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A B S T R A C T

Steady-state visually evoked potentials (SSVEP) are stochastic and nonstationary bioelectric signals. Because of
these properties, it is difficult to achieve high classification accuracy, especially when many considered features
lead to a complex structure. We therefore propose a manifold learning framework to decrease the number
of features and to classify SSVEP data by comparing lower dimensional matrices with well-known machine
learning algorithms. We use the AVI-SSVEP Dataset, which includes stimuli at seven different frequencies
and 15360 samples per person. The SSVEP features are extracted from relevant and distinctive frequency-
domain, time-domain, and time–frequency domain properties, creating a total of 55 feature vectors. We
then analyze and compare five divergent manifold learning methods with respect to their performance on
nine different machine-learning algorithms. Among all considered manifold learning methods, we show that
the Principal Component Analysis has the best classifier performance with an average of 22 components.
Moreover, the Naive Bayes classifier with the Principal Component Analysis achieves the maximum accuracy
of 50.0%–80.95% for a 7-class classification problem. Our research thus shows that the proposed analytical
framework can significantly improve the decoding accuracy of 7-class SSVEP problems, and that it exhibits
notable robustness and efficiency for small group datasets.
1. Introduction

Brain-computer interface (BCI) is a computer-assisted system that
acquires brain signals via brain monitoring methods, and convert them
into commands [1]. These commands are communicated to an output
device to carry out desired actions. BCI systems, at first, must employ a
method for data acquisition to capture brain activities [2]. For this pur-
pose, Electroencephalography (EEG) is so popular among the numerous
methods reflecting brain activity [3]. Since EEG have many advantages;
such as ability to produce data promptly, ease of use, cost (cheaper
equipment), and disposable equipment, EEG has become a common
method to capture and measure brain activity for BCI applications [4].

Many BCI applications were developed and improved using EEG
control signals such as event-related potentials (ERP), visually evoked
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potentials (VEPs), and many others [5,6]. Among these control sig-
nals, VEP-based BCI systems show a reliable and robust performance
proved in many clinical tests from different laboratories throughout
the world [7]. Along side the mentioned advantages of EEG, VEP’s
high information transfer rate (ITR), high signal-to-noise ratio (SNR),
simplicity in configuration, and users’ shorter training time have led
VEP attract many researchers recently [8].

A variant to VEP is called Steady-State Visually-Evoked Potential
(SSVEP). Generally, SSVEP is a transient answer of the occipital region
that occurs after performing a short optical stimulus, which generates
consistent and small-scale amplitude VEP signals [9]. In other words,
SSVEPs are resonance phenomena that take place mainly in the visual
cerebral cortex when people’s visual attention focus on a light source
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that flashes above 4 Hz frequency [10]. SSVEPs also include a few
harmonic components, which are happened periodically [11,12].

Using the adopted approach in this study, to improve the efficiency
of the SSVEP-based BCI systems and to produce meaningful commands
from the acquired SSVEP data, it is crucial to use and analyze vari-
ous kinds of feature extraction methods, feature reduction methods,
and machine learning algorithms. Although many feature extraction
methods, feature reduction methods, and machine learning algorithms
have been offered for SSVEP-based BCI applications, it is challenging
to decide and pick the most efficient combination due to a lack of
comparison. It is also essential to obtain optimal features that help
achieving higher classifier performances. Therefore, it is vital to use
adjustable features and feature reduction techniques to facilitate the
subsequent operation of the classifier(s) [13].

In the early part of this century, many distinct manifold learning
methods were offered such as Multi-dimensional Scaling (MDS), Locally
Linear Embedding (LLE) [14], Isometric Feature Mapping (Isomaps)
[15,16], t-Distributed Stochastic Neighbor Embedding (t-SNE) [17,18].
The aforementioned feature reduction methods clarifies visualization
when data samples depend on manifolds and are involved under the
umbrella phrase of manifold-learning [4,19]. Manifold learning is a
framework for dimensional reduction, which mentions to the diffi-
culty of mapping high-dimensional data to low-dimensional data while
preserving as much of the original data quality as possible [20].

