
Computational chaos in complex networks

Erivelton G. Nepomuceno

Control and Modelling Group (GCOM), Department of Electrical Engineering, Federal University of
São João del-Rei, São João del-Rei, Brazil

and

Matjaž Perc
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Computational chaos reports the artificial generation or suppression of chaotic behaviour in digital comput-
ers. There is a significant interest of the scientific community in analysing and understanding computational
chaos of discrete and continuous systems. Notwithstanding, computational chaos in complex networks has
received much less attention. In this article, we report computational chaos in a network of coupled logistic
maps. We consider two types of networks, namely the Erdös–Rényi random network and the Barabási–
Albert scale-free network. We show that there is an emergence of computational chaos when two different
natural interval extensions are used in the simulation. More surprisingly, we also show that this chaos can
be suppressed by an average of natural interval extensions, which can thus be considered as a filter to
reduce the uncertainty stemming from the inherent finite precision of computer simulations.

Keywords: computational chaos; chaos suppression; non-linear dynamics; complex networks; computer
arithmetic; complex systems.

1. Introduction

Chaos theory is intimately linked to the computational simulation of dynamical systems [1–3]. Although
many researchers indicate the work of Henry Poincaré as one of the first to study the theory of dynamical
systems and indicate sensitivity to initial conditions, the work of Lorenz [4] is commonly regarded as a
milestone development of this theory. While Lorenz [4] has received a huge attention from the scientific
community, a later work [5] has not received the same concern. In this work, Lorenz defines the term
computational chaos. More than 20 years after discovering the butterfly effect, Lorenz suggests that there
are chaotic behaviours that are not due to the dynamic system, but in fact, to the process of discretization.

In fact, the existence of chaos due to discretization processes had previously been identified in works
of [6–8], but it was with the work of Lorenz that this prospect gained breath and dozens of other stud-
ies have emerged in the literature discussing or approving the issue of computational chaos [9–34].

© The authors 2019. Published by Oxford University Press. All rights reserved.

D
ow

nloaded from
 https://academ

ic.oup.com
/com

net/article/8/1/cnz015/5481207 by  m
atjazperc@

gm
ail.com

 on 07 Septem
ber 2021

Journal of Complex Networks (2020) 8, cnz015
doi: 10.1093/comnet/cnz015



2 E. G. NEPOMUCENO AND M. PERC

The perspective of computational chaos encompasses both situations in which the original system presents
regularity/periodicity and its discretized version, on the other hand, presents chaos, as well as the inverse,
when the system is considered chaotic and its computational simulation shows regularity. The latter phe-
nomenon has been given the name of chaos suppression [35–48]. In fact, the suppression of expected
chaos in complex networks has been widely investigated. It has been noticed that networks with biological
background have been found to suppress chaos more successfully that other networks. The interested
reader is referred to [49–52] for more details.

In principle, the questions raised by Lorenz were mostly discussed from the perspective of discretiza-
tion, that is, a numerical method problem. Even in previous works, as in [6], the authors show that original
equations give rise to chaos due to a discretization process. In the 1970s, these authors have shown that
simple differential equations may have difference equations with complicated dynamic behaviours and
associate this phenomenon with the recent so-called chaos [6], as understood by Li and York a few
years before [53]. These solutions have been called ghost solutions in several subsequent works [6–
10, 14, 18, 21, 47, 54–56] or spurious solutions [12, 57]. The question of discretization in particular has
been the subject of several works, both in the perspective of robustness of results, as well as in the line
of trying to reduce the error and avoid spurious results [54, 57–64].

