2ax)ξ1 + ξ2 − ξ3,

ξ̇2 = −2cxξ1 − ξ2,

ξ̇3 = rsξ1 − rξ3.

(6)

The bifurcation and MSF diagrams are plotted
in Fig. 2. Part (a) shows the bifurcation diagram of
HR neuronal system with respect to parameter r.
The diagram is obtained by the initial conditions
with backward continuation. The system demon-
strates period-doubling route to chaos. Figure 2(b)
describes the MSF diagram of the HR system. The
maximum value of the black curve is in d = 0.53 and
r = 0.0005 and minimum value of the black curve

is in d = 0.24 and r = 0.05. There is a jump in
d = 0.26 and r = 0.0325. On the whole, the trend
of the black curve is downward, but it has small
variations which seems to have no relation with the
bifurcations.

3.3. A 3D chaotic system with
specific analytical solution

As the third system we have chosen a three-
dimensional chaotic system with specific analytical
solution in e−t that is defined as follows [Faghani
et al., 2019]:

ẋ = y, ẏ = z, ż = ax + by − y2 + xz, (7)

where b = −4 and a is supposed as the bifurcation
parameter in a = [−7.8,−1.8].

Fig. 3. (a) The bifurcation diagram of third system [Eq. (7)] according to parameter a. (b) The MSF diagram, in the (a, d)
plane. The black curve in (b) shows where MSF equals to zero. The vertical lines connect the bifurcation points to their
corresponding points in the MSF diagram.
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Equation (8) defines the variation of equations
of the system:

ξ̇1 = −dξ1 + ξ2, ξ̇2 = ξ3,

ξ̇3 = (a + z)ξ1 + (b − 2y)ξ2 + xξ3.
(8)

The bifurcation and MSF of this system
are plotted in Figs. 3(a) and 3(b), respectively.
Figure 3(a) depicts that the system has various peri-
odic and chaotic attractors according to the chang-
ing bifurcation parameter. The diagram is plot-
ted with the constant initial condition. Figure 3(b)
illustrates the MSF diagram with respect to
changing bifurcation parameter a and coupling
strength d. The general trend of the black curve
is downward with growing a, but there are small
variations and two big jumps in [−6.168, 0.88] and

[−4.608, 0.975]. The maximum value of the black
curve in [−5.96, 1.225] and the minimum value of
the line is in [−3.464, 0]. For a > 3.5 the MSF does
not equal to zero. Comparing Figs. 3(a) and 3(b)
implies no special relation between the MSF varia-
tion and system bifurcation.

3.4. A 3D autonomous system
without linear terms

A three-dimensional autonomous system without
linear term is specified as follows [Mobayen et al.,
2018]:

ẋ= y2 + a, ẏ = x2 + y2 − z2 + b, ż =−x2 + y2,

(9)

Fig. 4. (a) The bifurcation diagram of fourth system [Eq. (9)] according to parameter b. (b) The MSF diagram, in the (b, d)
plane. The black curve in (b) shows where MSF equals to zero. The vertical lines connect the bifurcation points to their
corresponding points in the MSF diagram.

2050123-6

In
t. 

J.
 B

if
ur

ca
tio

n 
C

ha
os

 2
02

0.
30

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 C
IT

Y
 U

N
IV

E
R

SI
T

Y
 O

F 
H

O
N

G
 K

O
N

G
 o

n 
07

/1
5/

20
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



July 8, 2020 12:38 WSPC/S0218-1274 2050123

Is There a Relation Between Synchronization Stability and Bifurcation Type?

where a = −6 and b is regarded as a bifurcation
parameter in the interval b = [−0.6, 1.4].

The variational equation of the system is
designed in Eq. (10):

ξ̇1 = −dξ1 + 2yξ2,

ξ̇2 = 2(xξ1 + yξ2 − zξ3),

ξ̇3 = 2(−xξ1 + yξ2).

(10)

Figure 4(a) illustrates the bifurcation diagram
of the system defined in Eq. (9) with respect to
changing parameter a. The bifurcation diagram is
calculated by the initial conditions with backward
continuation. The diagram demonstrates period-
2 oscillations followed by a period-doubling route
to chaos including periodic windows. Figure 4(b),
exhibits the MSF diagram of the system term
according to changing parameter b as a bifurcation
parameter and d as the coupling strength. By grow-
ing the bifurcation parameter, the overall trend of
the black curve is upward. It means that generally
by increasing the bifurcation parameter, the net-
work is synchronized with larger value of d. In con-
trast to the previous systems, it seems that the vari-
ations in the black curve have some relation with
the system bifurcation. For example, at d = 0.63
when the system bifurcates from chaotic to periodic,
the black curve stops decreasing. Furthermore, it is
observed that when the system period is changed,
there is some variation in the MSF curve. But the
variations are not general and therefore no particu-
lar relation can be inferred.

4. Conclusion

Master stability function (MSF) is a method used
to find the necessary conditions for the synchroniza-
tion of a network. The previous studies show that
the MSF threshold, at which the network becomes
synchronized, is variant for different modes of a
system (e.g. periodic or chaotic mode). The aim
of this paper was to find if there is any relation-
ship between the bifurcation in a system and the
MSF solution. To achieve this aim, we investigated
four different systems by plotting the bifurcation
diagram and calculating the MSF according to the
bifurcation parameter. Then the obtained MSF dia-
grams were compared with the bifurcations of the
system. It was observed that the MSF solution
has some variations by changing the bifurcation

parameter. But the variations are not related to the
dynamical transitions of the systems.
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