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We analyze the sound recording of the Southeast Asian cicada Tosena depicta with
methods of nonlinear time series analysis. First, we reconstruct the phase space from
the sound recording and test it against determinism and stationarity. After positively
establishing determinism and stationarity in the series, we calculate the maximal Lya-
punov exponent. We find that the latter is positive, from which we conclude that the
sound recording possesses clear markers of deterministic chaos. We discuss that methods
of nonlinear time series analysis can yield instructive insights and foster the understand-
ing of acoustic and vibrational communication among insects, as well as provide vital
clues regarding the origin and functionality of their sound production mechanisms. Fur-
thermore, such studies can serve as means to distinguish different insect genera or even
species either from each other or under various environmental influences.
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1. Introduction

Nonlinear time series analysis1–3 is a powerful theory that enables the extraction of
characteristic quantities, e.g. the number of active degrees of freedom or invariants
such as Lyapunov exponents, of a particular system solely by analyzing the time
course of one of its variables. In this sense, nonlinear time series analysis offers
tools that bridge the gap between experimentally observed irregular behavior and
the theory of deterministic dynamical systems.4–7 Despite the fact that the latter
statement is enchanting, it also carries an important warning, namely the fact
that if we are to successfully apply methods of nonlinear time series analysis on
experimental data, we first have to verify if the data possesses properties typical of
deterministic systems. Moreover, we have to verify if the observed irregular behavior
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originated from a stationary system, for it may solely be a consequence of varying
system parameters during data acquisition. These are very important issues that
have to be addressed before attempting further analyses, especially on real-life
recordings, as we will emphasize throughout this work.

Presently, we analyze the sound recording of the Southeast Asian cicada Tosena
depicta.8 Cicadas, family Cicadidae, are insects belonging to the order Hemiptera,
suborder Homoptera, which live in temperate to tropical climates, and are thus
widespread virtually all over the world from Australia, Southeast Asia, Europe to
America. For a comprehensive review on various aspects of cicadas, we refer the
reader to the seminal work of Williams and Simon9 and references therein, whilst
here we constrain ourselves to the most important facts. Adult cicadas normally
grow from one to two inches (in extreme cases, as is e.g. Pomponia imperatoria,
to six inches), whilst their transparent veined wings span up to six inches across.
Cicadas also have characteristic wide apart set small eyes and short antennae pro-
truding on the sides of the head. An interesting fact is that cicadas have an accu-
rately periodical life cycle lasting between two to five years (in extreme cases, as
by e.g. Magicicada, also to 17 years), which they spent mostly underground as
nymphs prior to their remarkably accurate simultaneous molting on nearby plants.
Of direct importance for the present work is the fact that male cicadas have sound-
producing organs called tymbals, which take the form of membranes located on
the sides of the body. Upon vibrating these membranes, male cicadas produce loud
stridulatory sounds that are resonantly amplified by their bodies to achieve optimal
female attraction. It is the dynamics of this sound production mechanism that we
are currently investigating with methods of nonlinear time series analysis.

The present study is, however, not the first to analyze animal sound recordings
by methods of linear or nonlinear time series analysis. Wilden et al.,10 for example,
introduced the concept of nonlinear dynamics to mammal bioacoustics in order
to quantify the complexity of animal vocalizations. Mammalian sounds were also
investigated in Refs. 11 to 14. Other examples where nonlinear dynamics was found
to play an important role for sound generation include bird songs15,16 as well as
human speech signals.17–22 However, despite the rather extensive literature existing
on this topic, we found no applications of nonlinear time series analysis methods
explicitly on insect sounds. The present study thus aims to fill this gap.

