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ARTICLE INFO ABSTRACT

Keywords:
Ovarian cancer

Early detection of ovarian cancer is crucial for a good outlook. Different machine learning methods have
already proven useful to that effect, but using many features and samples often yields a complex structure
of classifier algorithms. This study investigates the effect of four different manifold learning methods prior
to well-known classification algorithms to reduce the number of features and compares the achieved results
with the well-known principal component analysis method. The NCI PBSII dataset, which consists of 253
samples with 15154 features, is used in this study. We tested nine distinct classifiers: k-nearest neighbors,
decision tree, support vector machines, stochastic gradient descent, random forest, multi-layer perceptron,
Naive Bayes, logistic regression, and AdaBoost. Among these classifiers, the logistic regression gives a maximum
of 99.2% accuracy using these features. These classifiers were rerun for five distinct reduced feature sets
obtained using principal component analysis, Multidimensional Scaling, Locally Linear Embedding, Isometric
Feature Mapping, and t-Distributed Stochastic Neighbor Embedding methods. Among these feature reduction
methods, Locally Linear Embedding hit the maximum classifier performance five times (of nine classifiers)
with an average of 15.4 components. Both the logistic regression classifier with 28 Multidimensional Scaling
components and the stochastic gradient descent classifier with 30 Locally Linear Embedding components
achieved the maximum accuracies of 99.8%. On the other hand, the commonly used principal component
analysis resulted in a maximum of 99.7% accuracy using stochastic gradient descent with 30 principles. In
conclusion, although principal component analysis is the most commonly used feature reduction method, the
Locally Linear Embedding (a manifold learning method) may give higher classifier performances with fewer
components in the diagnosis of ovarian cancer.

Feature reduction
Manifold learning
Principal component analysis
Machine learning

1. Introduction

Ovaries are primary female reproductive organs that also play roles
in hormone-secreting and egg-production [1]. Ovarian cancer is one of
the most frequent gynecologic cancers, also responsible for the high
mortality rate for cancer-associated deaths among women [2]. There
are many factors for ovarian cancer generation and genetic factors
are one of the most important ones [3]. According to the data of
the American Cancer Society, the survival rate for ovarian cancer is
44% [4]. According to American Institute for Cancer Research [5],
new 295,414 cases were diagnosed globally in 2018. In addition, the
economic burden of ovarian cancer was given an average of $140,000
per patient for a year in 2020 [6].

Late diagnosis brings patients to advanced stages of the disease and
causes higher mortality rates [3]. Several factors, including menarche

and menopause ages, play an important role in the diagnosis of ovarian
cancer. Transvaginal ultrasound is the primary diagnostic tool in the
diagnosis, while symptoms rarely help to diagnose [7]. In September
2009, the Ovarian Triage Test, which measures the levels of biochem-
ical markers, was approved [7]. Breastfeeding, pregnancy, and the use
of contraceptive pills are protective factors [8]. But the use of birth
control pills may suppress these markers, which may cause the early
diagnosis a challenging issue.

