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A B S T R A C T

In this paper, we develop a novel machine learning-driven framework for solving large-scale zero-sum matrix
games by exploiting patterns discovered from the offline extended matrix norm method. Modern game theoretic
tools such as the extended matrix norm method allow rapid estimation of the game values for small-scale
zero-sum games by computing norms of the payoff matrix. However, as the number of strategies in the game
increases, obtaining an accurate value estimation through the extended matrix norm method becomes more
difficult. In this work, we propose a novel neural network architecture for large-scale zero-sum matrix games,
which takes the estimations of the extended matrix norm method and payoff matrix as inputs, and provides a
rapid estimation of the game value as the output. The proposed architecture is trained over various random
zero-sum games of different dimensions. Results show that the developed framework can obtain accurate value
predictions, with a less than 10% absolute relative error, for games with up to 50 strategies. Also of note, after
the network is trained, solution predictions can be obtained in real-time, which makes the proposed method
particularly useful for real-world applications.
1. Introduction

Game theory is a branch of science that consider conflict situations
from the perspective of mathematical approaches. The game theory
first appears during World War II as the result of the application of
mathematical approaches to some military problems [1]. Von Neumann
and Morgenstern are the first scientists formally presented the funda-
mentals of the game theory in 1944 by the book ‘‘Theory of Games
and Economic Behavior’’ [2]. In 1950, Nash presented the existence
of the equilibrium point for every game and he won the Nobel prize
for this study in 1994 [3]. Aumann and Schelling were awarded Nobel
Prize as well, in 2005, due to their contribution to the understanding
of competition and cooperation in game theory [4]. Then, the game
theory started to take the attention of the researchers.

In the course of time, the game theory developed theoretically and
found various application areas in real-life problems. Game theory
has a wide range of use such as in economics, international relations,
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distribution of resources, military decision, and so on. For example, in
1987, Kennedy investigated the fishery competition between Australia
and Japan with the help of game theory [5]. In 1991, Lemaire studied
the basics of cooperative game theory in his paper and presented some
insurance applications of these types of games [6]. In 1996, Yeung
presented a differential game model for the interchangeable grocery
product [7]. In 1999, Singh investigated the electric power allocation
by using game theory [8]. In 2000, Finus investigated international
environmental problems and presented an application considering Kyto
Protocol [9]. Sandler, in 2003, used the game theory to provide some
policy insights for the terrorism problem [10]. Raquel et al. in 2007
applied game theory to the conflict of groundwater in Mexico [11]. In
2008, Hennet and Arda used the game theory to evaluate the efficiency
of different types of contracts between the industrial partners of a
supply chain [12]. In 2010, Bailey et al. studied game theory in terms
of fishery and they concluded that the game theory provides insight
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into achieving cooperative fishery management [13]. Soriano, in 2013,
presented a brief literature review that considers the application of
game theory in engineering problems [14]. Do et al. in 2017, presented
the game theoretical methods used for privacy problems and cyber
security [15].

In 2018, İzgi and Özkaya presented a new numerical method, which
is called the matrix norm method (MN method), based on the matrix
norms of the payoff matrix, that provides an approximate solution
to a matrix game without solving any equations. In addition to this,
they proposed a pathway for the creation of a matrix game [16]. In
2018, Özkaya studied the MN method and its application comprehen-
sively [17]. Wang et al. improved an extended emotional model for
voluntary prisoner’s dilemma. They aim to show that the players do not
simply imitate pure strategies, but also imitate the emotional profiles
of one another instead [18]. In 2020, İzgi and Özkaya presented the
necessity of agricultural insurance by using game theory [19]. In the
same year, Babajanyan et al. applied the cooperative game theory to
physical systems for searching an equilibrium point for the thermal-
ization process by considering the entropy and negative energy as the
utilities of two different players of the model [20]. In 2021, Özkaya
and İzgi modeled an international crisis by using game theoretical
tools [21]. In the same year, Li analyzed the behavior of people wearing
masks by creating a game model [22]. Additionally, Özkaya and İzgi
investigated the effects of the individuals’ quarantine behavior on the
infection risks by developing game models with the real data of three
different stages of the pandemic [23]. Dhakal et al. developed an evo-
lutionary game model that investigates the effects of trust in social and
physical groups on cooperation and migration decisions. The authors
claimed that their work that analyzed the concepts of tags on trust
and migration by the evolutionary game theoretical approach is one
of the first studies in the literature [24]. Glaubitz and Fu studied social
distancing behavior by using the evolutionary game theory model in
the epidemiological process in the same year [25]. Also, Tripp et al.
studied a new evolutionary game theoretic framework modeling the
behavior and evolution of systems of coupled oscillators [26]. Han et al.
stated that it is beneficial to use multi-agent systems with the help of
evolutionary game theory for improving the understanding of collective
behaviors [27]. Chen and Fu analyzed the fairness and extortion by
the game theoretical tools [28]. In 2023, İzgi et al. presented the
extended version of the MN method, which is called the extended
matrix norm (EMN) method. They refined the boundaries of the game
value, and the boundaries for the extrema of the strategy set are also
improved, indirectly. Additionally, they demonstrated the convergence
of the MN/EMN methods [29].