We start the analysis by introducing the embedding theorem,23,24 which enables
the reconstruction of the phase space from a single observed variable, thereby lay-
ing foundations for further analyses. To determine proper embedding parameter for
the phase space reconstruction, we use the mutual information.25 and false near-
est neighbor method.26 Next, we apply the determinism27 and stationarity28 test to
verify if the studied data set originates from a deterministic stationary system. Note
that deterministic chaos is only one possible source of complex irregular behavior in
real-life systems. Other sources, for example, are noise or varying system parameters
during data acquisition. By applying the determinism test we are able to determine
whether the analyzed irregular behavior is indeed a consequence of deterministic
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nonlinear dynamics, while the stationarity test enables us to verify if system param-
eters were constant during data recording. After establishing that the studied sound
recording originates from a deterministic stationary system, we calculate the max-
imal Lyapunov exponent.29 We find that the latter is positive, from which we con-
clude that the sound of the studied Southeast Asian cicada Tosena depicta possesses
properties typical of deterministic chaotic signals. At the end, we summarize the
results and outline possible biological implications of our findings.

2. Nonlinear Time Series Analysis

2.1. Studied sound recording

We analyze a sound recording of Tosena depicta recorded by Gogala and Riede8 in
the Temengor Forest Reserve, Hulu Perak, Malaysia. The audio file was sampled
at 22 kHz, thus occupying 1.98× 105 points at a length of 9 s. An insert of the time
series xi resulting from the audio file is shown in Fig. 1, whereby i is an integer
indexing consecutive points in time t. Evidently, the data for the study are of high
quality and of sufficient length for relevant analyses. In particular, we note that
only 5%− 10 % of the whole time series are sufficient to get accurate results whilst
keeping the required computational resources reasonably low. A visual inspection
of the time series presented in Fig. 1 reveals that the signal is characterized by
at least two predominant frequencies, namely the one between consecutive bursts
of activity roughly equalling 0.13 kHz, and the one between consecutive spikes in
each bursting phase equalling 4.0 kHz. Due to the fact that the studied recording

Fig. 1. An insert of the studied sound recording of Tosena depicta.
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comprises at least two different frequencies, accompanied by its overall irregular
appearance, suggests that the sound may originate from a nonlinear or even chaotic
deterministic system. In the following, we will apply powerful methods of nonlinear
time series analysis to confirm this conjecture in a more rigorous manner.

2.2. Phase space reconstruction

Following the succession of tasks we have outlined in the “Introduction” section we
start the time series analysis by applying the embedding theorem,23,24 which states
that for a large enough embedding dimension m the delay vectors

p(i) = (xi, xi+τ , xi+2τ , . . . , xi+(m−1)τ ) (2.1)

yield a phase space that has exactly the same properties as the one formed by the
original variables of the system. In Eq. (2.1) variables xi, xi+τ , xi+2τ , . . . , xi+(m−1)τ

denote values of the sound recording at times t = idt, t = (i + τ)dt, t = (i + 2τ)
dt, . . . , t = (i + (m − 1)τ)dt, respectively, whereby τ is the so-called embedding
delay and dt is the sampling time of data points equalling 4.545× 10−5s.

Although the implementation of Eq. (2.1) is straightforward, we first have to
determine proper values for embedding parameters τ and m. For this purpose, the
mutual information25 and false nearest neighbor method26 can be used, respec-
tively. Since the mutual information between xi and xi+τ quantifies the amount
of information we have about the state xi+τ presuming we know xi,30 Fraser and
Swinney25 proposed to use the first minimum of the mutual information as the opti-
mal embedding delay. The algorithm for calculating the mutual information can be
summarized as follows. Given a time series of the form {x0, x1, , x2, . . . , xi, . . . , xn},
one first has to find the minimum (xmin) and the maximum (xmax) of the sequence.
The absolute value of their difference |xmax − xmin| then has to be partitioned into
j equally sized intervals, where j is a large enough integer number. Finally, one
calculates the expression

I(τ) = −
j∑

h=1

j∑

k=1

Ph,k(τ) ln
Ph,k(τ)
PhPk

, (2.2)

where Ph and Pk denote the probabilities that the variable assumes a value inside
the hth and kth bin, respectively, and Ph,k(τ) is the joint probability that xi is in
bin h and xi+τ is in bin k. For the studied sound recording presented in Fig. 1, the
first minimum of I(τ) is obtained already at τ = 1. We will use this τ in all future
calculations.

