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Information cascades are important dynamical processes in complex networks. An information cascade can
describe the spreading dynamics of rumour, disease, memes, or marketing campaigns, which initially start
from a node or a set of nodes in the network. If conditions are right, information cascades rapidly encompass
large parts of the network, thus leading to epidemics or epidemic spreading. Certain network topologies are
particularly conducive to epidemics, while others decelerate and even prohibit rapid information spreading.
Here we review models that describe information cascades in complex networks, with an emphasis on the
role and consequences of node centrality. In particular, we present simulation results on sample networks
that reveal just how relevant the centrality of initiator nodes is on the latter development of an information
cascade, and we define the spreading influence of a node as the fraction of nodes that is activated as a
result of the initial activation of that node. A systemic review of existing results shows that some centrality
measures, such as the degree and betweenness, are positively correlated with the spreading influence,
while other centrality measures, such as eccentricity and the information index, have negative correlation.
A positive correlation implies that choosing a node with the highest centrality value will activate the largest
number of nodes, while a negative correlation implies that the node with the lowest centrality value will
have the same effect. We discuss possible applications of these results, and we emphasize how information
cascades can help us identify nodes with the highest spreading capability in complex networks.

Keywords: complex network; social dynamics; centrality measure; information spreading; influence
maximization; epidemics; information cascade; online popularity; memes.

1. Introduction

The last two decades have been witnessed with a birth of new movement in science, and an inter-
disciplinary field has emerged under the name of Network Science [1–5]. Many natural phenomena
can be modelled as networked structures, where a number of individual entities are connected through
interaction links. Examples include the Internet, power grids, the human brain, World Wide Web, online
social networks, water distribution and transportation networks. Graph theory combined with data mining

© The authors 2017. Published by Oxford University Press. All rights reserved.

Downloaded from https://academic.oup.com/comnet/article-abstract/5/5/665/3930936/Information-cascades-in-complex-networks
by guest
on 05 October 2017



666 M. JALILI AND M. PERC

led to a dramatic progress in this field, attracting scholars from different fields, ranging from physics to
mathematics, computer science, biology, ecology, finance and social sciences. Early studies in network
science focused on understanding structural properties of real complex networks and introducing proper
models to construct synthetic networks mimicking their properties. Networks, extracted from real-world
data [6], have been shown to share a number of common structural properties such as a scale-free
degree distribution, small-worldness [7], community structure [8] densification and shrinking diameter
[9]. However, real networks might have different properties as well, and in [10] a method was proposed
to compare properties of different complex networks. Dynamical processes have also been studied on
networked structures. For example, interacting dynamical systems may show collective behaviour such
as synchronization and consensus [11–15]

Many real networks have a scale-free degree distribution, meaning that the nodes have different
roles in the structure of the network, and consequently on its function [16–19]. Indeed, nodes have
different importance (vitality) in networks, and the degree is only one, albeit an important, representation
of this vitality. Node degree plays a vital role in many processes occurring on or related to complex
networks, such as controllability [20, 21], opinion formation [22], preventing catastrophic cascading
failures [23–26], identifying high-performing research scholars [27, 28], fostering cooperation [29–33]
and synchronization [14, 34, 35]. However, identifying vital nodes that are significant for all network
functions is not an easy task, as degree is not the only property indicating vitality [36, 37]. Some network
functional properties are better described by other centrality measures such as betweenness, closeness
or coreness [38]. Indeed, no single centrality measure indicates nodes’ vitality for all network functions.
The other challenge is a need to identify a set of vital nodes instead of a single vital node (or ranking
the nodes based on their vitality) in many cases. Putting the most vital nodes together does not often
guarantee to find the set of vital nodes. Indeed, such a set often includes nodes that are not individually
vital, but have significant influence when considered with a group of other nodes. This has been shown for
network functions such as synchronization [39], controllability [40–43], communicability [44, 45] and
information spreading [46–50]. There has been much attention to identification of vital nodes within the
community of network science in recent years. Here we provide a review on how conventional centrality
metrics for structural vitality of nodes perform in information cascade models.

Information diffusion (also known as information transmission, dissemination, cascade or spread) has
attracted tremendous attention within the community of network science due to its potential applications in
various disciplines. For example, a company may give a certain product to a selected number of influential
individuals for free with a hope that they recommend the product to their friends if they are satisfied with
that product [51–56]. It has been argued that for products with positive effects on the users, the sellers
often can take the advantage of positive externalities to make the crowd more likely to buy the product
with such strategies [54]. Sellers can also choose to offer discounts based on the influence of individuals
where the revenue can even be further maximized [57]. Target immunization is another example where
a small subset of influential nodes is selected and immunized [58–61]. Efficient immunization strategies
have also been proposed under limited budget [62]. Network components may undergo a cascade of
failures, where a failure in one component might trigger cascaded failures and substantially break down
the whole network [24, 63–67]. It has been shown that failure in nodes with high centrality values has
significant effect on failure propagation.

Finding the most influential spreaders has always been a hot research topic within the community
of network science [46, 47, 68–74]. The influence maximization problem tries to find a small subset of
individuals of which triggering causes the largest information spread across the network. This manuscript
provides a mini-review on the relation between nodes’ centrality values and their influence in information
cascade. Section 2 provided overview of information spread and cascade models. Two general graph-based
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models including linear threshold model and independent cascade model are briefly reviewed in this
section. Then, Section 3 summarizes structural centrality measured covered in this manuscript and Section
4 briefly reviews state-of-the-art in finding the most influential spreaders. In Section 5, we present some
results on the relation of nodes’ centrality and their spreading influence on some model and real networks.
Finally, the manuscript is concluded and outlook is given in Section 6.

2. Information spreading and cascade models

Recently, there has been increasing literature on information cascade (also known as information diffu-
sion, dissemination, spread or transmission) in various disciplines ranging from biology to social sciences,
mathematics, physics and computer science [75]. With ever-increasing importance of online social net-
works, in particular, studying information spread in social communities have been recently subject to
heaving investigations within computer science disciplines [76–78]. Information propagation through
online social networks has proved to be a powerful tool in many situations, like importance of Twitter
2009 US presidential election [79] and influence of Facebook in 2010 Arab Spring [80]. Another impor-
tant research in this field is epidemics and virus spread, which has attracted many scholars in ecology
and biology disciplines [81, 82]

Information cascade has various applications in computational sciences. Viral marketing is one of the
most important applications [51–53, 57]. Viral and world-of-mouth marketing (and advertising) is new
form of product marketing that try to maximally use network-based effects (e.g. through various social
networks) to increase awareness of specific product and achieve marketing goals. It comes in various
forms including images, videos, emails, text messages, twits, games and blogs. All these forms can be sent
from one person to another. It has frequently happened that contents posted on social media platforms have
gone viral and become a hot topic [83]. Compared to traditional marketing tools, marketing through social
networking is rather easy to implement, has much lower cost, better potential for long-term influence and
exponential growth. Viral marketing is now a major practice for many campaigns. The information is
shared with a number of influential players that play the role of spreaders in the network. Sometime, these
key players receive some bonus (e.g. free product or a substantial discount) to encourage discrimination.