In recent decades, pattern recognition methods have yielded suc-
cessful results in different application areas [9,10] including accurate
diagnosis of many diseases [11-15]. Researchers used various pattern
recognition algorithms for feature extraction, feature selection, feature
reduction, and classification for this purpose [16]. For example, Talbi
and colleagues used Support Vector Machine (SVM) with optimization
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methods of the Genetic Algorithm (GA) and the Particle Swarm Op-
timization (PSO) to classify ovarian cancer patients from a publicly
available dataset at PBSII Data, which includes proteomic patterns in
serum. They achieved a maximum classifier accuracy of 99.44% [17].
Rahman and colleagues used five different classifiers (Fine Trees, SVM,
K-Nearest Neighbors (KNN), Ensemble Learner, and 15-Neuron multi-
layer perceptron (MLP)) with the Taguchi method from the same
dataset. They achieved classifier accuracies of 88.75% for Fine Trees,
97.20% for Support Vector Machines, 96.80% for K-Nearest Neighbors,
97.60% for Ensemble Learner, and 98.70% for 15-Neuron Multi-Layer
Perceptron [18]. Yasodha and Ananthanarayanan used Self-Organizing
Maps and Immune Clonal Selection algorithms for feature selection
over the same data. They achieved classifier accuracies of 71% for Sup-
port Vector Machines, 85% for Multi-Layer Perceptron, 75.6% for Feed
Forward Neural Network (FFNN), 87.3% for Radial Basis Function Net-
work (RBFN), 93.21% for General Regression Neural Network (GRNN),
and 98.23% for Grammatical Evolution Neural Networks (GENN) [19].
Basegmez and colleagues used three classifiers with two feature selec-
tion algorithms over the same data. They reported classifier accuracies
of 98.81% for Support Vector Machines, 95.65% for Decision Tree
(DT), and 98.88% for Random Forest (RF) [20]. Demircioglu and Bilge
investigated the Fisher Correlation Score (FCS) and Welch T-Test (WTS)
prior to K-Nearest Neighbors and Support Vector Machines classifiers.
They reported a classifier accuracy of 100% [21]. Liu and colleagues
examined the effect of high-resolution and low-resolution datasets of
ovarian cancer. They reported the classifier accuracy of 100% for the
Support Vector Machines classifier with the Dataset Wavelet method.
They achieved this accuracy using the Principal Component Analy-
sis (PCA) and Linear Discriminant Analysis (LDA) together from the
low-resolution dataset [22]. Ubaidillah and colleagues also reported
classifier accuracies of 78% for Multi-Layer Perceptron and 64% for
Support Vector Machines [23]. Li and Ramamohanarao tried to de-
tect ovarian cancer by using the ensemble decision tree and Support
Vector Machines in their study in 2004 [24]. Liu and colleagues in-
vestigated two feature selection methods of the Fast Correlation-Based
Filter (FCBF) and Procrustes Analysis (PA) prior to Support Vector
Machines classifier [25]. Gao and colleagues tested some optimization
methods combined with the Support Vector Machines classifier [26].
Yesilbas and Guven investigated the effect of the Principal Component
Analysis method with the Multi-Layer Perceptron classifier in the detec-
tion of ovarian cancer was investigated [27]. Belciug and Gorunescu
examined multiple cancer datasets and tested the results using six
different classifiers [28]. They reported Adaptive Single-hidden layer
Feedforward Neural Network (aSLFN) as the most successful classi-
fication method for ovarian cancer diagnosis. Belciug and Ivanescu
compared different cancer datasets using Bayesian initialization of
extreme learning machine (BiELM) and ELM classifiers [29]. They
reported that the BiELM classifier overcomes the ELM classifier. Al-
Murad and Hossain investigated two new feature selection methods
of Evolutionary Non-Dominated Radial Slot Based Algorithm (ENORA)
and Consistency Subset evaluation (CSE), and they tested Multi-Layer
Perceptron classifier [30]. In addition to these conventional machine
learning algorithms, deep learning methods have been investigated. For
example, Kilicarslan and colleagues used a hybrid machine learning
model based on the Convolutional Neural Network (CNN) method [31].
They added a dimension reduction layer that uses the Relief method
to the model. Wu and Banzhaf used deep learning methods in their
study [32]. They compared a few optimization methods and achieved
a maximum classifier accuracy of 96.22% using the Optimal Recurrent
Neural Networks (ORNN) classifier with the self-organizing-maps-based
feature selection. Along with these, there are also articles [33,34]
investigating the importance of features using various machine learning
algorithms.

As summarized above, there are many machine learning methods
were evaluated for the detection of ovarian cancer. Most of these stud-
ies relied on complex classifier architecture since they used all features
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or selected features inefficiently. Principal Component Analysis is one
of the commonly used feature reduction methods. We investigated
four new feature selection methods based on manifold learning. To
show the effect of these methods, we evaluated nine different classifier
algorithms using six different feature sets of all features, reduced fea-
tures via Principal Component Analysis, and reduced features via four
manifold learning methods in this study.