We now turn to establishing a proper embedding dimension m for the exam-
ined sound recording by applying the false nearest neighbor method introduced
by Kennel et al.26 The method relies on the assumption that the phase space of
a deterministic system folds and unfolds smoothly with no sudden irregularities
appearing in its structure. By exploiting this assumption we must come to the con-
clusion that points that are close in the reconstructed embedding space have to stay
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sufficiently close also during forward iteration. If a phase space point has a close
neighbor that does not fulfil this criterion it is marked as having a false nearest
neighbor. As soon as m is chosen sufficiently large, the fraction of points that have
a false nearest neighbor φ converges to zero. In order to calculate φ the following
algorithm is used. Given a point p(i) in the m−dimensional embedding space, one
first has to find a neighbor p(j), so that ‖p(i) − p(j)‖ < ε, where ‖ · · · ‖ is the
square norm and ε is a small constant usually not larger than 1/10of the standard
data deviation. We then calculate the normalized distance Ri between the m + 1st.

embedding coordinate of points p(i) and p(j) according to the equation:

Ri =
|xi+mτ − xj+mτ |
‖p(i) − p(j)‖ . (2.3)

If Ri is larger than a given threshold Rtr, then p(i) is marked as having a false
nearest neighbor. Equation (2.3) has to be applied for the whole time series and for
various m = 1, 2, . . . until the fraction of points φ for which Ri > Rtr is negligible.
According to Kennel et al.,26 Rtr = 10 has proven to be a good choice for most data
sets. The results obtained with the false nearest neighbor method are presented in
Fig. 2. It can be well observed that φ drops convincingly to zero (< 1%) for m = 8.
Hence, the underlying system that produced the studied sound recording has eight
active degrees of freedom. In other words, it would be justified to mathematically
model the cicada’s sound production apparatus with no more than eight first order
ordinary differential equations.

Fig. 2. Determination of the minimal required embedding dimension. The fraction of false nearest
neighbors φ drops convincingly to zero at m = 8.
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By now we have acquired all the data that are necessary to successfully recon-
struct the phase space of the system from a single observed variable. However,
prior to investigating crucial dynamical properties of the attractor, we first have
to verify if the studied signal originates from a deterministic stationary system. As
already emphasized in the “Introduction”, determinism and stationarity are crucial
properties that guarantee a relevant analysis and are the best protection against
spurious results and false claims. Thus, in order to justify further analyses, we have
to verify if the studied sound recording possesses properties typical of deterministic
stationary signals.

2.3. Determinism test

We apply a simple yet effective determinism test, originally proposed by Kaplan and
Glass,27 that measures average directional vectors in a coarse-grained embedding
space. The idea is that neighboring trajectories in a small portion of the embedding
space should all point in the same direction, thus assuring uniqueness of solutions
in the phase space, which is the hallmark of determinism. To perform the test, the
embedding space has to be coarse-grained into equally sized boxes. The average
directional vector pertaining to a particular box is obtained as follows. Each pass
p of the trajectory through the kth box generates a unit vector ep, whose direction
is determined by the phase space point where the trajectory first enters the box
and the phase space point where the trajectory leaves the box. In fact, this is the
average direction of the trajectory through the box during a particular pass. The
average directional vector Vk of the kth box is then simply

Vk =
1
n

n∑

p=1

ep, (2.4)

where n is the number of all passes through the kth box. Completing this task for
all occupied boxes gives us a directional approximation for the vector field of the
system. If the time series originates from a deterministic system, and the coarse-
grained partitioning is fine enough, the obtained directional vector field should
consist solely of vectors that have unit length (remember that each ep is also a unit
vector). Hence, if the system is deterministic, the average length of all directional
vectors κ will be 1, while for a completely random system κ ≈ 0. The determinism
factor pertaining to the eight-dimensional embedding space presented in Fig. 3 that
was coarse-grained into a 16× 16× · · ·× 16 grid is κ = 0.99, which clearly confirms
the deterministic nature of the studied sound recording.