Parallel to the research based on numerical methods, it is also perceived a significant effort to bring
security to computational simulations. In the 1980s, Hammel et al. [65] are considered pioneers in
proving a theorem, with computational aid, that the logistic map could be simulated by millions of
iterations with the security that the error would be at most in the seventh decimal place. Recently,
however, Nepomuceno et al. [66] have relevant limitations of the theorem proposed in [65] based on
an in-depth study of arithmetic computation. Much of these works make use of the shading theorem,
applicable to hyperbolic systems [65, 67–72]. More recently, scientific computation also becomes more
rigorous with the use of interval arithmetic and affine arithmetic, which allow to incorporate errors
associated with finite precision intrinsic to numerical computation [73–78]. This line of research has
received great prominence, particular attention should be given to the formulation of a standard by IEEE
to treat specifically under the arithmetic interval [73]. Examples of application of interval arithmetic
for rigorous simulation of discrete maps were proposed in [79, 80]. Researchers such as Galias, have
performed important studies using interval arithmetic to broaden the rigour in computational calculus,
particularly of non-linear dynamical systems [81–88]. Importantly, however, that interval arithmetic can
also be influenced by software/hardware implementation and inconsistent results were observed in [89].

Although there is great effort from the scientific community to understand the theory of chaos, and in
particular of computational chaos, it is perceived that there are still issues in open, raised since the first
years of development of this theory. Ford [90] with the intriguing title: ‘Chaos: solving the unsolvable,
predicting the unpredictable’ is one of the first authors to raise questions about the conclusions obtained
from computational simulations. Years later, Lozi [56] questions whether in the simple case of the discrete
dynamic system of the Hénon map there are long periodic orbits or strange attractors. Similarly, Galias
[86] has suggested that the importance of developing methods for the proof of chaos, which he says,
exists for the Lorenz attractor, citing the work of [91], but that for the circuit of Chua is still an open
question. It is important to emphasize that the evidence of the existence of the Lorenz attractor makes
use of computational simulation, and although Galias assert the proof for the attractor of Chua is still
an open question, Chua et al. [92] indicate a proof for the existence of the double attractor, also using
computational resources.

One of the first most accurate indications of the study of chaos theory in conjunction with computa-
tional simulation was done by Corless [55]: ‘In summary, there are four levels of abstraction used here:
the physical reality of the problem under study, the mathematical continuous model of physical reality, the
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COMPUTATIONAL CHAOS IN COMPLEX NETWORKS 3

numerical discretization of the mathematical model, and the simulation using floating-point discretiza-
tion’. Similarly, Oberkampf et al. [93] suggest five levels in simulation: conceptual model, mathematical
model, discretization, computational programming, numerical solution and numerical solution represen-
tation. In the passage cited in [55], the floating-point refers to the pattern of representation of the real
numbers and realization of arithmetic operations in a digital system, indicated by the IEEE 754-2008
[94–97] standard. According to [98], arithmetic computation is a field of knowledge that encompasses the
definition and standardization of arithmetic systems for computers. It also includes hardware and software
implementation issues, worrying about the testing and reliability of these implementations. Nannarelli et
al. [98] also affirm that it is an area with great concern in scientific computing, and finally, they affirm
that it is an interdisciplinary area that involves mathematics, computer science and electrical Engineering.
Palmore and Herring [99] were pioneers to relate the theory of chaos with arithmetic computation, which
explores aspects of arithmetic computation from the point of view of dynamic systems. In that work, the
effects of finite precision of computer arithmetic have been evaluated in uniformly hyperbolic chaotic sys-
tems. Even more interesting is the assertion that the authors analyse the computer as a dynamic system, a
similar assertion found in [72]. The conclusion of the study is that the use of floating-point representation
can strongly influence the results obtained from computational simulations. Followed work reiterated this
position, such as [72, 100–103]. A demonstration of this is in [103], which states that a good analysis of
the relationship between arithmetic (floating-point) and digital dynamic systems is given in [99], because
such authors demonstrate that even trivial changes in arithmetic computation can significantly modify the
structures of the pseudo-orbits. Nepomuceno and Martins [34] have observed that the change of natural
interval extensions, that is, functions mathematically equivalent, but written differently from elementary
mathematical operations, produced qualitatively different results in the Mackey-Glass system simula-
tion. Important to note that long before, Fryska and Zohdy [72] have claimed that some chaotic systems
can produce attractors with different topologies when integrated into different levels of precision to the
floating point pattern. The problem of finite precision in the investigation of chaos theory has also been
expressed in a clear way in [17]. In that work, the author states that for chaotic systems any error in the
initial conditions or computational errors propagate and grow rapidly due to the properties of the dynamic
system itself. Due to truncation operations, it is critical to observe safely the behaviour of chaotic or even
periodic trajectories for a long period of time. Another interesting observation was made by Adler et al.
[3] as they claim that the logistic map exhibits unexpected behaviour dependent on the precision used. In
[3], it is demonstrated, contrary to the general intuition, that the use of greater precision (greater number
of bits) does not necessarily lead to greater accuracy in the results, and on the contrary, the authors show
that the use of a larger number of bits can lead to a less accurate result; concludes the article saying
that the mathematical software cannot be treated as a black box for an adequate understanding of the
computational simulation results. As to the precision similar conclusions were also found in [104]. Still
regarding the connection between chaotic systems and finite precision, Mendes and Nepomuceno [105]
propose a method for calculating the exponent Lyapunov, one of the most used indexes to verify whether
the system is chaotic or not, from the simulation error.