In the last decades, game theory meets with artificial intelligence
(AI), especially reinforcement learning, and the number of studies
considering the combination of these subjects are increased. Tuyls and
Nowe presented a survey that considers the application of reinforce-
ment learning on the evolutionary game theory in terms of multi-agent
systems in 2005 [30]. Nanduri and Das in 2007 gave a non-zero
stochastic game model and RL-based solution framework that allows as-
sessment of market power in day-ahead markets [31]. In 2010, Sharma
and Gopal proposed a new approach that searches for synergizing broad
areas of RL and Game theory [32]. Nowe et al. in 2012 presented
the basic learning framework in terms of economic and game theory
and demonstrated the complexity of these systems. They also described
some algorithms for multi-agent reinforcement learning research [33].
Madani and Hooshyar, in 2014, presented a new methodology combin-
ing game theory and RL and use this method to develop optimal policies
for multi-operator reservoir systems [34]. In 2015, Xiao et al. studied
jamming games underwater and they suggested a power control strat-
egy by using Q-Learning [35]. In 2018, Pham et al. studied cooperative
and distributed reinforcement learning and game theoretic approaches
together for the field coverage of drones [36]. In 2021, Albaba and
Yıldız proposed a modeling framework for behavioral predictions of
2

drivers in highway driving scenarios by using reinforcement learning
and behavioral game theory [37]. Yazidi et al. provided a solution to
stochastic two-person zero games with incomplete information by using
learning automata [38]. Özdağlar et al. proposed a stochastic game
model for multi-agent learning in dynamical systems, especially the
agents play without coordination and are myopic [39]. In 2022, Wu
and Lisser used the Dynamical Neural Network approach to investigate
the saddle point of stochastic two-player zero-sum games [40]. Agarwal
et al. studied the mean-field equilibrium in the stochastic game by using
reinforcement learning [41]. İzgi et al. used the MN method and AI
together, and developed an AI-supported MN method, which provides
more accurate game value for matrix games [42]. The number of these
kinds of studies has increased in the literature over time.

Machine learning (ML) methods, especially neural networks [43,
44] have gained significant attraction in recent years. In particular,
researchers have used neural networks to replicate/clone existing op-
timization and search algorithms, such as branch and bound [45], to
improve their solution time and performance. The main motivation
behind cloning such algorithms is the fact while running the original
algorithm on large-scale problems might be very time-consuming, in-
ferring a neural network trained on the sample solutions of the original
problem is usually much more time efficient. For example, in [46],
authors use dimensional reducing techniques to improve the solution
time of their game theoretic algorithm, since the original algorithm
does not scale well to large-scale games, especially large-scale zero-sum
(LS-ZS) games. That being said, there is a limited amount of previous
work in using neural networks to improve solution times for game
theoretic problems [47].

In this work, we propose a novel methodology for improving the
scalability of the EMN method to LS-ZS games by training a neu-
ral network that exploits solution patterns discovered by EMN. The
contributions of the developed method can be summarized as follows:

• We develop a machine learning model that can predict game val-
ues based on past solutions. The model leverages inputs generated
with the EMN method, which solves games using matrix norms.

• We obtain value predictions with <10% absolute relative error,
for games with up to 50 strategies. Moreover, predictions are
obtained in real-time, which is particularly useful for real-world
applications.

The remainder of the paper is organized as follows: In Section 2, we
briefly present the EMN method and relevant theorems. In Section 3,
we demonstrate the machine learning-based solution prediction system
including the EMN method for LS-ZS matrix games. In Section 4, we
present some applications of the prediction system for small, medium,
and large-scale matrix games. The last section concludes the paper.