2.4. Stationarity test

It remains of interest to verify if the studied sound recording originated from
a stationary process. To this purpose, we apply the stationarity test proposed
by Schreiber.28 In general, stationarity violations manifest so that various non-
overlapping segments of the time series have different dynamical properties. Since
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Fig. 3. Determinism test. The approximated directional vector field for the embedding space
reconstructed with τ = 1 and m = 8. The pertaining determinism factor is κ = 0.99.

linear statistics, such as the mean or standard data deviation,2 usually do not
possess enough discrimination power when analyzing irregular signals, nonlinear
statistics have to be applied. One of the most effective has proven to be the cross-
prediction error statistic. The idea is to split the time series into several short
non-overlapping segments and then use a particular data segment to make predic-
tions in another data segment. By calculating the average prediction error (δgk)
when considering points in segment g to make predictions in segment k, we obtain
a very sensitive statistic capable of detecting minute changes in dynamics, and thus
a very powerful probe for stationarity. If for any combination of g and k δgk is
significantly above average, this is a clear indicator that the examined data set
originated from a non-stationary process. The accurate description of the whole
algorithm can be found in Kantz and Schreiber2 from page 42 onwards, while here
we concentrate on the results that are presented in Fig. 4 and were obtained by
diving 10,000 data points into 40 non-overlapping segments of 250 points, thus
yielding 402 combinations to evaluate δgk . The average value of all δgk is 0.75,
while the minimum and maximum values are 0.60 and 0.89, respectively. Since all
cross-prediction errors differ maximally by a factor of 2/3, we can clearly refute non-
stationarity in the studied sound recording. Noteworthy, this implies that during
the recording time the environmental influences on the cicada did not change and
thus its singing was stationary both from the listeners as well as from the dynamical
point of view. This is of course not surprising since not much can happen in a few
seconds time. However, it is important to bear in mind that longer recordings of
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Fig. 4. Stationarity test. The whole time series was partitioned into 40 non-overlapping segments
each occupying 250 data points. The color map displays average cross-prediction errors δgk in
dependence on different segment combinations.

real-life activities almost always yield non-stationary data sets since subjects under
study often cannot be isolated from environmental effects, or even more likely, it is
explicitly not of interest to do so.

2.5. Maximal Lyapunov exponent

Finally, it is of interest to determine the maximal Lyapunov exponent pertain-
ing to the studied sound recording. Importantly, since we have already positively
established determinism and stationarity in the time series, the following can be
considered truly a relevant analysis based on which healthy conclusions regarding
the nature of the cicada’s sounds can be drawn. In general, Lyapunov exponents
determine the rate of divergence or convergence of initially nearby trajectories in
phase space.6 An m-dimensional system has m different Lyapunov exponents Λi,
where i = 1, 2, . . . , m. Most importantly, already a single positive Lyapunov expo-
nent suffices to positively establish chaos in the studied system. Usually, this Lya-
punov exponent is referred to as the largest or maximal and is thus appropriately
denoted as Λmax. Λmax uniquely determines whether the time series under study
originated from a chaotic system or not. If Λmax > 0, two initially nearby trajecto-
ries of the attractor diverge exponentially fast as time progresses, constituting the
extreme sensitivity to changes in initial conditions, which is the hallmark of chaos.
Presently, we use the algorithm developed by Wolf et al.,29 which implements the
theory in a very simple and direct fashion, whilst virtually identical results as will
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Fig. 5. Determination of the maximal Lyapunov exponent. The value converges extremely well to
Λmax = 0.073 ± 0.002 in dimensionless units, thus, combined with the results obtained from the
determinism and stationarity tests, indicating deterministic chaos in the studied sound recording
of Tosena depicta.