2. Materials and methods
2.1. Data acquisition

NCI PBSII data is one of the ovarian cancer datasets which contains
a list of women’s data that have the maximum risk factor. The dataset
includes 91 normal subjects and 162 patients with ovarian cancer.
Each sample in the dataset covers chemical information, intensity,
and magnitude, which equals to the total of 15154 features [19].
Detailed information can be obtained from https://data.mendeley.com/
datasets/jbjd5fmggh/2.

2.2. Data transformation using Principal Components Analysis (PCA)

Principal Component Analysis is a multivariate statistical trans-
formation technique to eliminate similarity between variables. It cre-
ates new linearly-independent perpendicular variables. The number of
these new variables is the system parameter, covering the percentage
ratio of the variance of the initial variables. Each new variable is
called the principal component. Detailed information and mathematical
expressions can be found in a well-known book [35] and a recent
article [36].

2.3. Data transformation using manifold learning methods

2.3.1. t-Distributed Stochastic Neighbor Embedding (t-SNE)

t-Distributed Stochastic Neighbor Embedding is a tool for visualizing
high-dimensional data. While t-Distributed Stochastic Neighbor Embed-
ding converts similarities between data points into joint probabilities, It
tries to minimize the Kullback-Leibler distinctions between these prob-
abilities of the low-dimensional embedding and high-dimensional data.
t-Distributed Stochastic Neighbor Embedding has a non-convex cost
function. In other words, different results can be achieved with each
initiation. This method has several advantages over existing techniques:
Describe the structure on a single map at many scales, uncover data in
multiple and different manifolds or clusters, reducing the tendency in
the center to crowded spots.

The t-Distributed Stochastic Neighbor Embedding method is a vari-
ation of the Stochastic Neighbor Embedding method. This variation
preserves the local structures of the data in lower dimensional space
and reveals an important global structure [37]. Using the same for-
mulation as SNE for high-dimensional space, t-Distributed Stochastic
Neighbor Embedding uses the formula in Eq. (1) for the output space.
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2.3.2. Multidimensional Scaling (MDS)

Multidimensional Scaling is a statistical analysis that aims to graph-
ically display the multidimensional data. The data is formed as a result
of measuring the ‘n’ unit in terms of the ‘p’ variable, in a way that
preserves the binary similarities between the units [38]. In Multidimen-
sional Scaling, a graphical representation of the units can be provided
based on the similarities between the units, as well as the graphical
representation of the variables based on the similarity between the
variables.

Multidimensional Scaling can also be defined as a dimension reduc-
tion technique. It provides a graphical representation of multidimen-
sional data by placing similar units close to each other and dissimilar
units far from each other with a non-technical point of view. To provide
a graphical representation of multidimensional data, size reduction
is performed in a way that preserves similarity in lower dimensions.
Moreover, Multidimensional Scaling analysis is widely used as statisti-
cal tool in the visualization of multidimensional categorical data, as it is
based on the similarities between units or variables. Multidimensional
Scaling is a technique that creates a map showing the relative posi-
tions of many objects and tabulates the distances between them. The
map can be one-dimensional or multidimensional. A table of distances
is known as the proximity matrix. There are two methods to solve
Multidimensional Scaling, metric (classical) and non-metric. Classical
multidimensional scaling (CMDS) attempts to generate original metrics
or distances. However, non-metric multidimensional scaling (NMMDS)
tries to construct sequences of distances, as it only knows that degrees
of distances exist [39].

To explain the basics of Classical multidimensional scaling, it will
be useful to understand the method of Torgerson (1952), one of the
pioneers of this technique. In Torgerson’s algorithm, a distance matrix
D assumes that a configuration of X dimensions approximates the inter-
point distances n (n = 1, 2, or 3) in a low-dimensional space. Briefly,
the elements dij make up the distance matrix D can be calculated from
X using the formula:

n
Z(xik = Yir)?
k=1

2.3.3. Isometric Feature Mapping (ISOMAP)

Unlike Principal Component Analysis, isometric feature mapping
(ISOMAP) is a nonlinear dimension (feature) reduction method. Iso-
metric Feature Mapping attempts to map points on a high-dimensional
nonlinear manifold to a lower-dimensional set of coordinates. In addi-
tion, Isometric Feature Mapping is powerful when dealing with high
signal-to-noise ratio (SNR) systems. Isometric Feature Mapping can
be used in two ways: visualization and classification. The steps for
processing high-dimensional data using Isometric Feature Mapping can
be summarized as follows [40]:

3

» Step 1: Neighborhood graph

Construct a Neighborhood plot for all data points or the adjacent
matrix from the dataset. In this step, it is necessary to identify
the neighbors in the ‘M’ manifold. There are two methods for
this. The first one is the maximum Euclidean search distance. In
this method, any point connects to all points around it with a
small radius of e. The second one is to use the nearest neighbor ‘k’
number. Neighborhood relations are created as a weighted graph
on data points. The weight edges between adjacent points are de-
fined as d, (i, j). Fig. 1 shows how to create a local Neighborhood
graph.

Step 2: Calculation of geodetic distances

The G graph consists of small jumps. All geodetic distances d;(i, j)
between all points in the ‘M’ manifold are approximated by
combining the small Euclidean distances. Then, the shortest path
distance dg;(i, j) calculated on graph G. Fig. 2 shows the estimate
of dg(i, j) based on Isometric Feature Mapping.

Step 3: Downsize

For minimization, the Multidimensional Scaling technique is ap-
plied to graph distance matrix dg;(i, j).
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Fig. 2. Estimation of d(i, ) based on ISOMAP according to Geodesic and Euclidean
distances.

2.3.4. Locally Linear Embedding (LLE)

Local linear mapping or the Locally Linear Embedding (LLE) method
is a dimension reduction technique based on manifold learning. Mani-
fold learning is a newly developed technique for nonlinear dimension
reduction. The investigated data is assumed to be in an embedded
nonlinear manifold within the higher dimensional space [40]. Manifold
learning algorithms operate to uncover these parameters to find a
low-dimensional representation of the data.

The Locally Linear Embedding algorithm was first described by
Roweis and Saul (2000) as a way to project complex high-dimensional
data into a much lower-dimensional space for analysis. The main idea
is to create local and linear models of the data from high-dimensional
space and maintain local distances during reduction to low-dimensional
space. The Locally Linear Embedding algorithm can be thought of as a
nonlinear manifold learning algorithm. A primary approach for provid-
ing relationships between high- and low-dimensional representations of
data points with the same locally linear relationships was obtained by
the nonlinear manifold learning algorithm. The Locally Linear Embed-
ding algorithm has been used for extremely high dimensional data, such
as face image data [41].

Locally Linear Embedding is an eigenvalue-eigenvector based
method. The Locally Linear Embedding method is based on simple
geometric concepts [38]. This algorithm reconstructs each data point
using only its nearest neighbors according to the Euclidean distance.
It also characterizes the low-dimensional local geometry of the data
points by finding linear coefficients.

2.4. Classification

There are many classification techniques used in supervised ma-
chine learning in the literature [42]. Among them, we used nine
well-established algorithms in this study. The following subsections
give brief explanations about these techniques. A detailed information
about these methods can be found in popular books [35].
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2.4.1. Stochastic Gradient Descent

Gradient descent (GD) is an extensively popular method in machine
learning and deep learning as an optimization tool. The gradient is the
slope, which is the derivative, of a given function. GD is an iterative
method used to find the value of parameters that minimize the cost
function. In the Stochastic Gradient Descent (SGD) algorithm, only a
few randomly selected samples from the dataset are used to minimize
the cost function instead of using all samples together [43].

2.4.2. AdaBoost

AdaBoost is a powerful ensemble classifier method that gives deci-
sions by utilizing several weak classifiers together. The final decision
is the weighted decisions of these weak classifiers. Weak classifiers are
slightly better predictors than random guessing, which provides more
flexibility in the design of the poor classifier set [44].