The literature on chaos in networks is plenty of works [106–116]. The interest has been even amplified
after the discovery of the chimera states and many other works have been devoted to such study [117–
127]. Nevertheless, computational chaos in complex networks has received much less attention. Indeed, a
search for ‘computational chaos’ AND network in Web of Science, Scopus and IEEEXplore
has found only five [106, 108, 128, 129], whereas computational chaos is only investigated in [106, 129].
Barhen et al. [108] have reported a methodology based on the stability of asynchronous computation for
the prevention of computational chaos. Barhen et al. [106] have reported computational chaos in artificial
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4 E. G. NEPOMUCENO AND M. PERC

neural networks with asynchronous regime, which impedes the efficient retrieval of information usually
stored in the system’s attractors.

In this article, we have reported computational chaos in a complex network. We have investigated
a network of coupled logistic map [113, 114]. In our study, we choose two complex network models:
the Erdös–Rényi random networks and the Barabási–Albert scale-free networks. Li et al. [113] have
reported that even when the parameters of the nodes are not in chaotic regions, a coupled large-scale
network can exhibit chaotic behaviour. Here, we show that there is an emergence of computational chaos.
Using different natural interval extensions [34, 66, 130], we show different qualitative behaviour in such
network. More surprisingly, we have also shown that this chaos can be suppressed by an average of natural
interval extensions, which can be seen as filter to reduce the noise derived from the finite precision of the
simulation.

The remainder of the article is organized as follows: Section 2 presents the network of coupled logistic
maps. The emergence of computations chaos is shown in Section 3 and suppression of chaos is shown in
Section 4. Final remarks are given in Section 5.

2. Logistic Network

Let a node of a network given by the logistic map in the form of

xk+1 = μxk(1 − xk), (1)

where μ ∈ [0, 4]. Consider a connected dynamical network of N coupled identical nodes given by
Eq. (1). The state equations of the logistic network are given by [114, 115]:

xk+1
i = f (xk

i ) − c
N∑

j=1

aijf (x
k
j ), i = 1, 2 . . . N , (2)

where xk
i ∈ R is the state variable of node i at time step k, and c > 0 is a positive real parameter that

represents the coupling strength of the network. The coupling matrix, also called Laplacian Matrix [131],
A ∈ R

N×N is represented by

A =

⎛
⎜⎜⎜⎜⎜⎝

d11 a12 a13 . . . a1N

a12 d11 a23 . . . a2N

a13 a23 d33 . . . a3N

...
...