In this study, we applied state-of-the-art methods like; LLE, t-SEN,
ISOMAP for manifold learning, and conventional methods like; Prin-
cipal Component Analysis (PCA) and MDS, to observe the success of
dimension reduction methods comparatively. The proposed approach
was tested by using the features obtained in the time, frequency, and
time–frequency domains from the SSVEP data which were obtained
by giving stimuli at seven different frequencies (6, 6.5, 7, 7.5, 8.2,
9.3, 10 Hz). PCA, MDS, LLE, t-SEN, and ISOMAP feature reduction
methods were analyzed via the Orange Data Mining program. Then
without feature selection, new and fewer features were composed and
classified by the nine different machine learning algorithms (Stochastic
Gradient Descent, AdaBoost, Random Forests, Naive Bayes, Decision
Trees, Logistic Regression, K-Nearest Neighbors, Support Vector Ma-
chine, Multi-Layer Perceptron). In the final step, by comparing, it was
investigated which method(s) gives higher accuracy in classification
results. Ultimately, it is crucial to have more interpretable SSVEP-based
features that will lead to more efficient BCI design in terms of accurate
recognition rates and to learn more about the mental processes in that
BCI users control the system.

1.1. State of the art

In the study conducted by Aruna Tyagi and Vijay Nehra [21] in
2017, authors analyzed dimension reduction methods like Principle
Component Analysis (PCA), Linear Discriminant Analysis (LDA), Factor
Analysis (FA), Isometric Feature Mapping (ISOMAP) and Multi Dimen-
sional Scaling (MDS) methods on the dataset ‘‘Motor Imagery of BCI
competition IV’’ which is available and accessible on the Internet for
free. This data set includes EEG data obtained during both hand and
foot motor imagination. They used Artificial Neural Network (ANN)
classifier for classification. Using dimension reduction methods, they
obtained 0.2451, 0.1143, 0.2376, 0.2156, 0.2410 Mean square error
(MSE) values, respectively.

Wanzhong Chen et al. [22] conducted a study in 2020, using BCI
Competition II and III datasets. As dimension reduction method, the
authors suggested MDS and they used LDA classifier in the classifica-
tion stage. In their study, they also adopted and applied MDS, PCA,
Kernel Principal Component Analysis (KPCA), Locally Linear Embed-
ding (LLE), and Laplacian Eigenmaps (LE) methods for left-hand and
right-hand motor imagination classification. They obtained the features
with Flexible Analytic Wavelet Transform (FAWT). They achieved the
2

highest accuracy 95% using MDS and FAWT.
In 2016, Ming-ai Li et al. [23] carried out a brain-computer inter-
face study on a dataset that classified left and right hand movements
provided by ‘‘BCI Competition 2003’’. In this study, the researchers
propose the P. t-SNE (parametric t-Distributed Stochastic Neighbor
Embedding) method. They obtained the attributes using DWT(Discrete
Wavelet Transform). They compared the proposed method with the
MDS, PCA, KPCA, LLE and LE methods. Using these methods and
attributes, they achieved 94.1% success with the SVM (Support Vector
Machine) classifier.

In another study conducted in 2016, Egor Krikov and Mikhail
Belyaev [24] worked on the classification of left hand, right hand, legs,
and tongue movements using EEG signals. They applied CSP (common
spatial patterns), Isomap and PGA (principal geodesic analysis) meth-
ods on EEG data, which were acquired from 9 subjects. They used
the LDA method for classification. They achieved an average of 61%
success with the PGA method.

In 2019, Ming-ai Li et al. [25] compared many dimension reduction
methods, especially ISOMAP, LLE, LE and MVU, with the Landmark
version of Maximum Variance Unfolding (L-MVU). Using this method,
they achieved 89.64% success on the ’BCI Competition 2003’ dataset.

In the study of Muhammad Tariq Sadiq et al. [26] in 2021, di-
mension reduction methods were tested using 7 different classifiers.
One of the dataset they used contains EEG signals containing the right
hand-right foot activities of 5 subjects. In the other dataset, there are
EEG signals that contain the left hand and right foot activities of a
single subject. PCA, ICA (independent component analysis), LDA and
NCA (neighborhood component analysis) methods were tested on data
from different numbers (3,7,18) EEG channels. They found the most
successful result using 7-channel EEG signals. The success rate achieved
by applying EWT (empirical wavelet transform) and NCA methods
together is 100%.

In 2017, Ming-ai Li et al. [27] recommends the use of wavelet
packet decomposition (WPD) and supervised explicit isomap
(SE-isomap) methods on ’BCI Competition 2008 Datasets 2b’ in their
study. There are EEG recordings of right and left hand movements taken
from 9 people in the dataset. They extracted the feature using OWP
(optimal wavelet Packets). They compared the SE-isomap method with
PCA, MDS, LLE, which are dimension reduction methods. According
to the classification result they performed using K-nearest neighbor (K-
NN) (K=7), they achieved an average of 92.7% success with the method
they suggested.