2.4.3. Random Forests

The Random Forests (RF) creates and trains a model consisting of
multiple decision trees [45]. In the classifier model, each inner node
represents the feature in the relevant sample, each branch represents
the test result, and the leaf node represents the class label. Each
decision tree is structured using randomly selected values from the
input data. If the original feature vector has m features, each tree uses
n randomly selected features. Decision trees (a forest) are allowed to
grow before exceeding their capacity. After the forest is trained, the
forest is evaluated using each test sample.

2.4.4. Naive Bayes

Naive Bayes algorithm is an easy implementation of the Bayes’ The-
orem [35]. It is a probability-based classification method. It calculates
the prediction for test samples based on joint probability of the train
data [46].

2.4.5. Decision trees

Decision trees have a structure of roots and leaves. There are
numerous different implementations of it depending on the tree struc-
ture [35]. Decision trees are often preferred classification techniques
due to their faster train and test processes. In addition, the results
obtained can be easily interpreted [47]. The training phase consists of
constructing a tree structure and obtaining classification rules [48].

2.4.6. Logistic Regression

The Logistic Regression estimates possible classes from categorically
distributed variables [35]. It is a regression (curve-fitting) method,
in fact, but the desired values are discrete numbers (i.e., categories)
instead of real-valued numbers [49].

2.4.7. K-Nearest Neighbors (K-NN)

K-Nearest Neighbors (KNN) is a simple classifier. It assigns a class
to the test sample as the majority class of its k neighbors [35]. Al-
though various distance measuring functions are available, the Eu-
clidean distance is probably the most used measure among them [16]:

4

distance(x,y) =

where x; and y; are the ith features of x and y, respectively.
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Fig. 3. Separation of two different labeled data with using geometric drawing of SVM.

2.4.8. Support Vector Machine (SVM)

The main advantage of Support Vector Machines is to solve the
classification problem by transforming it into an optimization problem.
In this way, the number of calculation processes will be reduced and
a faster solution can be obtained compared to other techniques [50].
Support Vector Machines is a member of linear binary class classifiers.
Classification of objects in datasets is mainly based on tagging objects
as —1 (first class) or +1 (other class). The labeling process varies
depending on the specification of the research [51]. Another important
function of Support Vector Machines is to create an optimal hyperplane
(linear decision boundary) that can distinguish differently labeled data
points and maximize the distance between the support vectors [52,53].
The mathematical explanation of Support Vector Machines can be
summarized as follows. According to Eq. (5); each entry point can
be displayed as “xi” and the labels can be expressed as “f(x)”, “w”
represents the normal and weight vector of the hyperplane, and “b”
represents the trend and constant value.

fx)=wx+b 5)

The geometric drawing of the linear Support Vector Machines model
is shown in Fig. 3 for the classification of two classes and two dimen-
sions.

Two parallel lines are called the boundary plane. The dark-colored
plane passing through the middle of the boundary planes and separat-
ing both planes equally is expressed as a hyperplane [54,55]. Support
Vector Machines uses core functions such as polynomial and Gauss to
create nonlinear adaptive data at higher dimensions where a linear
decision boundary can be found.

2.4.9. Multi-Layer Perceptron (MLP)

Multi-Layer Perceptron is one of the important approaches used
in machine learning. Multi-Layer Perceptron consists of three layers
(input layer, hidden layer, and output layer); each layer consists of
adaptive processing units that are interconnected and called neurons.
A neuron [56] is a general calculation unit that receives m inputs
and produces a single output. The parameter that distinguishes the
output of neurons is their connection weights. Each neuron in a layer
is connected to all neurons in a top layer with different weights. The
input layer multiplies the incoming data with weights and transmits
it to the hidden layer [57]. A transfer function is used to output from
these multiplication results collected in the hidden layer. An example
of the (m = 2) Multi-Layer Perceptron architecture is shown in Fig. 4.

Each neuron in the Multi-Layer Perceptron in the entry and latent
layer is connected to the neurons of the next layer which is the classical
neural network structure. In the Multi-Layer Perceptron architecture,
the number of hidden layers can be increased if necessary [35]. Calcu-
lating the number of parameters required to train a network containing
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Fig. 4. General structure of Multi-Layer Perceptron architecture with using artificial neurons.