Diffusion of innovation is another topic that has been frequently studied over network [84, 85]. New
ideas, technologies and ways of doing things can quickly propagate through a network. It has been shown
that people tend to adopt a technology (or product) with increasing likelihood, depending on their friends
and neighbours (that is determined based on their connections in the network) to whom they trust. The
innovation can be a novel social practice [86], a new form of employment contract [87], or a technological
advance such as a new software package [88]. There are various factors determining how efficient (and
fast) innovations diffuse across the network, including network topology [74, 89] and payoff gains [90].
The Internet and instantaneous availability of information have dramatically changed how technology
and innovation spreads. For example, it took 50 years for electricity to have 50 million users, decades
for fax and telephone, but only a few years (even in some cases less than a year) for social networks
such as LinkedIn, Facebook, Twitter and MySpace. Indeed, nowadays networks and in particular social
networking platforms are essential tools to spread innovations.

Networks have also major role in opinion formation among individuals. Individuals, each having an
opinion, exchange their ideas and opinions through their friendship links in networks, and influence one
another’s opinions [22, 91–96]. A number of works modelled the opinion formation process in complex
networks. For example, in bounded confidence model [22, 94, 97, 98], the agents have a continuous-valued
opinion vector. At each step, a node is chosen randomly and is influenced by one of its randomly selected
neighbouring node. If they are negotiable, that is, their opinion values are less than a certain threshold,
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they update their opinion values such that their opinions get closer. Otherwise, no update process happens.
It has been shown that if certain conditions are met, clusters of nodes with the same opinion values will
appear. For certain cases, all nodes will reach a consensus and have the same opinions.

2.1 Cascade models

Predictive cascade models can be generally divided into two classes: graph-based models and non-
graph-based ones. The non-graph-based models are epidemic models that mathematically study diffusion
using population-based dynamics [99–101]. Well-known models in this context are susceptible-infected-
removed (SIR) [102] and susceptible-infected-susceptible (SIS) [103]. In SIR model, the population is
divided into three classes: susceptible, infected and removed. The susceptible portion of the population
is those that have not been infected yet (i.e. unaware of the information) and might be infected (with
a certain probability) in contact with an infected person. When a person is infected, he/she is removed
(becomes immune or dies depending on the nature of infection) after a period of time. The removed
agents do not influence others. In SIS model, when a person is infected, he/she becomes susceptible
again after being recovered. In these methods, one often would like to study the time-evolution of the
ratio of susceptible, infected and removed nodes. These epidemic models have been frequently used to
study how a virus spreads within a population as well as on other contagion processes such as innovation
diffusion, information diffusion, rumour spreading and spread of political movements.

In graph-based predictive cascade models, the dynamics is often studied in the level of individual
nodes A kind of information starts from an initial set of nodes and spread through the network based
on a cascade model. There are two well-known graph-based models: linear threshold [104–107] and
independent cascade [108, 109]

2.1.1 Linear threshold cascade model The linear threshold model has been proposed to describe binary
decision making, and has been frequently used to model such a process in economy and sociology. The
model has been proposed to mimic herding-like behaviour, where an individual makes a decision based
on his/her neighbours’ actions [110, 111]. In this model, there are a number of states that each node
can adopt. Often, the nodes can have two states: active or silent. In the start of the process all nodes are
assumed to be in the silence mode. Then, a number of nodes are selected as early adopters for which
the state is switched to active mode. These early adopters may trigger some of their neighbours, if the
threshold condition is met. In general, a silent node i becomes active if at least ti fraction of its neighbours
are active. This threshold can be uniform across all nodes (which is often the case) or can be drawn from a
certain distribution to have node-specific threshold values. The iterative diffusion process continues until
the steady state solution is obtained that is, there are no further changes in nodes’ state and no further node
is activated. If certain conditions are met, one might have full cascade over the networks where all nodes
become active. The linear threshold model is a simple model that has been frequently used in many studies.

2.1.2 Independent cascade model Another commonly used cascade model is independent cascade
model [108, 109]. Similar to the linear threshold model, in independent cascade model the nodes can be
either active or silent. Often, two assumptions are made for the independent cascade model:

1. Any active node i has only a single chance to activate its silent neighbour j, and if the activation
process is not successful, there will be no influence on node j from node i;

2. The probability that a silent node j is influenced by an active node i (which is located in its
neighbourhood) is independent of the influence of other active nodes on node j
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The process of the independent cascade model is as follow. Similar to the linear threshold mode, first,
all nodes are assumed to be silent at the start of the process. Then, a (usually small) fraction of nodes
become active. Let’s denote the nodes that become active in step t of the process by AC(t). At any time t
of the algorithm, each of the nodes that have become active in the previous step (AC(t − 1)) activate one
of their silent nodes with a certain probability. Let’s denote the probability that an active node i activating
a silent neighbour j by Qij. This edge-specific probability is also known as diffusion probability in the
literature. These probability values should be given before the start of the numerical simulation process.
If these probabilities are unknown, one can use a maximum likelihood method to estimate their values
from observations on cascade sequences [112]. If a silent node j has more than one neighbour that has
been activated in the previous step, the active neighbours tend to influence node j in an arbitrary order.
This procedure is repeated until the steadystate solution is obtained. Finally, the number (or ratio) of
activated nodes by initially activating a (set) of node(s) is denoted as its spreading influence (or influence
range). The higher is the spreading influence of a node, the more vital is that node for information spread.

Figure 1shows a sample network with 15 nodes and a number of edges. The cascade process starts by
initially activating node 1. In this example, the diffusion probability is set to 0.5 for all edges. Node 1 has

Fig. 1. Schematic illustration of an information cascade in a network with 15 nodes and 17 edges with a uniform diffusion probability
of 0.5. The diffusion starts by initially activating node 1 (a). In the second step one of neighbours of node 1 (node 3) is activated
(b). In the third step, node 3 that has been activated in the last step, activates two of its neighbours nodes 4 and 5 (c). Node 4 does
not have any silent neighbours, but node 5 activates node 9 in the fourth step (d), which itself activates one of its neighbours in
the next step (d). Finally, as no node is activated in step 6, the process stops leading to activation of 5 nodes as initially activating
nodes 1 (f).
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two neighbours (nodes 2 and 3), of which only node 3 becomes active in the first step of the simulation
process. Note that node 2 will not be influenced by node 1 in the future steps. Out of three neighbours
of newly activated node 3, two of them (nodes 4 and 5) are activated in the second step of the process.
Finally, the cascade process stops and six nodes are activated as a result of initially activating node 1.