In 2020, Ping Tan et al. [28] propose dimensionality reduction
mechanism (DimReM)- Evolutionary Algorithms (EAs) method in their
study using EEG data from BCI Competition III dataset IVa and BCI
Competition IV dataset IIb. In their study using two different datasets,
there are EEG recordings of 5 people in the first dataset and 9 people
in the second dataset. They used 3 different classifiers: K-NN, SVM and
Discriminant Analysis (DA). They preferred Evolutionary Algorithms
methods for feature selection. Binary Particle Swarm Optimization
(BPSO), Novel modified binary differential evolution (NMBDE), Ge-
netic algorithm (GA) are the Evolutionary Algorithms methods they
recommend for comparison. Finally, they show the superiority of their
proposed methods by comparing these methods with PCA, ICA, NCA,
variable-length PSO (VLPSO).

In 2004, Felix Lee et al. [29] classified EEG signals of left hand, right
hand, tongue and foot movements. EEG recordings were taken from
6 people with the experimental procedure they prepared. They tried
PCA, LLE and Isomap dimension reduction methods. They obtained the
evaluation results with the leave-one-out method. They concluded that
ISOMAP was more successful than LLE and PCA.

In 2006, John Q. Gan [30] conducted a BCI study having 3 subjects
with EEG recordings. The author converted 96 features obtained using
power spectral density (PSD) into lower-dimensional feature matrices
thanks to the dimension reduction methods PCA, LLE, Locality Preserv-
ing Projection (LPP) and Supervised PCA (SPCA). These matrices were
classified by LDA using the 3-fold cross-validation method. According
to the classification results of the three mental tasks, an average of
71.95% success was achieved with the LPP method. He stated that LPP

gave better results than SPCA and other methods.
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1.2. Contributions

The primary contributions of this research study are summarized as
follows:

• To affirm a flexible manifold learning framework for recognition
of 7-class SSVEP problem from either sufficient or small training
samples automatically,

• To present and perform the PCA, LLE, MDS, ISOMAP, and t-SNE
approaches for reducing the SSVEP feature matrix obtained from
the various and distinctive domains,

• To suggest correlation-based components for implicit selection of
the PCA, LLE, MDS, t-SNE, and ISOMAP, so that they can be used
as powerful biomarkers of SSVEP for 7-class problem findings,

• To investigate an appropriate and sustainable machine learning
model for the proposed features to recognize the SSVEP tasks,
and enhance performance success rate as compared with the
existing methods,

• To design an effective subject-independent expert 7-class SSVEP-
based BCI system.

In this study, we suggest a novel flexible framework and proved
alid results for the SSVEP signal that is efficient for small training
amples. Last but not least we proposed a solution to 7-class SSVEP
roblems, because in literature, generally, the high-performance solu-
ions are only for 2-class problems. For the accurate evaluation of the
uggested framework, we employed the Accuracy (ACC) metric.

.3. Organization

The rest of the paper is organized as follows: Materials and methods
sed in this study are described in Section 2. In addition, the adopted
ssessment criteria for experiments are explained in Section 2, as
ell. Section 3 describes the observations and presents the results of

he proposed approaches. Finally, it is summarized and concluded in
ection 4.

. Materials and methods

This study thoroughly consists of five steps as seen. These are Data
cquisition, Feature Extraction, Feature Reduction, Classification, and
CI Application, respectively. The operations performed in each step
re explained in detail in the sub-headings.

.1. Dataset description

In this study, open source data set called ‘‘AVI SSVEP Dataset’’ [31]
s adopted, which contains SSVEP signals acquired by Adnan Vilic in a
pecific setting. The data are composed of SSVEP measurements from 4
ealthy individuals staring at the flickering target, whose color changed
apidly from black to white, to trigger responses of signals at 7 different
requencies. Participants were composed of 3 men and 1 woman, for
hom age ranges from 27 to 32. AVI SSVEP data were acquired using
electrodes (the signal electrode is Oz, the reference electrode is Fz,

nd the ground is Fpz). These electrodes were placed by following
he international standard 10–20 system for electrode placement. In
ddition, the sampling frequency was 512 Hz.

During the experiment, participants have seated in front of an LCD
omputer monitor with a refresh rate of 120 Hz. In order to eliminate
he interference frequency (50 Hz), an analog notch filter was applied
o the data [31]. The stimulus is a flickering box at seven different
requencies (6.0, 6.5, 7.0, 7.5, 8.2, 9.3, and 10.0 Hz) shown on the
creen. The data set contains four sessions for each participant. In one
ession each trial lasts 30 s, and attendees take a tiny break between the
rials. Experiments for all attendees were repeated at least three times
or each frequency.
3

2.2. Feature extraction

SSVEP signals are usually recorded with a series of electrodes
ranging from 1 to 512 and a sampling frequency ranging from 4 Hz
to 100 Hz [7,9,10]. Therefore, a huge amount of data is collected
using such settings [11]. From data collected, extracting useful features
suitable for the signal structure is a crucial step in BCI design [32].
To this purpose, a feature extraction method should be adopted. In
this respect, Some studies [11–13,32,33] show that the selection of
an appropriate preprocessing and feature extraction method has more
impact on the final performance than the choice of a machine learning
algorithm. Many feature extraction techniques have been researched
and proposed for SSVEP-based BCI systems [34].