...
. . . · · ·

a1N a2N a3N . . . dNN

⎞
⎟⎟⎟⎟⎟⎠

. (3)

If there is a connection between node i and node j, then aij = 1; otherwise, aij = 0(i �= j) and let

dii = −
N∑

j=1,j �=i

aij = −
N∑

j=1,j �=i

aji, i = 1, 2 . . . N (4)
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COMPUTATIONAL CHAOS IN COMPLEX NETWORKS 5

which means that the network is fully connected with no isolated clusters. A matrix form of Eq. (2) is

Xk+1 = (I − cA)f (Xk), (5)

where Xk = [xk
1, xk

2, . . . xk
N ] and I ∈ R

N×N is identity matrix.
Here, we have investigated two coupling configurations according to [113]. The networks models

have been generated using the routines developed in [132]. First, a scale-free network generated by the
Barabási–Albert model with parameters N = 1000, m = 3 and n0 = 3. Second, an Erdös–Rényi random
network with N = 1000 nodes and K = 3000 edges. We have set μ = 2.5, which have been used to
generate the coupling matrix A according to Eq. (3). All nodes have been initiated around the fixed point
x∗ = (μ − 1)/μ = 0.6.

We have focused our attention on the node with the highest degree, which for the scale-free and
random network are 81 and 15, respectively. Figure 1 presents the bifurcation diagrams for these nodes
with the highest degrees. Similar result has been reported in [113]. In both network topology, the system
is found to exhibit a period doubling cascade route to chaos. Nevertheless, in the Erdös–Rényi network
it is visible the presence of some outlier points from normal pattern. The Erdös–Rényi network is going
to be investigated in more detail in the next section.

3. Computational chaos in Erdös–Rényi network

To observe the computational chaos in Erdös–Rényi network, we have examined the computer simulation
using two different natural extensions. Such approach has been used in other of our works [66, 130, 133–
135]. In this work, we have analysed the following natural interval extensions [136]:

xk+1 = μxk(1 − xk) (6)

xk+1 = μ(xk(1 − xk)) (7)

xk+1 = μxk − μxkxk (8)

xk+1 = (μ − μxk)xk (9)

xk+1 = μ(xk − xkxk) (10)

xk+1 = μxk − μ(xkxk). (11)

Equations (7) to (11) are mathematically equivalent. However, it has already been reported qualita-
tively different simulation outcome when interval extensions have been used [34]. In this section, we have
used Eqs (7) and (8) to observe different qualitative behaviour in the network of coupled logistic map. In
the next section, all the interval extensions have been used to present a chaos suppression technique.

Figure 2 shows different qualitative behaviour in simulation of a network of coupled logistic maps
due to the use of different natural interval extensions. In this simulation, we have used the natural interval
extensions described in Eqs (7) and (11). The coupling matrix has been generated using Erdös–Rényi
random network with N = 1000 nodes and K = 3000 edges. All simulations have used the same initial
condition for all nodes, which are slightly different from the fixed point x∗ = 0.6. Each node is described
by a logistic map with μ = 2.5. In Fig. 2, the first column presents the results of the simulation using the
first interval extension, that is, μxk(1 − xk), as shown in (a), (c) and (e). The second interval extension,
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6 E. G. NEPOMUCENO AND M. PERC

Fig. 1. Bifurcation diagram for the nodes with highest degree in two networks of coupled logistic maps according to Eq. (5). (a)
The coupling matrix A is generated by a scale-free network following the Barabási–Albert model with N = 1000, m = 3 and
n0 = 3. (b) The coupling matrix A is generated by Erdös–Rényi random network with N = 1000 nodes and K = 3000 edges. In
both cases, μ = 2.5 and all nodes have been initiated close to the fixed point x∗ = 0.6. The parameter bifurcation is the coupling
strength c.

μ(xk(1 − xk)), has been used to generate the results exhibited in Fig. 2 (b), (d) and (f). The bifurcation
parameters are c = 0.06994, c = 0.0990 and c = 0.100002 for first, second and third line, respectively.