2. EMN method

In the literature, the solution of matrix games requires linear pro-
gramming methods and other methods or package programs. However,
MN and EMN methods do not need any solution of linear systems or
such systems even for LS-ZS matrix games. In this section, we present
the fundamental definition and theorems of the EMN method. We begin
with the definition of a row-wise/column-wise induced matrix. Next,
we present Advanced Main Theorem (AMT), which states the bounds
for the game value, and also state the Refined Main Theorem (RMT)
which provides an approach to obtain better bounds for the game value.
Then, we state a theorem giving the upper and lower boundaries for the
extrema of the strategy set. Additionally, we demonstrate the usage of
the EMN method step by step for small-scale zero-sum (SS-ZS) matrix
games. However, the EMN method can be used for LS-ZS matrix games
as well with some difficulties such as the distribution of the elements
of the strategy set. The methodology for the solution to the difficulty is

investigated in the following section as the main purpose of the study.
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Fig. 1. Neural Network Architecture for Prediction of Missing 𝑝 values. The payoff matrix 𝐴 (provided by the problem description) and 𝑝max , 𝑝min values (provided by the EMN
algorithm) are inputs to the neural network, which processes these inputs through several convolutional and fully connected layers to predict missing values of the 𝑝 vector along
with soft ranking of the order of its elements.
Definition 2.1 ([16,29]). Let 𝐴 ∈ 𝑅𝑚×𝑛 be a real-valued matrix, and
let ‖𝐴‖∞ be the sum of absolute values of the ℎth row’s entries, then
the matrix 𝐵 ∈ 𝑅(𝑚−1)×𝑛 is obtained by deleting ℎth row of the matrix
A is called a row-wise induced matrix of A. Similarly, let A∈ 𝑅𝑚×𝑛 be a
real-valued matrix, and let ‖𝐴‖1 be the sum of absolute values of the 𝑠th
column’s entries, then the matrix 𝐵 ∈ 𝑅𝑚×(𝑛−1) is obtained by deleting
𝑠th column of the matrix A is called a column-wise induced matrix of
A.

Theorem 2.2 (Advanced Main Theorem [29]). Let 𝐴 be a m×n payoff
matrix and 𝑣 be the game value for a two-person zero-sum game, and define
‖𝐴‖1̄ = min𝑗

∑

𝑖 |𝑎𝑖𝑗 |, ‖𝐴‖∞ = min𝑖
∑

𝑗 |𝑎𝑖𝑗 |. Then,

if |𝑣| ≥ 1, 𝑡ℎ𝑒𝑛 𝐿𝑣 ≤ |𝑣| ≤ 𝑈𝑣

and

if |𝑣| ≤ 1, 𝑎𝑛𝑑 |𝑣| ≠ 0, 𝑡ℎ𝑒𝑛 (𝑈𝑣)−1 ≤ |𝑣| ≤ (𝐿𝑣)−1

where 𝐿𝑣 = max
{

‖𝐵‖∞
‖𝐴‖∞

, ‖�̂�‖1
‖𝐴‖1

}

and 𝑈𝑣 = min
{

‖𝐴‖1̄, ‖𝐴‖∞

}

, and 𝐵 and

�̂� are the row-wise and column-wise induced matrices of 𝐴, respectively.

Theorem 2.3 (Refined Main Theorem [29]). Let 𝐴 ∈ R𝑚×𝑛 be the
payoff matrix with positive entries of a two-person zero-sum game. Then,
𝑝𝑚𝑖𝑛‖𝐴‖1 ≤ 𝑣 ≤ 𝑝𝑚𝑎𝑥‖𝐴‖1̄ holds where ‖𝐴‖1̄ = min𝑗

∑

𝑖 |𝑎𝑖𝑗 |, and 𝑝𝑚𝑎𝑥
and 𝑝𝑚𝑖𝑛 are the greatest and smallest elements in the mixed strategy set,
respectively.

By using AMT, RMT, and Proposition 2.7, (if required), in [16] we
can find an approximate game value for a matrix game. In addition
to these, İzgi and Özkaya presented lower and upper bounds for the
maximum and minimum elements of the mixed strategy set in [16] by
the following theorem.