L layers and N neurons in each layer can be a difficult problem.
Working with a large stack of parameters can result in an untrained
network, although it is not practical. Deep learning networks have been
proposed to tackle such problems.

2.5. Performance evaluation

The commonly used performance evaluation metrics are the accu-
racy (ACC), the area under the curve (AUC), sensitivity (SEN), speci-
ficity (SPE), and Fl-score [16,35]. The dataset is divided into two
groups, train and test data, to prevent the classifiers from memorizing
the dataset instead of learning. The classifier parameters are deter-
mined with the train data where classifier performances are estimated
over the test data. In the literature, there are many validation methods
to split the dataset: 70% for training and 30% for testing [18,23,30,31],
40% for training and 60% for testing [21], 90% for training and 10%
for testing [27,32], leave-one-out method [16], three-fold method [25],
five-fold method [20], and ten-fold method [17,22,24,28,29]. On the
other hand, some studies ignored this rule and used all data for training
and testing [19,26]. In this study, we preferred splitting dataset as 70%
for training and 30% for testing. In addition, we iterated each classifier
algorithm ten times and averaged the classifier success measures to
reduce the effect of randomness in classifier performances.

3. Results

In this study, a classification study was carried out for the diagnosis
of ovarian cancer using the Orange data mining tool program.

Firstly, we applied nine classifier methods to dataset. These classi-
fiers are AdaBoost, Multi-Layer Perceptron, Logistic Regression, Naive
Bayes, Decision Tree, Random Forest, k-Nearest Neighbors and Support
Vector Machines are examined. We used the Classification widgets in
the program for this. All classifiers were used in default mode. The
entire dataset was used as training data.

Secondly, we applied Principal Component Analysis using the Pre-
process widget. Then, same classifiers were tested and classifier per-
formances were saved, Similarly, we applied four distinct manifold
learning methods instead of Principal Component Analysis using Man-
ifold Leaning widget. Thus, same classifiers were tested and classifier
performances were saved.

Parameters are determined by the user through the program inter-
face while using manifold methods. In this study, The Principal Com-
ponent Analysis (torgerson) method was chosen as the initialization
instead of the random initialization when using the Multidimensional
Scaling technique. The maximum number of iterations is set to 300 in
Multidimensional Scaling technique. In the Locally Linear Embedding
algorithm, ‘standard’ was chosen as the method. In this method, the
number of neighbors and maximum iterations were determined as 100.
In the Isometric Feature Mapping method, the number of neighbors was
set to 100. In the t-Distributed Stochastic Neighbor Embedding method,

outputs were obtained after the metric was set as Euclidean, perplexity
as 30, early exaggeration as 12, learning rate as 200, maximum itera-
tions as 1000 and initialization as Principal Component Analysis. The
highest accuracy were achieved using these parameters.

As mentioned in the article titled ‘A Python toolkit for dimensional-
ity reduction quality assessment’ [1], a similar accuracy was obtained
using less data, without using the entire dataset, by using the Principal
Component Analysis method. As stated in the article, ‘The first 5 PCs
hold 78.7% of the total original information’ [58]. We observed this
situation in orange data mining tool.

According to the Principal Component Analysis, 86.9% of the orig-
inal information was hold in the first 10 components. The first 70
components represent 98% of the information. The program provides
this information for the first 100 principal components.

The results we obtained before using Principal Component Analysis
are shown in Table 1. Then, to see the effect of Principal Component
Analysis, we increased the number of Principal Components one-by-one
and obtained the accuracy. Classification results from the first principal
component to the thirtieth principal component. Among the accuracy
we achieved without Principal Component Analysis, we achieved the
highest result came from Logistic Regression model. It is observed
that the accuracy increases when the number of principal components
increases.

4. Discussion

Many studies compared different classifier performances in the clas-
sification and diagnosing problems. Our accuracy is higher than many
studies. We achieved very high accuracy without applying any Feature
selection or feature extraction methods. The accuracy of other studies
are shown in Table 2. This dataset, which includes 15154 columns
and 253 rows, has been classified more quickly by using Principal
Component Analysis, which is a dimension reduction method. By using
only, the first 15 principal components, the success obtained from the
entire dataset has been achieved.