be reported below can be obtained also with other methods31,32 for determining
Λmax from recorded data sets. The first step of the algorithm consists of finding
a near neighbor of the initial point p(0). Let L0 denote the Euclidian distance
between them. Next, we have to iterate both points forward for a fixed evolution
time tevolv, which should be of the same order of magnitude as the embedding delay
τ (in our case tevolv = 5), and denote the final distance between the evolved points
as Levolv . After each tevolv a replacement step is attempted in which we look for
a new point in the embedding space whose distance to the evolved initial point
is as small as possible, under the constraint that the angular separation between
the evolved and replacement element is small. This procedure is repeated until the
initial point p(0) reaches the end of the trajectory in the phase space. Finally, Λmax

is calculated according to the equation

Λmax =
1

Rtevolv

R∑

i=1

ln
L

(i)
evolv

L
(i)
0

, (2.5)

where R is the total number of replacement steps. By using Eq. (2.5), we calculate
Λmax for the attractor presented in Fig 3. As evidenced in Fig. 5, the maximal
Lyapunov exponent converges extremely well to Λmax = 0.073. This is firm evidence
that the studied sound recording from Tosena depicta living in Southeast Asia
originated from a deterministic chaotic system.

Finally, we note that special care should be exercised when determining non-
linear dynamical quantities from observed systems due to limited data length,
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especially if the data originates from a high-dimensional system, as is presently
the case (m = 8). While for some nonlinear dynamical quantities, such as for exam-
ple the correlation dimension obtained via the Grassberger-Procaccia algorithm,2

there exist precise formulae that determine the minimal amount of data points
required to obtain a reliable result,33–35 this is not the case for the estimation of
the maximal Lyapunov exponent. Nevertheless, we emphasize that a high degree of
reliability can be assured by requiring that the root-mean-square of the maximal
Lyapunov exponent fluctuations during convergence must be much smaller than
the value we declare as the final result. Since even a few seconds long high quality
sound recordings (sampled at 22 kHz or higher) comprise < 105 data points such
reliability-related restrictions are normally easily fulfilled, if only determinism and
stationarity in the examined data set are positively established.

3. Discussion

We systematically analyze the sound recording of the Southeast Asian cicada
Tosena depicta with methods of nonlinear time series analysis. In particular, we
outline a careful approach, encompassing a determinism27,36,37 and stationarity
test,28 which largely eliminates the occurrence of spurious results, and thus guar-
antees a relevant analysis of the observed system. We find that the studied sound
recording originates from a deterministic stationary system and is characterized by
a positive maximal Lyapunov exponent.29,31,32 Thus, we conclude that the sound
production mechanism of the studied cicada species possesses properties that are
characteristic for deterministic chaotic systems.

We argue that the above-performed analysis is a viable approach for obtaining
vital insights into mechanisms of insect sound generation. In particular, it can been
seen as the necessary prelude to mathematical modeling, since it provides important
information regarding the dynamical properties of the underlying system, such are
for example the number of active degrees of freedom given by the dimensionality
of the phase space or Lyapunov exponents. In this sense, the nonlinear time series
analysis provides the basic framework for such studies clearly indicating the dimen-
sionality as well as complexity of the appropriate mathematical model. Furthermore,
as already advocated by Wilden et al.,10 for mammalian communication, such anal-
yses can lay foundations for a more broad classification of acoustic and vibrational
communication also among insects, which surpasses the rather limited dichotomous
separation of signals on harmonic and atonal sounds38 that is often employed by
biologists. Finally, we argue that if used carefully, methods of nonlinear time series
analysis can also serve as means to distinguish different insect genera or even species
either from each other or under various environmental influences, whereby the fact
that one can intimately and rather accurately characterize a particular sound only
by a single Lyapunov exponent opens the possibility of automatization.

At the end, we would like to note that since this work is intended to inspire physi-
cists, mathematicians and biologists alike, we also developed a set of user-friendly
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programs39–42 for each implemented method in this paper, so that interested readers
can easily apply the theory on their own recordings. An even more comprehensive
set of programs is available also through the TISEAN project.43,44 We recommend
greatly to exploit the benefits offered by these sources.
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