Theorem 2.4 ([16,29]). Let 𝐴 ∈ 𝑅𝑚×𝑛 be the payoff matrix with positive
entries. Then, the boundaries for 𝑝𝑚𝑎𝑥 and 𝑝𝑚𝑖𝑛 which are the greatest and
the smallest elements of the mixed strategy set, respectively, are as follows,

𝑝𝑚𝑎𝑥 ≥ 𝐿 𝑤ℎ𝑒𝑟𝑒 𝐿 = 𝑚𝑎𝑥
{ 1 − 𝑣

‖𝐴‖1
𝑚 − 1

, 𝑣
‖𝐵‖1

}

and

𝑝𝑚𝑖𝑛 ≤ 𝑈 𝑤ℎ𝑒𝑟𝑒 𝑈 = 𝑚𝑖𝑛
{1 − 𝑣

‖𝐵‖1
𝑚 − 1

, 𝑣
‖𝐴‖1

}

where 𝐵 is the column-wise induced matrix of 𝐴.
3

In order to use the above theorems, we need to have a payoff matrix
with positive entries. However, we know that every matrix game can
be converted to a matrix game with nonzero entries by Proposition 2.7.
in [16]. Therefore, we can use the given theorem for all types of matrix
games.

Briefly, the EMN method can be applied to any size of matrix games
by pursuing the following steps:

1. Use AMT and obtain an interval containing the game value.
2. Choose the midpoint of the interval as the dummy game value

for simplicity.
3. Use Theorem 2.4 and find an upper and lower bound for the

minimum (𝑝𝑚𝑖𝑛) and maximum (𝑝𝑚𝑎𝑥) elements of the mixed
strategy set, respectively.

4. Use RMT to update a new interval for the game value and select
a dummy game value as in Step 2.

5. Repeat Step 3 to obtain better bounds for 𝑝𝑚𝑎𝑥 and 𝑝𝑚𝑖𝑛.
6. Create the proper mixed strategy set by considering the basic

principles of the probability theory and the bounds.
7. Evaluate the approximate game value, 𝑣𝑎𝑝𝑝.

These steps represent a general flowchart of the EMN method to
matrix games that are used throughout the analyses being considered
in this paper.

3. Machine learning based solution prediction system for EMN to
LS-ZS matrix games

In general, it is hard to obtain the analytic solutions of the LS-ZS ma-
trix games rather than SS-ZS matrix games due to the natural structure
of the matrix games. Therefore, LS-ZS matrix games are not preferred
to model most of the problems directly although they could reflect
or realize the real-life problem better than the SS-ZS games. Because
of this difficulty, scientists started working on dimension reduction or
other numerical techniques for the LS-ZS matrix games to ease the
problem in the literature. For instance, Li et al. tries to solve relatively
large-scale matrix games by using the dimension reduction technique to
overcome the issue. In this context, they modeled an air vehicle combat
as 16 × 12 matrix and analyzed it by using the dimensionality reduction
method. They compared their results to different methodologies [46].

On the other hand, it is clear that the EMN method seems useful
for zero-sum (and also non-zero sum) matrix games [16,29] but it
is not very practical for LS-ZS matrix games due to the difficulty of
the proper distribution of the elements of the mixed strategy set. In
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Table 1
Value prediction error of the developed models across different game sizes and the number of training samples. It can be observed
that as the size of the games increases, the average prediction error on both training and test sets get worse, since the model needs
more samples to fit to the data on higher dimensional problems. On the other hand, for a fixed game size, increasing the number of
samples improves the error rate on the test set significantly, whereas the error rate on the training set only increases slightly. These
results reinforce that there is indeed a learnable pattern between the structure of the payoff matrix and the game value, which can
be discovered by using machine learning algorithms with appropriate architectures.
Number of games
used for model
development

Value prediction error
on training games (80%
of all games)

Value prediction error
on test games (20% of
all Games

Size of games 5 × 5 10 × 10 50 × 50 5 × 5 10 × 10 50 × 50

500 4.20% 4.90% 7.30% 33.20% 36.30% 40.30%
1000 4.70% 5.70% 6.20% 10.10% 12.10% 32.10%
2000 5.10% 6.10% 10.10% 6.20% 8.10% 28.10%
10000 5.20% 8.20% 11.90% 5.60% 9.10% 14.70%
20000 5.30% 9.30% 13.10% 5.50% 9.70% 14.20%
50000 5.30% 7.20% 10.30% 5.50% 8.40% 11.50%
100000 4.40% 6.40% 8.40% 5.20% 7.90% 10.20%
200000 4.60% 5.60% 8.20% 5.00% 6.10% 9.90%
500000 4.80% 5.80% 8.30% 4.90% 5.50% 9.90%
general aspects, it is obvious that when the matrix size increases, the
distribution of the elements of the strategy set becomes complicated
and requires more calculation and fortune. Therefore, we aim to use
Artificial Intelligence (AI) in order to annihilate the difficulty so that
we combine the EMN method and AI.