The results show different qualitative behaviour as outlined in Table 1. Although, it is expected the
same outcome, different sequence of arithmetic operations presented in the natural interval extension is
responsible for this qualitative different behaviour. The chaotic behaviour has evidenced by Lyapunov
exponent in Fig. 3. It is an evident case of computational chaos. In fact, there is no reason to choose
one of Eqs (7) and (8) as the correct outcome. At this point, we may analyse these results as case of
computational chaos or chaos suppression.
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COMPUTATIONAL CHAOS IN COMPLEX NETWORKS 7

(a) (b)

(c) (d)

(e) (f)

Fig. 2. Different qualitative behaviour in simulation of a network of coupled logistic maps. The coupling matrix has been generated
using Erdös–Rényi random network with N = 1000 nodes and K = 3000 edges. All simulations have used the same initial
condition for all nodes, which are slightly different from the fixed point x∗ = 0.6. Each node is described by a logistic map with
μ = 2.5. The first column (a, c, e) and second column (b, d, f) have been simulated using the interval extensions μxk(1 − xk) and
μ(xk(1 − xk)), respectively. The bifurcation parameter is c = 0.06994, c = 0.099 and c = 0.100002 for first, second and third
line, respectively. Different number of fixed periods and even computational chaos can be noticed.
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8 E. G. NEPOMUCENO AND M. PERC

Table 1 Different qualitative behaviour in coupled logistic map network. c is the bifurcation
parameter. Two natural interval extensions have been analysed. Although, it is expected the
same outcome, different sequence of arithmetic operations is the reason for these outcomes.
We have adopted a tolerance of 10−5 to calculate the period. The chaotic behaviour has
evidenced by Lyapunov exponent in Fig. 3. It is an evident case of computational chaos

c Eq. (7) Eq. (8)

0.069940 Fixed point Period 2
0.099000 Period 8 Period 16
0.100002 Chaos Period 16

Fig. 3. Computation of the largest positive Lyapunov exponent to the node with the highest degree in the network of coupled logistic
map. We adopted the procedure developed in [105]. In this case, the Lyapunov exponent is 0.413 bit/n, where n is iteration. It is
an evidence that this node presents a chaotic behaviour using the interval extension as in Eq. (7).

4. Chaos suppression

In this section, we work with an idea of variance reduction of the simulation. This idea has been appeared
in [137]. According to [138], the variance of a stochastic process can have its variance reduced by

s(k) = s√
k

, (12)

where s is the variance of one realization and k is the number of realizations. In our case, we are going to
consider each interval extension, shown in Eqs (7) to (11), as an realization. We are not going to calculate
the variance, but rather, we are interested in the effects of the simulation by using this rationale. Following
this idea, we are going to simulate the network of coupled logistic map with the same parameters as in
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COMPUTATIONAL CHAOS IN COMPLEX NETWORKS 9

Fig. 1(e). Let the following auxiliary variables:

L1 = μxk(1 − xk)

L2 = μ(xk(1 − xk))

L3 = μxk − μxkxk

L4 = (μ − μxk)xk

L5 = μ(xk − xkxk)

L6 = μxk − μ(xkxk)

and Eq. (1) has been replaced by

xk+1 = 1

m

m∑
i=1

Li, m = 1, 2, . . . 6, (13)

which is nothing but an average of the natural interval extensions. It is important to stress that from the
point of view of dynamical systems theory based on mathematical rules, Eq. (13) is equivalent to (1),
independent for the value of m. Nevertheless, Fig. 4 shows the result of the network of coupled logistic
map using Eq. (13), in which the chaotic behaviour has been suppressed for the case of m = 6. In other
cases, the system has been changed as well. Figure 4(d) seems to have a lower period, however a close
look reveals a non-periodic behaviour. It is, however, in Fig. 4(f) that the chaos suppression occurs, in
which a zoom shows the period 8.

5. Conclusion

The simulation of networks of dynamic systems are widespread. In many situations, it has been reported
the emergence of chaos. Here, we have reported the emergence of computational chaos in complex
networks. We have examined two types of networks: Barabási–Albert scale free and Erdös–Rényi random
network. Our heuristic search has not found computational chaos in Barabási–Albert scale free. It does not
mean that there is no computational chaos, but at least, it suggests that it less evident that the computational
chaos in Erdös–Rényi random network. Our attention has been given to the node with highest degree.
We have applied natural interval extensions to observe such phenomena and two simulations have been
used. Although, these extensions represent the same equation, in one has been observed chaos, whereas
in the other, period 16. Different periods have been also noticed.