In this study, a total of 55 features were extracted from time, fre-
quency, and time–frequency domains. Firstly, the SSVEP time-domain
features are extracted from the original field of the EEG signal. These
features are based on the amplitude (e.g. average amplitude change
value, root mean square, interquartile ranges, etc.) and statistical
changes of the EEG signal (e.g., mean, variance, skewness, and kurtosis,
etc.) Secondly, SSVEP frequency-domain features were extracted from
the frequency domain representation of the SSVEP signal using a
Fourier Transform [35]. The relevant and distinctive SSVEP frequency
characteristics we detected are based on the spectral information
such as energy, variance and spectral entropy for each EEG rhythm.
These features explain how power, variance, and irregularity (entropy)
change in certain related frequency bands [36–38]. Last but not least,
using Db8 DWT function, SSVEP signals are subdivided into frequency
bands (delta, theta, alpha, beta, gamma), hence, the energy, entropy
and variance were calculated for each band. Every DWT frequency band
is associated with one or two EEG rhythms. Thus, a number of features
represented in the frequency bands were obtained [39].

2.3. Data reduction using principal component analysis and manifold learn-
ing methods

Following data extraction, data reduction is the next step to realize.
Data reduction’s objective is to explore a set of features with the least
number of elements that shall guide to optimal classification. To realize
that a data reduction method should be adopted among many. Data
reduction allows invalid data that is no good to classification to be
eliminated, thereby, enables the system to get the optimal classifier
performance from a designated system. While trying to get the opti-
mal classifier performance from the system, it is necessary to work
with fewer data describing some relevant features of SSVEP signals.
For this purpose, one of the most famous methods called Principal
Component Analysis and the manifold learning methods that forms up
the originality of this study are briefly summarized in the following
subsections.

2.3.1. Principal Component Analysis
Principal Component Analysis (PCA) is one of the linear dimension

reduction methods based on the covariance matrix of variables. The
main purpose of PCA is to keep the data set with the highest variance in
high-dimensional data, but to provide dimension reduction at the same
time. By finding the general features in the over-dimensional data, it
reduces the number of dimensions and compresses the data. It is certain
that some features will be lost with dimension reduction but the intent
is that these disappearing traits contain little information about the
population. Basically, PCA combines highly correlated variables to cre-
ate a smaller set of artificial variables, called ‘‘principal components’’,
that make up the most variation in the data [40,41].

First of all, in the PCA method, the average of the data set is found,
as seen in Eq. (1). Assuming we call our m*n-sized dataset matrix X,
m is number of feature, n is number of sample and 𝑖 shows us the row
ndex in 𝑥𝑖(𝑖𝜖[1, 2,… , 𝑛]).

𝐗 = 1
𝑛
∑

𝑋𝑖 (1)

𝑛 𝑖=1
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As a second step, the mean value is subtracted from each element
in the data set, and the covariance matrix(C) is calculated as seen
in Eq. (2).

𝐂 = 1
1 − 𝑛

𝑛
∑

𝑖=1
(𝑋 −𝑋)(𝑋 −𝑋)𝑇 (2)

Covariance is a measure of how much two variables change to-
gether. The covariance matrix is the expression of the covariances be-
tween the elements of a vector in a matrix. As a third step, eigenvalues
(𝜆) and eigenvectors(𝑉𝑘) are calculated using the covariance matrix as
seen in Eq. (3).

𝑑𝑒𝑡(𝜆𝐼 − 𝐶) = 0, (3)
(𝐶 − 𝜆𝑘𝐼)𝑉𝑘 = 0 (4)

After finding eigenvectors from the covariance matrix, the vectors
are ordered according to their eigenvalues. The vector with the highest
eigenvalue in the dataset is called the fundamental component of this
dataset. Even though discarding vectors with small eigenvalues causes
information loss, the dataset size is indicated as being smaller than
the first. If the PCA method is applied on an n-dimensional dataset,
n eigenvectors and n eigenvalues are obtained. The n-dimensional
dataset is expressed with a k-dimensional dataset by choosing the k
eigenvectors with the highest eigenvalues.