3. Node centrality measures

The influence of a node in a complex network largely depends on its structural position in the network,
and the most of introduced node centrality measures are based on only structural information on networks
[113]. Indeed, the concept of centrality was first introduced by Freeman to distinguish the nodes by their
structural centrality. In order to quantify their centrality in the network, each node is assigned a real
value, which makes it possible to compare the node for its centrality values. Node centrality measures
play a significant role in studying properties of real systems. For example, Mantzaris et al. used dynamic
centrality measures to characterize aggregate activity in different brain regions, as well as to reproduce
learning-related information in the brain [114] In this section, we briefly review well-known structural
centrality measures.

Let’s consider an undirected and unweighted network G(VE) where V is the set of nodes and E is
the set of edges. Although in this work we focus on undirected and unweighted networks, most of the
concepts can be easily extended to directed and weighted networks. The network is fully described by
its adjacency matrix A = [aij], where aij = 1 when there is a link between nodes i and j, and aij = 0,
otherwise. Let’s also denote the edge between nodes i and j by eij. The simplest centrality measure of
a node is its degree (in- and out-degree for directed networks). Degree of a node is the total number of
links that node has with others. Degree ki of node i is calculated as

ki =
∑

j

aij. (1)

Degree is a local measure, meaning that a node only requires being aware of its immediate neighbours.
Degree is an important centrality measure, and many dynamical processes have been linked to node degree
[20, 115]. Degree takes into account only the number of neighbours, however sometimes the importance of
a particular neighbour may also matter. For example, connecting to an important individual can bring more
importance (or prestige) for a node than being connected to more non-important neighbours. To account
for this, Hirsch index (known as H-index) has been extended for node centrality. H-index, proposed
by Hirsch as an index to quantify an individual’s research impact [116] H-index of an individual is the
number of his/her publications that have received at least h citations. The same concept has been extended
to networks [27, 28, 117, 118]. To make it mathematical, one can define an operator H applying which on
a set of real-valued variables [y1, . . ., yn] returns the maximum integer h such that among the members
of this set there are at least h members with a value no less than h. With such a definition for H, H-index
of node i is defined as

hi = H
(
kj

)
, j ∈ Ni. (2)

where Ni is the set of neighbours of node i. Indeed, H-index of a node is the maximum value h such that
its neighbours have at least degree h. In order to compute the H-index, each node is required to have its
degree and those of its neighbours.

Many dynamical processes depend not only on local properties, but also on global properties of
networks. A number of centrality measures have been proposed in the literature that takes into account
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global structure of the networks. A class of these measures is those based on (usually shortest) path
length. Here we consider three path-based centralities including eccentricity, betweenness and closeness
centrality. Betweenness centrality, as introduced by Freeman [119, 120], takes into account centrality of
nodes in navigation through the network. Betweenness centrality Bi of node i in a graph, which shows
the number of shortest paths making use of node i (except those between the i-th node with the other
nodes), is computed as

Bi =
∑

j �=i �=k

�jk(i)

�jk
, (3)

where �jk is the number of shortest paths between nodes j and k and �jk(i) is the number of these shortest
paths making use of the node i. From the above equation, it is easy to see that the betweenness centrality
of a leaf node is zero, as it is not on any shortest paths. A number of variants to the betweenness centrality
have been proposed in the literature such as connection graph stability [121, 122], random walk based
method [123, 124] and communicability [44].

Eccentricity of a node is other path-based centrality measure [125]. Let’s define the shortest path
between nodes i and j by pij. Based on eccentricity centrality index, the shorter is the distance of a node
from other nodes, the higher is the importance of that node. Eccentricity of node i is the maximum
distance between i and other nodes, and is calculated as [125]

Ei = maxj(pij). (4)

Under the above definition, a node with smaller eccentricity will have more central position in the
network. Closeness is another centrality measure that measures the mean distance from a node to other
nodes. Closeness centrality of node i is calculated as

Ci = 1

N − 1

∑
j

1

pij
. (5)

The above quantity takes lower value for the nodes that have shorter distance from others, that is, nodes
that are closer to the centre of the network. Such nodes might have better access to the information at
other nodes and provide better direct influence on them.

An alternative approach to calculate vitality of a node is to account for its importance in the amount
of information contained in all possible paths between pairs of nodes in the network [126–128]. Although
one can define the term ‘information’ in various forms, it is defined based on path information in this
approach. It is supposed that the longer the path is, the more the information loss. The information index
is indeed a different from of closeness centrality where a different way to consider the contribution of
each path is considered. Mathematically, the information index for node i is calculated as [126–128]

Ii =
[

1

N

∑
j

1

rij

]−1

; Q = (qij) = (K − A + 1)−1; rij = (
rii +jj −2rij

)−1
, (6)

where K is a diagonal matrix with node degrees in the diagonal elements and 1 is a matrix with all
elements equal to 1.
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Here we also consider eigenvector centrality, which considers that not only the number of neighbours
of a node is importance in determining its vitality, but also the importance of the neighbours [129, 130].
Eigenvector centrality of a node is the corresponding entry in the (left) eigenvector corresponding to the
largest eigenvalue of the connectivity matrix A. However, Eigen-decomposition of large-scale matrices
is complex (time complexity of O(N3)), which might not be practical in many cases. Alternatively,
once can use iterative power methods to compute the eigenvector centrality of nodes [130, 131]. A
simple iterative algorithm to compute the eigenvector centrality is a follows. Let’s denote the eigenvector
centrality of node i as vi, where vi(t) indicates its value at step t of the algorithm. First, for all i’s we take
vi(t) = 1. Then, at each step we compute vi(t + 1) = ∑

j
aijvj(t)

kj
, and make appropriate normalization.

The algorithm continues until a steadystate solution is obtained. There are a number of variants to
the eigenvector centrality, including the well-known PageRank [132, 133], Katz centrality [134] and
LeaderRank [46, 135].