According to Table 1, 29th Principal Component has 99% accuracy
with using Multi-Layer Perceptron classifier. This accuracy was passed
over with using Stochastic Gradient Descent on the 30th Principal Com-
ponent and with using the Logistic Regression on the 17th Principal
Component. By looking at these table, we can comment that Sup-
port Vector Machines, Multi-Layer Perceptron, Logistic Regression and
Stochastic Gradient Descent outperform other classifiers when looking
at the first 30 components. These classifiers achieved a accuracy of
close to 100% and kept their success stable from low component to high
components. In general, accuracy for all classifiers increased rapidly
after the first 5 components and exceeded 80%. This leads us to the
idea that the first 5 components for this dataset carry meaningful
information for classification.

When we examine the classifier successes according to the Multidi-
mensional Scaling method, we see that the Logistic Regression model
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Table 1
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Maximum Classifier performances tested in this study using all methods for variable components. The number of features (or components) is
given in parentheses to achieve the maximum accuracies for the corresponding classifier.

Classifier Manifold learning methods
ALL PCA MDS LLE ISOMAP T-SNE
k-Nearest Neighbors 0.914 (15154) 0.933 (23) 0.934 (20) 0.962 (12) 0.909 (14) 0.932 (10)
Decision Tree 0.973 (15154) 0.896 (28) 0.892 (21) 0.910 (6) 0.884 (17) 0.909 (12)
Support Vector Machines 0.978 (15154) 0.994 (27) 0.992 (28) 0.996 (19) 0.965 (19) 0.941 (10)
Stochastic Gradient Descent 0.964 (15154) 0.997 (30) 0.993 (25) 0.998 (30) 0.984 (19) 0.930 (10)
Random Forest 0.974 (15154) 0.928 (16) 0.928 (6) 0.925 (12) 0.908 (9) 0.926 (10)
Multi-Layer Perceptron 0.956 (15154) 0.990 (29) 0.986 (12) 0.996 (9) 0.969 (13) 0.945 (10)
Naive Bayes 0.844 (15154) 0.916 (23) 0.906 (6) 0.937 (17) 0.902 (15) 0.880 (10)
Logistic Regression 0.673 (15154) 0.994 (17) 0.998 (28) 0.992 (28) 0.982 (19) 0.917 (5)
AdaBoost 0.916 (15154) 0.885 (6) 0.877 (5) 0.906 (6) 0.880 (6) 0.914 (5)
Average 0.951 (15154) 0.948 (22.1) 0.945 (16.7) 0.958 (15.4) 0.931 (14.5) 0.921 (9.1)
brings us to 99.8% success in the fastest way. It was observed that Table 2

99.8% success was achieved with Logistic Regression using the 28th
component and 99.3% success was achieved with Stochastic Gradient
Descent using the 25th component as seen in Table 1. Considering
the Logistic Regression classifier, it can be concluded that Multidimen-
sional Scaling is more successful than Principal Component Analysis.
In addition, four classifiers are more successful than other classifiers in
Multidimensional Scaling as in Principal Component Analysis.

When we examine the classifier accuracy according to the Locally
Linear Embedding method,we see that the Stochastic Gradient Descent
model brings us to 99.8% accuracy in the fastest way. It was observed
that 99.8% accuracy was achieved with Stochastic Gradient Descent
using the 30th component and 99.6% accuracy was achieved with MLP
using the 9th component as seen in Table 1. Considering the Stochastic
Gradient Descent classifier, it can be concluded that Locally Linear
Embedding is more successful than Principal Component Analysis. In
this method, unlike Principal Component Analysis, a high accuracy
could not be obtained with the Logistic Regression classifier. Isometric
Feature Mapping and t-Distributed Stochastic Neighbor Embedding
methods also were examined but these methods are more slowly and
less successfully than Principal Component Analysis.