First of all, we develop a neural network that predicts the relatively
optimal distribution of the elements of the mixed strategy set that is
obtained by the EMN method of the game in this section. Then, for
the predictions, we provide only the extrema of the strategy set to the
machine to distribute the elements in the set properly. In other words,
we use the neural network to seek a suitable strategy set by using the
obtained information from the EMN method.

Here, our proposed architecture is displayed in Fig. 1. A forward
pass through the network works as follows; first, the payoff matrix of
the game is provided as an input. The network processes the payoff
matrix using convolutions layers and projects it into a latent space
vector. Next, this latent vector is concatenated with the 𝑝𝑚𝑖𝑛 and 𝑝𝑚𝑎𝑥
alues predicted with the EMN algorithm, and the network passes this
nformation from several dense and convolutions layers to predict two
utputs. The first output is the missing 𝑝 values, and the second output
s a probability matrix that predicts the probability of the location of
ach of the missing values. By taking the maximum column element of
his matrix, it is possible to reconstruct an approximate 𝑝 vector, which
an then be used to estimate an approximate value of the game.

. Applications and results

In this section, we present the corresponding algorithm for the
roposed method. First, we provide the matrix game creation algo-
ithm. Next, we give the algorithm for the proposed neural network
rchitecture. After that, we briefly mention our database. As a result of
his section, we present in detail our results for the solution of various
imensions of the matrix game and the performance of the neural
etwork architecture. We begin with presenting Algorithm 1 which is
eveloped to generate random matrix games in different sizes and solve
hem. In addition to these, the algorithm also includes the applications
f the EMN method for determining the extrema of the strategy sets for
he corresponding matrix games in order to obtain a dataset to train the
eural network model.

By conducting Algorithm 1, we generate and consider three dif-
erent sizes of matrix game, 5 × 5 (small scale), 10 × 10 (medium
cale), and 50 × 50 (large scale). For each size, we generate up to
×105 random payoff matrices. We reserve 80% of the sampled data to
rain the neural network model and use the 20% of data to check the
odel’s performance on unseen data. Moreover, architectural details of
4

he neural network portrayed in Fig. 1 is provided as follows:
Algorithm 1 Matrix Game Data Set Generator and conducting of the
EMN method
1: for 𝑖 = 1, 2,… , 𝑁 do
2: Generate 𝐴 = 𝑟𝑎𝑛𝑑𝑖([𝑥 𝑦], 𝑚, 𝑛)
3: Solve the matrix A by 𝑔𝑎𝑚𝑒_𝑠𝑜𝑙𝑣𝑒(𝐴) function and store in an

array
4: Evaluate the related norms and store in an array
5: while 𝑡𝑜𝑙 > 0.01
6: Compute 𝑣_𝑙𝑜𝑤𝑒𝑟, 𝑣_𝑢𝑝𝑝𝑒𝑟, and store the 𝑣_𝑑𝑢𝑚𝑚𝑦 in the array

𝑑𝑢𝑚𝑚𝑦𝑠𝑡𝑜𝑟𝑒
7: Calculate 𝑝_𝑚𝑖𝑛 and 𝑝_𝑚𝑎𝑥, and store in the array 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦 𝑠𝑒𝑡
8: 𝑡𝑜𝑙 = 𝑎𝑏𝑠(𝑑𝑢𝑚𝑚𝑦𝑠𝑡𝑜𝑟𝑒(𝑒𝑛𝑑) − 𝑑𝑢𝑚𝑚𝑦𝑠𝑡𝑜𝑟𝑒(𝑒𝑛𝑑 − 1))
9: end while

10: end for
where 𝑁 represents the number of the game desired, 𝑥 and 𝑦 are positive
integers with 𝑥 < 𝑦, m and n denotes the size of the matrix.