4. Influential spreaders

Not surprisingly, nodes of a network have different spreading capabilities; some nodes are in a strategic
position and can spread the information more influentially than others. There have been heavy investi-
gations on the problem of influence maximization and finding the super spreaders in complex networks
[68, 69, 71]. The influence maximization problem was first formally defined by Kempe et al. [71]. Let’s
define the influence of a set of nodes S, denoted by I(S), to be defined the expected number of activated
nodes as a result of initially activating the nodes in S. One can formally define the influence maximization
problem as follows [71]. Given a fixed parameter k, the influence maximization problem finds a k-node set
S whose influence I(S) is maximum, that is, I(S) has the largest number of nodes. It was shown that this
problem is NP-hard for many cascade models including the linear threshold and independent cascade.
The same formulation can also be used to study viral marketing [51, 136] and revenue maximization
problems [54, 57]. In the revenue maximization problems, some samples of products are given for free
(or with a certain discount) for a selected number of nodes with a hope that they positively influence the
crowd and help maximizing the revenue. The influence maximization problem has been extended from
different perspectives. For example, Wang et al. introduced positive influence domination set problem
under the linear threshold model [137]. In this problem, one finds a set of nodes S such that every node
in the network has at least half of its neighbouring nodes in S. He et al. introduced the minimum-sized
influential node set problem, which is to find the set of influential nodes with the minimum size such that
every node in the network can be influenced by this set no less than a certain threshold [109]

It has been shown that for submodular cascade functions [138], one can efficiently construct a hill-
climbing algorithm to find an approximate solution for the standard influence maximization problem
[54, 71, 139]. The approximate algorithm guarantees providing a solution within 63% of the optimal
solution, and is as follows. First, the best node is numerically determined by computing the influence
of all nodes one-by-one and obtaining the optimal one; this node is put into set S. Then, this node is
removed from the network, and the optimal node for the new network is obtained in a similar way. The
new optimal node is added to S. This procedure continues until the size of set S reaches k. It was shown
that the problem can be solved in a linear time in certain graphs. For example, Chen et al. showed that
this is the case for directed cyclic graphs for which a scalable algorithm can be found [70]. However,
real social networks might not have such a structure, which makes it difficult to apply such algorithms
to them.

Nodes with high centrality values (e.g. those with high degree, betweenness or closeness centrality)
are candidates for influential spreaders. Kitsak et al. showed that this is not the case for many real
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networks [72]. They showed that the strategic location of a node, known as its coreness, is more important
than conventional centrality measures such as degree and betweenness, in evaluating its influence on
information spreading. Indeed, the best spreaders are those located in the core side of a network, which
can be identified by k-sell decomposition algorithms [140, 141]. Coreness of a network is obtained as
follows. Given an undirected and unweighted network, initially the coreness of all isolated nodes is
defined as zero. Such nodes are removed from the network. Then, in the k-sell decomposition algorithm,
all nodes with degree k = 1 are removed from the network, resulting in the reduction of network edges.
The nodes removed in this step will have coreness of 1. Then, the nodes with the degree less or equal
than 1 in the remaining graph are identified and further removed from the network. These nodes will
have coreness of 2. The process continues until the nodes with the maximum coreness are identified. The
coreness can be efficiently computed for large-scale networks; however, it cannot be applied to many
model networks such as tree and scale-free networks constructed using Barabasi-Albert algorithm [115],
for which the coreness of all nodes have close values such that one cannot distinguish them. Alternative
approaches have been proposed to solve this problem including mixed degree [142] and generalized
degree discount [73].

5. Centrality of nodes and its role in information spreading

5.1 Centrality values and their influence on information spread

There are various research reports showing that a network’s structure has a major role in determining
its capability for information spread; however, this also depends on the dynamical process under study.
For example, a node might be a key spreader in information dynamics, but not in epidemics dynamics.
In spite of that, some general centrality measures have been shown to be rather vital for many spreading
dynamics [38]. de Arruda et al. [143] studied how different centrality measures are correlated with their
epidemic spreading capabilities. They found that degree and k-core show the highest correlation for
epidemic spreading in non-spatial networks, whereas closeness and average neighbourhood degree are
the most related ones to rumour dynamics. Identifying nodes with central role in information spread
will have many potential applications in various fields. For example, by determining the most influential
spreaders in criminal groups, the relevant investigation body can better manage crime and implement
preventive strategies [144].

5.2 Numerical simulations

In this section we provide results on numerical simulations in a number of synthetic and real networks.
For simulations, we consider a uniform diffusion probability for all edge as Qij = Q. Under a certain Q,
for any node i we obtain its spreading influence range Si as the ratio of the nodes that are activated by
initially activating node i. Higher values of Si indicates higher spreading capability for i. These spreading
influence values are then correlated with the centrality values.

5.2.1 Model networks As model networks, we consider well-known preferential attachment scale-
free, random and small-world networks. The random networks are constructed by the model proposed
by Erdos and Renyi [145]. In Erdos–Renyi networks there is a link between any pair of nodes with
probability P. Small-world networks are constructed by the algorithm proposed by Watts and Strogatz
in their seminal work [7]. To construct Watts–Strogatz networks, first a ring graph with N nodes each
connected to its m-nearest neighbours are considered. Then, the links, one-by-one, are rewired with
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probability P. For different values of the rewiring probability, one obtains networks from regular (for
P = 0) to complete disorder (for P = 1). Erdos–Renyi and Watts–Strogatz networks have almost
homogeneous degree distribution; however, many real networks have been shown to have heterogeneous
node degrees. Barabasi-Albert model [115] results in such networks. The model is as follows. First, an
all-to-all connected network with m nodes is considered. Then, as each proceeding step, a new node is
added to network and creates m links with old nodes. The probability of connecting the newly added
node to an old node is proportional to the degree of the old node; the higher the degree of an old node,
the higher the probability of tipping to the new node.

5.2.2 Real networks Although studying model networks can provide useful information on how real
networked systems behave, models cannot however mimic all properties of real networks. Therefore, we
also consider a number of real networks and study the relations between their nodes’ centrality values
and spreading influence. The real networks considered in this work include [146] co-authorship network
of scientists active in the field of Network Science (Net Sci), social networks between PhD students of
Computer science (CS PhD), Facebook-like, a network of Online Dictionary of Library and Information
Science (ODLIS), US Airports, the Internet as in the level of Autonomous System (AS), US electric grid,
EU electric grid.