The presence of computational chaos has been also evidenced as we have been able to suppress the
chaos in the node with the highest degree. To achieve such goal, we have applied six different natural
interval extensions for the logistic map. In each iteration for each node, the value of the next iteration
has been calculated as the average of these six extensions. This procedure has been shown sufficient to
suppress the chaotic behaviour. We believe that this procedure works as a filter to reduce the variance of
noise caused but finite-precision error. Although, the computational chaos in many situations should be
mitigated, it has been considered useful in applications such as encryption schemes [3, 33, 139].

Despite the variety of attributes, we have considered, our scope has been restricted. A more extensive
investigation on the topological effects should be carried out. The use of continuous systems, such as
Lorenz, or oscillators as Kuramoto in each node also seems a natural add-on of this work. We also have
not considered soft computing techniques, such as interval arithmetic, to measure the error propagation.
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10 E. G. NEPOMUCENO AND M. PERC

(a) (b)

(c) (d)

(e) (f)

Fig. 4. Chaos suppression of the node with highest degree in the network of coupled logistic map. Here, we present the simulation
using different number of interval extensions, from 1 to 6. In other words, m = 1, 2, . . . , 6. Equations (7) to (11) have been adopted.
Although, Eq. (13) is equivalent to (1), the average of interval extensions works as a reduction of the variance in the simulation.
(Panel d) looks period 4, but a close analysis reveals a no periodic behaviour. (Panel g), on other hand, shows a period 8, which is
a clear case of chaos suppression.
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COMPUTATIONAL CHAOS IN COMPLEX NETWORKS 11

To the best of authors’ knowledge, this is the first time that computational chaos and chaos suppression
have been observed in complex network. Lorenz [5] has been realistic in saying that ‘in working with a
simple system one generally affords to avoid it by making τ [step size] very small. When a system has
many variables, however, economy may demand a larger τ .’ This is even more so true in working with
complex networks [132] or network of networks [140].
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52. Levnajić, Z. & Tadić, B. (2010) Stability and chaos in coupled two-dimensional maps on gene regulatory
network of bacterium. Chaos 20, 033115.

53. Li, T.-Y. & Yorke, J. A. (1975) Period three implies chaos. Am. Math. Mon. 82, 985.
54. Iserles, A. & Stuart, A. M. (1992) Unified approach to spurious solutions introduced by time discretization.

Part II: BDF-like methods. IMA J. Numer. Anal. 12, 487–502.
55. Corless, R. M. (1994) What good are numerical simulations of chaotic dynamical systems? Comput. Math.

Appl. 28, 107–121.
56. Lozi, R. (2013) Can we trust in numerical computations of chaotic solutions of dynamical systems? Topology

and Dynamics of Chaos: In Celebration of Robert Gilmore’s 70th Birthday (C. Letellier & R. Gilmore eds).
London: World Scientific, pp. 63–98.

57. Vadillo, F. (1997) On Spurious Fixed Points of Runge-Kutta Methods. J. Comput. Phys. 132, 78–90.
58. Palmore, J. (1995) Chaos, entropy and integrals for discrete dynamical systems on lattices. Chaos Solitons

Fractals 5, 1397–1418.
59. Grote, K. & Meyer-Spasche, R. (1998) Euler-like discrete models of the logistic differential equation.

Comput. Math. Appl. 36, 211–225.
60. Letellier, C. & Mendes, E. M.A. M. (2005) Robust discretizations versus increase of the time step for chaotic

systems. Advances in the Applications of Nonstandard Finite Difference Schemes (R. E. Mickens ed.). Atlanta:
World Scientific, pp. 459–511.
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D. & Torres, S. (2010) Handbook of Floating-Point Arithmetic, vol. 7. Boston: Birkhäuser Boston.
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