• The 𝑁 ×𝑁 payoff matrix is first normalized so that the training
data set has zero mean and unit variance. Next, 3 stacked convo-
lutional layers are applied on the matrix data, where each layer
has 3 × 3 filters and ReLu activation function. The number of
filters in each layer are 64, 128, 256 correspondingly. MaxPooling
is applied in between layers 1 and 2. After layer 3, a flattening
operation is applied to transform the output of layer 3 into a 1D
vector.

• The output of the convolutional layers is passed through 2 dense
layers, with output sizes 64, 32. These layers also have ReLU
activation.

• Next, the output of dense layers is fed to two different heads,
one for predicting the missing values of the 𝑝 vector, and the
other for estimating the relative order of the elements of the 𝑝
vector. The first head is a dense layer with 𝑁 − 2 output size
and linear activation. The second head is a dense layer with
𝑁 ×𝑁 output size, where each output column is passed through
a softmax activation.

• In the final layer predicted 𝑁−2 elements are fused with 𝑝𝑚𝑖𝑛, 𝑝𝑚𝑎𝑥
from the data set (note that these values are written to the
database by the EMN algorithm), and argmax layer is applied
upon the predicted order matrix to re-order the elements of the
fused 𝑝 vector. The predicted 𝑝 vector can be used for estimating
the value of the game. Finally, loss per sample is computed by
calculating the mean square error between the predicted game
value and the ground truth game value.
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Fig. 2. Changes in the value prediction error vs. number of samples used in model development across training and test sets. It can be seen that error on the test set can be
significantly reduced by increasing the number of samples (i.e. number of randomly generated payoff matrices), and the error reduction rate depends strongly on the size of the
game. Larger games require more samples to close the gap between training and test error. This result, also known as the curse of dimensionality, is a common occurrence in the
development of machine learning systems.
For training the network, we used the Adam optimizer with an
initial learning rate 10−3 and batch size of 32, and a validation split
of 10%. Each training instance was trained for 1000 epochs, however,
learning is terminated when the validation loss did not improve for 20
epochs.

Table 1 shows the algorithms’ game value prediction performance
across different game and dataset sizes. It can be seen that the neural
network model’s generalization performance improves greatly as the
number of training instances increase. In particular, for small and
medium instances, the network predicts the value of the game within
5%–6% of the actual game value. For the LS-ZS matrix games, the
average error is around 10%, which is still a remarkable performance
given the size of these games.

Figs. 2(a) and 2(b) proved an overview of how percentage error
changes as a function of the number of training samples, for differ-
ent game sizes. It can be observed from these figures that all error
rates decay consistently as the number of samples is increased, which
supports our hypothesis that a strong relationship exists between the
actual game value, pay-off matrix, and the 𝑝 values computed by the
EMN algorithm, which can be discovered by training machine learning
algorithms from past solutions. Secondly, we can see that the decay rate
of the error depends on the game size, as expected the bigger the size
of the game, it takes more samples to bring down the error rate to the
desired level.

Note that one of the main contributions of our work is, once the
neural network is trained for a specific problem size, the solution time
becomes constant in the sense that neural network (coupled with EMN
algorithm) will always predict the solution to the problem using the
same amount of computation. This is in contrast with some of the
existing works for solving large-scale games, such as [46], where the
solution time can change significantly based on the structure of the
problem.

5. Conclusions

In this work, we first present the EMN method and the correspond-
ing theorems in detail. We also provide the algorithm for the creation
process for any size of matrix games and the general procedure for the
5

EMN method. Then, we develop a machine learning model that can
help scale up the EMN method to obtain approximate values for LS-ZS
matrix games. Our model consists of a neural network that is trained
on a large number of random zero-sum matrix games and approximate
solutions offered by the EMN algorithm. We show that the proposed
methodology can obtain high-quality approximate value prediction for
LS-ZS matrix games. Finally, we present the comparison of the results
obtained for 5 × 5, 10 × 10, and 50 × 50 by tables and graphs. The
results indicate that we can possibly obtain better approximations of
the game values by training the neural network with the larger training
datasets as is expected in general. One of the main advantages offered
by our methodology is, after the training phase, solutions to matrix
games are obtained in constant time by performing inference on the
neural network, which makes our methodology applicable to real-world
problems with large matrices. For future work, we are planning to
extend our methodology to stochastic games and sequential games.
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