5.2.3 Simulation results Figures 2 and 3 show how the spreading influence of nodes is correlated with
their centrality scores in scale-free networks with varying average degree and heterogeneity (indicated by
B), respectively. These results show mean values over 20 independent runs. Spearman rank correlation
values are obtained between the spreading influence and centrality values including degree, between-
ness, closeness, eccentricity, H-index, information index and eigenvalue centrality. Positive (or direct)
correlation indicates that as nodes take higher centrality values, their spreading influence is higher, which
means that more nodes will be activated by initially activating them. Negative (or indirect) correlation
indicates the opposite. It is seen that, as the networks become denser, the absolute values of the correla-
tion between the spreading influence and centrality values decreases (Fig. 2). While degree, betweenness,
closeness, H-index and eigenvalue centralities are positively correlated with the spreading influence of
nodes, information index and eccentricity show negative correlation values. The information index has
the highest negative correlation, while degree often has the most significant positive correlation. This
indicates that choosing the highest-degree nodes likely leads to activation of a larger set of silent nodes,
whereas choosing those with the highest information index will result in the lowest number of activated
nodes. The profile of the correlation patterns is almost independent of the heterogeneity level of the
network, as expressed by B (i.e. the higher the B, the lower the heterogeneity level), and the correlations
vanish for large values of the threshold parameter Q (Fig. 3).

Scale-free networks are typical examples of networks with heterogeneous node degrees. As examples
for networks with almost homogeneous distribution of degrees, we consider Watts–Strogatz small-world
and Erdos–Renyi networks. Figure 4 shows the correlation of spreading influence with the centrality
measures of the nodes for Watts–Strogatz networks with N = 500, P = 0.2 and different average degree
(the networks have average degree equal to 2m). One can observe almost similar pattern as for scale-free
networks (Fig. 2), where by increasing the density of the network (i.e. increasing m), the absolute value
of the correlations decreases. Again, information index and eccentricity show negative correlation, with
the information index being the one with the strongest indirect correlation. Other centrality measures
have positive correlation with the spreading influence with degree being the one with the strongest direct
correlation. Figure 5 shows the correlation values for Watts–Strogatz networks with varying rewiring
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Fig. 2. Spearman rank correlation values between the centrality of nodes and their spreading influence, as a function of average
degree (2m) in scale-free networks with size N = 500 and B = 0 (see text for explanation of this parameter). The threshold for
the independent cascade model is fixed at 0.1, 0.2, 0.3, 0.4, 0.5 and 0.6, respectively for (a)–(f). The spreading influence of nodes,
measured by obtaining the ratio of activated nodes as initially activating a particular node, is correlated with centrality scores
including degree, betweenness, closeness, eccentricity, H-index, information index and eigenvalue centrality (see text for complete
explanations of these measures). Data represent mean values over 20 independent runs.

probability P. The correlations are not significant for large values of the threshold Q. For small values of
Q and as the rewiring probability increases, the strength of the correlation (almost linearly) increases. The
information index has by far the strongest indirect correlation. Again, degree has higher direct correlation
almost in all cases. Figure 6 shows the correlation values in Erdos–Renyi networks with N = 500 and
varying connection probability P. As P increases, the networks become denser, the correlations vanishes
similar to the other cases. Again, information index and eccentricity have indirect correlation, while other
centrality measures show direct correlations with the spreading influence.

To further study the pattern of correlations, we consider a number of real networks ranging from social
networks to transportation and technological ones. Figure 7 shows these results for different values of the
threshold parameter. One can observe significant differences between these results and those obtained
for synthetic networks. Unlike synthetic networks, there are quite substantial differences between the
measures showing direct correlations. In social networks (i.e. Net Sci, CS PhD and Facebook-like),
H-index shows the strongest positive correlation with the spreading influence, followed by degree in one
of them (Net Sci) and betweenness in the other two. Similar to the synthetic networks, the information
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Fig. 3. Spearman rank correlation values between the centrality of nodes and their spreading influence, as a function of B is scale-
free networks with N = 500 and average degree of 10. B indicates the parameter controlling heterogeneity of the network, such
as the higher B is, the less the heterogeneity of the network. The threshold values for different panels and the legend for different
lines styles is the same as in Fig. 2.

index shows negative correlation in real networks, but for Net Sci where the correlation is almost zero.
In technological networks including the Internet in the level of AS, US Electric Grid and EU Electric
Grid, degree shows the strongest correlation, followed by H-index. The other observation is the profile
of correlation values for different threshold values. While in some networks (Net Sci and CS PhD)
the direct/indirect correlations become more significant as the threshold increases, they become less
significant in some other networks such as US Airport and Facebook-like. The absolute value of the
direct correlations is almost independent of the threshold in technological networks, while the negative
correlations become stronger as the threshold increases in these networks. The results indicate that real
networks have distinct properties and even network of the same class (e.g. social networks) might exhibit
different properties.

5.3 Applications

Identifying nodes with high levels of spreading capabilities has many potential applications. In the
following we review some of the significant applications where fundamental theories developed in this
field can be effectively used.
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Fig. 4. Spearman rank correlation values between the centrality of nodes and their spreading influence, as a function of average
degree (2m) is Watts–Strogatz small-world networks with N = 500 and rewiring probability P = 0.2. The threshold values for
different panels and the legend for different lines styles is the same as in Fig. 2.

5.3.1 Mitigating contagious disease and preventing epidemics It has been frequently shown that net-
works with hub elements, for example scale-free networks with high-degree nodes, are prone for viruses
and contagious diseases [82, 100, 147–149]. Scale-free networks do not have an epidemic threshold,
meaning that a disease can spread superfast in such networks, and therefore a large-fraction of the nodes
would be at risk of contagious. Computer viruses have also similar spreading pattern and can spread fast on
the network due to scale-free topology of the Internet [150]. In networks with mobile agents, for example
social networks, the nodes move around and make new connections. This is often the main driver behind
global epidemics such as 2009 H1N1 influenza pandemics and 2003 SARS epidemics [151, 152]. It has
been shown that one can find an effective distance predicting the approximate arrival time of the disease
[153]. By analysing large-scale mobility patterns and individual-based traffic data, Eubank et al. found
that connections are strongly small-world with a well-defined scale-free degree distribution [154]. This
allows efficient outbreak detection by placing the sensors in the hub locations, where many high-degree
individuals are also involved.