As can be seen in Table 1, ovarian cancer was tried to be detected
with 9 classifiers and 5 methods. The accuracy of these methods and
classifiers in detecting ovarian cancer were calculated by the Orange
Data Mining program. All these calculations were found by taking the
average of the accuracy obtained by running the program 10 times.
Using the K-NN classifier, a 96.2% accuracy was achieved with only 12
components in the Locally Linear Embedding method. It is seen that the
Locally Linear Embedding method is quite successful for this classifier
compared to other manifold methods. By using the Decision Tree
classifier, the components obtained with the Manifold methods could
not find better results than the existing features. The highest accuracy
obtained with this classifier is 97.3% and it was obtained using all
features. The Support Vector Machines classifier achieved a accuracy
of 99.6% using only 19 components obtained by the Locally Linear
Embedding method. In order for the Principal Component Analysis and
Multidimensional Scaling methods to achieve the same accuracy with
this classifier, it is necessary to use much more features. Although
the Stochastic Gradient Descent classifier achieved high results with
Principal Component Analysis and Multidimensional Scaling methods,
it achieved the highest accuracy with the Locally Linear Embedding
method. Stochastic Gradient Descent achieved the highest accuracy in
this study with 99.8% by using all 30 components that we obtained
with the Locally Linear Embedding method. Unlike other classifiers,
with the Logistic Regression classifier, it achieved the most successful
result with the Multidimensional Scaling method. Logistic Regression
achieved the highest accuracy in the study with 99.8% by using 28 com-
ponents that we obtained with the Multidimensional Scaling method.
As with the Decision Tree and Adaboost classifiers, the Random Forest
classifier achieves the highest success when all features are used. The
Multi-Layer Perceptron classifier achieved the highest result with the

Comparison Classifier Performances to Similar Studies from The Literature. Abbre-
viations of the algorithms are RNN (Optimal Recurrent Neural Networks), SOM
(Self-Organizing Map), MLP (Multi-Layer Perceptron), aSLFN (Adaptive Single-Hidden
Layer Feedforward Neural Network), BiELM (Bayesian Initialization of Extreme Learn-
ing Machine), CNN (Convolutional Neural Network), LR (Logistic Regression), SGD
(Stochastic Gradient Descent), IFS (Integrated Feature Selection), CBFS (Correlation
Based Feature Selection), PCA (Principal Component Analysis), MDS (Multi-Dimensional
Scaling), and LLE (Locally Linear Embedding).

Study Classifier Optimization Validation ACC
[23] SVM - 70% + 30% 0.64
[28] aSLFN - 10-fold 0.72
[23] MLP - 70% + 30% 0.78
[29] BiELM - 10-fold 0.80
[22] SVM Procrustes 10-fold 0.95
[32] RNN + SOM - 90% + 10% 0.96
[31] CNN - 70% + 30% 0.98
[18] MLP Taguchi 70% + 30% 0.98
[17] SVM PSO 10-fold 0.99
[301] MLP IFS 70% + 30% 0.99
This study LR MDS 70% + 30% 0.99
This study SGD LLE 70% + 30% 0.99
[20] SVM CBFS 5-fold 1.00
[21] SVM Fisher Score 40% + 60% 1.00
[24] SVM CS4 10-fold 1.00
[25] SVM PCA + LDA 3-fold 1.00
[27] MLP PCA 90% + 10% 1.00

Locally Linear Embedding method by using the least number of com-
ponents. A 99.6% accuracy was achieved using only 9 features. With
this result, the obvious superiority of the Locally Linear Embedding
method came to the fore. Naive Bayes classifier found the highest
accuracy as 93.7%. It obtained this accuracy using the Locally Linear
Embedding method. When the first 30 components were examined, it
was observed that the first 17 components reached this result. As a
result, it is seen that the Locally Linear Embedding method is more
successful in 5 out of 9 classifiers. As a result of all these comments,
it can be said that the Locally Linear Embedding method outperforms
the other methods which used in this study. We recommend using the
Locally Linear Embedding method instead of the Principal Component
Analysis method, which is used for easy examination of large datasets
in the medical field.
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