Central (or hub) nodes have significant role in facilitating or blocking the contagious. Christley et al.
showed that a simple centrality measure such as degree can be effectively used to identify the risk of
infection in populations exposed to a virus [155]. If influential spreaders are infected by the diseases,
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Fig. 5. Spearman rank correlation values between the centrality of nodes and their spreading influence, as a function of rewiring
probability is Watts–Strogatz small-world networks with N = 500 and average degree of 10. The threshold values for different
panels and the legend for different lines styles is the same as in Fig. 2.

they are likely to disseminate it fast because of their central location in the contact network. On the
other hand, by identifying such influential spreaders and blocking them by means of vaccination or
temporarily isolating them until the spread is controlled and the risk of epidemics disappears. It has been
frequently shown that targeted vaccination of complex networks is much more effective than random
vaccination [58–60]. Salathe et al. collected social networks of close proximity interactions and analysed
the relations between the spread of disease and the structure of the network [156]. They also showed that
one can accurately predict the real influenza cases by efficiently analysing the close proximity network
structure. The information of such a network can be used to design effective targeted immunization
strategies. One can also design more effective immunization strategies by optimizing the vaccination
cost. Mirzasoleiman et al. proposed a simple algorithm to design immunization strategy under limited
budget [62]. They showed that under limited budget conditions, one can use a simple discount strategy
to decide the amount of discount to give to the central nodes, where the amount of discount (to receive
the vaccination) depends on the centrality values.

5.3.2 Viral marketing It has been frequently shown by means of both experimenting on real groups and
studying on model systems that structure of social networks have a major role in diffusion of behaviours
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Fig. 6. Spearman rank correlation values between the centrality of nodes and their spreading influence, as a function of connection
probability in Erdos–Renyi random networks with N = 500. The threshold values for different panels and the legend for different
lines styles is the same as in Fig. 2.

and innovations among the individuals [89, 107, 157]. In marketing, ‘word-of-mouth’ is a well-known
strategy [158, 159]. It is informal communication behaviour between the customers about their posi-
tive/negative experiences with specific products, services and/or providers. This phenomenon is a basic
strategy used in ‘viral marketing’ [51, 52, 160, 161]. Viral marketing is a modern marketing strategy where
social networks are used to increase brand awareness, spread of technology adoption and maximizing
the influence. In such strategies, peers pass their views about a particular product, service or provider
to their neighbours. As individuals often trust their neighbouring friends in their social networks, and
therefore view their feedbacks positively. This strategy is a powerful marketing tool. The structure of
social networks has vital role on the efficient spread of a viral message, and one should take this into
account to optimize campaign performance [161, 162]. De Bruyn and Lilien carried out an experiment
and asked a number of individuals to forward unsolicited emails to their friends inviting them to par-
ticipate in a survey, and also spread the work about it [163]. They found that the strength of the social
tie facilitated awareness, demographic similarity had a negative influence on the spread and perceptual
affinity activated recipients’ interest on the topic.

An important issue in viral marketing through social networks is ‘influence maximization’, which
is defined as: given a fixed social network topology and a cascade model, what is the set with k nodes
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Fig. 7. Spearman rank correlation values between the centrality of nodes and their spreading influence, as a function of threshold
of the independent cascade models in a number of real networks including (a) co-authorship network of scientists active in the
field of Network Science (Net Sci), (b) social networks between PhD students of Computer science (CS PhD), (c) Facebook-like,
(d) a network of Online Dictionary of Library and Information Science (ODLIS), (e) US Airports, the Internet as in the level of
Autonomous System (AS), (f) US electric grid and (g) EU electric grid. The legend for different lines styles is the same as in Fig. 2.
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such that initially activating them results in the largest cascade effect, that is the largest number of finally
activated nodes [71]? The top-k nodes are those that are given the product for free (or with the highest
discount rate) in marketing campaigns, with the hope that they can trigger others towards that product,
and thus maximize the revenue [57, 164]. The influence maximization problem is an NP-hard problem
[57]. For certain cases however, for example, sub-modular influence models, one can find approximate
algorithms guaranteeing the performance up to a certain optimality level [71].

Shakarian and Paulo introduced a scalable method to efficiently find a set of initial adaptors that
guarantee spreading to all nodes [160]. They also find that dense community structure throughout the
network and highly clustered neighbourhoods suppress the information spread across the network, an
observation that has also been reported by others [107]. Borgs et al. introduced a fast algorithm obtain-
ing the new-optimal solution that is runtime-optimal up to a logarithmic factor [165]. Although some
other fast algorithms have been proposed, they are still much slower than topology-based methods that
are based on obtaining central nodes and using them as the initial adopters [166]. Most of the top-
k most influential nodes are often among those with high centrality values. Optimal consensus and
information spreading is also related to the dismantling problem where a minimal set of nodes have
to be found such that by removing them the network is broken into connected components of subex-
tensive size [167, 168]. Such nodes are likely among those that play an important role in information
spreading.

5.3.3 Opinion spreading and consensus Another potential application for the identification of vital
nodes for information spread is opinion spread and consensus phenomenon in complex networks. Indi-
viduals interacting on a networked structure may influence their neighbours and/or be influence from
them, and consequently change their opinion values [94, 96, 169–171]. A number of models have
been proposed to study the evolution of opinions on complex networks, which can be generally cat-
egorized into two broad classes: models with continuous-time opinions [95, 97, 98, 172, 173] and those
with discrete-time opinion values [96, 174–176]. In most of the opinion formation studies, first the
agents are assigned with a certain opinion value, for example randomly selected from a range, and
then, they adapt their opinion values considering that of their neighbouring nodes who can influence
them. For example, in the well-known bounded confidence model [97, 98, 172, 173], one first chooses
a random edge in each iteration of the evolution process. Then, the end-nodes of the selected edge
change their opinions (and make them closer) if their opinions are close enough, that is they are nego-
tiable. This procedure continues until steady-state solution is obtained and no further opinion change
happens. If certain conditions are met, all (or most) of the agents reach a consensus in their opinion
values [97].

In real social networks, different nodes have different influence levels on their friends. For example,
society leaders often have more significant role in shaping opinion of crowd than normal individuals. At the
same time, the leaders might be less affected by others than normal individuals. Indeed, individuals have
different levels of social power [177]. Jalili studied the role of the social power on opinion formation
process, where agents with higher centrality have higher social power to others [22]. He showed that
introducing social power in the opinion formation process often facilitates the consensus. Afshar and
Asadpour showed that a small number of informed agents with a strategic position in the network can
successfully shape the opinion of the whole society [178]. Askari Sichani and Jalili showed that by
connecting the informed agents to the agents with rather small degrees but with high degree neighbours,
one can maximize the influence [68]. Although general centrality measures have been successfully used
in facilitating opinion formation in complex networks, constructing centrality measures specific to the
properties of opinion formation process is still a hot topic in this area.
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5.3.4 Preventing cascading failures Real-world networked structures might be subject to failures in
their components (nodes and edges) [179, 180]. Component failure can be generally in two forms: random
failure often denoted as error or intentional (targeted) failure often denoted by attack. Although many
networks show surprising resiliency against errors, they are fragile against intentional attacks. In some
cases, a component failure can have more drastic consequences, where it might trigger a cascade of failures
in other components [23, 181, 182]. In real networks, when a component fails, the load (or traffic) passing
through that component is often redistributed to other components. This might cause some components
to go beyond their capacity, and consequently fail. This process might continue until a large fraction of
nodes fails.

Studying cascaded failures and understanding their behaviour has significant role in safeguarding
critical networked infrastructures. For example, it has been shown that component failures may often
trigger a cascade of failures in water distribution networks [183]. Power networks are also prone to cas-
caded failure, and such a process has been responsible for some of large-scale blackouts [25, 184, 185].
Cascaded failures have been heavily studied for power grids, due to its significance applications in
the proper functioning of the grid. Power grids are spatial network and show particular behaviour
against cascaded failures [63]. Yan et al. proposed an extended betweenness centrality combining
network structure and electrical characteristics of power network and studied the vulnerability of the
networks against different attack strategies [186]. Ghanbari et al. considered a measure based on the
maximum power flow and investigated random and targeted failures in a number of benchmark power
networks [187].

The location of the initial failure has significant role in the cascade outcome, that is the number of failed
components. Ghanbari and Jalili studied how nodal centrality indices are correlated with their cascade
depth, that is the number of failed nodes as a result of an initial failure in a node [188]. Surprisingly, they
found that for many model and real networks, degree is negatively correlated with the cascade depth,
indicating that initial failure in high-degree nodes often results in non-significant cascading effect. They
also identified centrality measures with positive correlation with the cascade depth. Mirzasoleiman et al.
proposed a strategy based on node betweenness centrality in order to maximize resiliency of weighted
networks against cascaded failures [24].

5.3.5 Discovering institutional financial risks Financial institutes often have intense interconnections,
borrowing/lending money from one another. They form a network where they influence each other’s
functionality, and one might minimize systematic financial risks by properly analysing topology of such
networks [189]. Similar to cascaded failures, a risk in a certain financial institute might spread to others,
which can lead to drastic financial outcomes. Gai and Kapadia studied the contagion in financial networks,
and showed the ‘robust yet fragile’ phenomena in these networks [190], similar to previous findings on
other types of networks [180]. While the probability of contagion may be low in financial networks,
the consequence can be drastic and widespread when problems happen. If a financial institution has
problems (e.g. cannot collect the repayments from its customers) and defaults, its creditor may face a
loss. If the losses that a financial institution collectively faces are more than its equity, that institution
will also default. This process may result in many institutions to default, which may lead to dramatic
financial situations [191]. A framework has been developed to find out whether an initially defaulted
financial institution causes a cascade that extends to a large fraction of the network [192]. The cascade
condition computed in this way can be considered as a systematic risk inherent in the financial network
structure.

Structure of the financial network has significant role on how risk develop in its participating financial
institutes [193, 194]. Amini et al. obtained asymptotic results for the magnitude of contagion in financial
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networks, and introduced a resiliency criterion to quantify how contagion intensify small shocks [195].
By analysing the cross-border banking flows for 184 countries and global banking network, Minoiu
and Reyes found that network density in 2007 was not significantly different from earlier peaks [196].
This indicates that factors other than connectedness of financial networks, such as the strategic location
of the initial shock, have major contributions to the severity of the financial crisis [196]. Demange
proposed the aggregate debt repayment model, which is obtained based on each individual institute’s
characteristics and its connections with others [197]. This model can be used to measure the spillover
effect. Centrality measures have significant applications in studying contagion in financial networks.
Some scholars have also proposed specific centrality measures for this purpose. Battiston et al. proposed
DebtRank, to measure the systematic risk of nodes in financial networks [198]. SinkRank was proposed to
quantify the disruption caused by the failure of a financial institution in the payment system and identify
those affected more [199].

5.3.6 Preventing abnormal behaviour and terroristic relations Although social networks have various
applications and daily life might be disrupted without them, they can propagate anomalies and illegal
activities. Detection of anomalies in social networks is often used to identify spammers, sexual preda-
tors, malicious users, terroristic activities, money laundering and online fraudsters [200–202]. Abnormal
behaviour is defined as something that is significantly different from networks’ normal behaviour. For
example, spurious nodes often have significantly different behaviour (and features) than normal nodes.
Spurious links are those that should not exist if the network naturally evolves. It is not always an easy task
to find criminals in the network as the individuals intending to do a criminal activity over the networks
are smart, and often find new ways to stay unrecognized. Although the leaders of illegal activities have
strategic position in the network, in many cases they do not have many connections, but only a few critical
ones. Money laundering activates often involve a number of collaborative individuals, and the evidence
may only be discovered when only collective behaviour of these individuals is considered [203]. In order
to have effective detection of money laundering activates, one can efficiently use network analysis and
supervised learning [203].

Although there has been many works on predicting forthcoming links in social networks, there has
been little efforts to predict abnormal links, which is partly due to lack of reliable datasets. Magalingam
et al. proposed a method based on shortest paths to find a small subset of nodes suspected for criminal
activities [204]. Yasami and Safaei proposed a multi-step method for anomaly detection in social networks
[205]. In their proposed method, the first step is to identify the normal behaviour of the network, and
the abnormalities are identified in the next step. Das and Sinha used nodal centrality measures to detect
malicious users in social networks [206]. Kaur et al. used centrality measures to identify criminal users
and showed that by combining a number of centrality measures one can better identify such users as
compared to the case of using the centrality measures independently [207].

6. Conclusions and outlook

Information cascade is an important topic in network science with significant applications in various
fields such as viral marketing, disease spread, rumour spreading in social communities, cascaded failures
in infrastructure networks and contagion in financial networks. In this paper, we provided a brief review
on information cascaded models. We provided a detailed explanation of independent cascade model, a
frequently used model to theoretically study information cascade in complex networked systems. In the
independent cascade model, the cascade starts from an initial set of nodes, spreads through the network and
stops when no agent becomes activated anymore. An important issue in the studies related to information
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cascade is how to choose the initially activated nodes. This is also known as influence maximization
problem in the related literature. In this work we studied the role of centrality measures in the influence
maximization problem. For some sample synthetic and real networks, a number of centrality measures
were calculated and correlated with their spreading influence. The spreading influence of a node can
be obtained by finding the portion of the network that is activated when that node is initially activated.
We identified centrality measures such as degree and betweenness, showing positive correlation with the
spreading influence and measures such as eccentricity and information index often negatively correlated
with that.

Although great progress has been achieved in recent years on how dynamical processes, such as
information cascade, evolve over complex networks, there are still many open questions in this field.
Viral Marketing for example, is how to efficiently use social networking to maximize the revenue, and
the heart of viral marketing is how to identify a ‘good’ initial set of influential users [208]. Although
a number of algorithms have been proposed to find the most influential nodes, and thus maximize the
influence, development of practical approaches is still in its infancy. Therefore, future research in this
field would be put the algorithms into practical applications and fine tune them on real data.

Vital nodes are often detected by statistical tests through computing various centrality measures in
networks. This requires mapping the whole network, which is difficult (if not impossible) in many real
networks such as online social communities. There have been some efforts to estimate centrality of nodes
in the case when only partial information is available on the network connectivity. For example, Christakis
and Fowler proposed a method based on monitoring the friends of randomly selected individuals, which
does not require ascertainment of the whole network structure [209]. They verified their proposed model
on early detection of flu outbreak within students of a university. There are also some works in the
literature to construct network statistical parameters, including centrality measures, from partial network
measurement, for example when fraction of nodes and/or edges are missing [210, 211]

Recently, the information propagation phenomenon has also been studied in multilayer networks,
realistic network models for some networked systems such as online social networks, transportation and
biological networks [212–214]. Some real systems should be modelled as multilayer networks, where
the nodes develop connections in different layers [215, 216]. Examples of such networks include online
social networks where the individuals might have friendship connections in different social networking
platforms [217], or transportation networks where the same cities might be connected through air, rail and
road networks [218]. Multilayer networks show properties that are different from single-layers networks
in some aspects [219, 220] Targeted immunization strategy in a layer is not often effective to stop
epidemics in other layers [221, 222]. In other words, when the central nodes are vaccinated in only
one of the layers, although it is effective in immunizing that layer, it does not have that much influence
on the other layers. Therefore, more effective immunization strategies are required for networks with
multiple layers.

Many real networks show surprising recovery after failure of their components. For example, eco-
nomic systems are often highly resilient to small shocks, and quickly recover their normal functioning
state. The brain is another example where it recovers after a seizure. This indicates that real networks
have intrinsic mechanisms to stop the spread and damp sudden changes to the network. Majdandzic et
al. proposed a model to study spontaneous recovery of complex networks [26], which was then extended
to interdependent networks [223]. This however requires further studies.
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38. Lü, L., Chen, D., Rend, X.-L., Zhang, Q.-M., Zhang, Y.-C. & Zhou, T. (2016) Vital nodes identification in

complex networks. Phys. Rep., 650, 1–63.
39. Jalili, M. & Yu, X. (2016) Enhancement of synchronizability in networks with community structure through

adding efficient inter-community links. IEEE Trans. Netw. Sci. Eng., 3, 106–116.
40. Jalili, M., Askari Sichani, O. & Yu, X. (2015) Optimal pinning controllability of complex networks:

dependence on network structure. Phys. Rev. E, 91, 012803.
41. Jalili, M. & Yu, X. (2017) Enhancing pinning controllability of complex networks through link rewiring,

IEEE Trans. Circuits Syst. II, Exp. Briefs, 64, 690–694.
42. Tang, Y., Gao, H. & Kurths, J. (2013) Multiobjective identification of controlling areas in neuronal networks.

IEEE/ACM Trans. Comput. Biol. Bioinform., 10, 708–720.
43. Tang, Y., Gao, H., Kurths, J. & Fang, J.-A. (2012) Evolutionary pinning control and its application in UAV

coordination. IEEE Trans. Ind. Inform., 8, 828–838.
44. Estrada, E. & Hatano, N. (2008) Communicability in complex networks. Phys. Rev. E, 77, 036111.
45. Estrada, E., Hatano, N. & Benzi, M. (2012) The physics of communicability in complex networks. Phys.

Rep., 514, 89–119.
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47. Chen, D., Lü, L., Shang, M.-S., Zhang, Y.-C. & Zhou, T. (2012) Identifying influential nodes in complex

networks. Phys. A, 391, 1777–1787.
48. Gao, C., Lan, X., Zhang, X. & Deng, Y. (2013) A bio-inspired methodology of identifying influential nodes

in complex Networks. PLoS ONE, 8, e66732.
49. Gleeson, J. P., O’Sullivan, K. P., Baños, R. A. & Moreno, Y. (2016) Effects of network structure, competition

and memory time on social spreading phenomena. Phys. Rev. X, 6, 021019.
50. Estrada, E., Meloni, S., Sheerin, M. & Moreno, Y. (2016) Epidemic spreading in random rectangular

networks. Phys. Rev. E, 94, 052316.
51. Domingos, P. (2005) Mining social networks for viral marketing. IEEE Intell. Syst., 20, 80–82.

Downloaded from https://academic.oup.com/comnet/article-abstract/5/5/665/3930936/Information-cascades-in-complex-networks
by guest
on 05 October 2017



INFORMATION CASCADES IN COMPLEX NETWORKS 687

52. Leskovec, J., Adamic, L. A. & Huberman, B. A. (2006) The dynamics of viral marketing. ACM Conference
on Electronic Commerce. Ann Arbor, MI: ACM, pp. 228–237.

53. Subramani, M. R. & Rajagopalan, B. (2003) Knowledge-sharing and influence in online social networks via
viral marketing. Commun. ACM, 46, 300–307.

54. Hartline, J., Mirrokni, V. & Sundararajan, M. (2008) Optimal marketing strategies over social networks.
Proceedings of the 17th International Conference on World Wide Web. pp. 189–198.

55. Domingos, P. & Richardson, M. (2001) Mining the network value of customers. Proceedings of the Seventh
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. pp. 57–66.

56. Richardson, M. & Domingos, P. (2002) Mining knowledge-sharing sites for viral marketing. Proceed-
ings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
pp. 61–70.

57. Babaei, M., Mirzasoleiman, B., Safari, M. & Jalili, M. (2013) Revenue maximization in social networks
through discounting. Soc. Netw. Anal. Min., 3, 1249–1262.

58. Cohen, R., Havlin, S. & ben-Avraham, D. (2003) Efficient immunization strategies for computer networks
and populations. Phys. Rev. Lett., 91, 247901.

59. Pastor-Satorras, R. & Vespignani, A. (2002) Immunization of complex networks. Phys. Rev. E, 65, 036104.
60. Madar, N., Kalisky, T., Cohen, R., ben-Avraham, D. & Havlin, S. (2004) Immunization and epidemic

dynamics in complex networks. Eur. Phys. J. B, 38, 269–276.
61. Wang, Z., Bauch, C. T., Bhattacharyya, S., d’Onofrio, A., Manfredi, P., Perc, M., Perra, N., Salathé,
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