2.3.2. t-Distributed Stochastic Neighbor Embedding (t-SNE)
T-Distributed Stochastic (Random) Neighbor Embedding (t-SNE) is

an unsupervised, non-linear technique used primarily for data explo-
ration and visualization of high-dimensional data. It calculates the
probability that pairs of data points in high-dimensional space are
related and then chooses a low-dimensional embedding that produces
a similar distribution. In simpler terms, t-SNE gives you a sense or
intuition of how data is arranged in a high-dimensional space. It
was developed by Laurens van der Maaten and Geoffrey Hinton in
2008 [17].

The T-SNE algorithm calculates the similarity measure between
pairs of samples in high- and low-dimensional space. It then tries to
optimize these two similarity measures using a cost function. This is
done in 3 basic steps: In Step 1, similarities between points in high-
dimensional space are measured. Consider a bunch of data points
scattered in 2D space. For each data point (𝑥𝑖), a Gaussian distribution
is centered on that point. Then the intensity of all points (𝑥𝑗) in this
Gaussian distribution is measured. All points are then normalized. This
gives us a set of probabilities (𝑝𝑖𝑗) for all points. These probabilities are
proportional to the similarities. This means that if 𝑥1 and 𝑥2 data points
have equal values under this Gaussian circle, then their ratios and
similarities are the same, and hence there are local similarities in the
structure of this higher-dimensional space [17]. Step 2 is also similar
to Step 1, but instead of using a Gaussian distribution, a Student’s t-
distribution with one degree of freedom, also known as the Cauchy
distribution, is used. This gives us a second set of possibilities (𝑞𝑖𝑗)
in low-dimensional space. The Student t-distribution has heavier tails
than the normal distribution. Heavy tails allow better modeling of
long distances. In the last step, this set of possibilities is asked to
reflect as well as possible from the low-dimensional space (𝑞𝑖𝑗) to the
high-dimensional space (𝑝𝑖𝑗). We expect the two map structures to be
similar. The difference between the probability distributions of two-
dimensional spaces is measured using the Kullback-Liebler deviation
(KL). KL is an asymmetric approach that effectively compares 𝑝𝑖𝑗 and
𝑖𝑗 values.

.3.3. Multidimensional scaling (MDS)
Classical multidimensional scaling analysis, which is the metric

ultidimensional scaling approach, was proposed by Torgerson k.k.
952 [42]. In classical multidimensional scaling analysis, which is
4

lso called Principal Coordinates Analysis (PCoA) due to its similarity
to PCA, the distances between the units in the X data matrix are
determined by the Euclidean distance [43].

When working with quantitative variables, the most widely used
distance function for determining the distances between units is the
Euclidean distance function. The Euclidean distance between two units
is calculated as in the formula.

𝑑(𝑥𝑖, 𝑥𝑗 ) = {
𝑝
∑

𝑙=1
(𝑥𝑖𝑙 − 𝑥𝑗𝑙)2}

1∕2

(5)

Classical multidimensional scaling consists of the square distance
atrix 𝐷(2) and the centralization matrix H which is formed by squar-

ng each distance in the distance matrix D formed by the Euclidean
istance.

= −1
2
𝐻𝐷2𝐻 (6)

It is an approach based on the eigenvalues and eigenvectors of
the defined B matrix. The centralization matrix H is obtained by the
equation

𝐻 = 𝐼 − 𝑛−1𝐿𝐿𝑇 (7)

and with a unit matrix I and a vector L. The reduced coordinate system
is created by Eq. (8), in classical multidimensional scaling analysis.

𝑌 = 𝐴𝑑𝐿
1∕2
𝑑 (8)

2.3.4. Isometric Feature Mapping (ISOMAP)
The Isometric Mapping (ISOMAP) method is a graph-based, non-

linear dimension reduction method that aims to represent high-
dimensional data in a lower-dimensional coordinate system. With
principal component analysis and multidimensional scaling analysis,
effective results may not be obtained in data sets where data points
have nonlinear relationships. In order to solve this problem, it is pro-
posed the isometric mapping method [15]. This method is an extended
version of the classical multidimensional scaling method. According to
this method, Geodetic distance is used instead of Euclidean distance.
Geodetic distance is defined as the shortest curvilinear length between
two points along a manifold path on a surface.

Normally, Euclidean distance is used to calculate the similarity be-
tween two units. However, if the Euclidean length is used, the internal
geometry of the manifold becomes unprotected. Two points that are
similar in terms of Euclidean distance, i.e. close, actually may be far
apart, since their true distance may be the length of the path between
these points along the manifold [15].

In the Isometric matching method, which is one of the graph-
based dimension reduction methods, the points that are close after the
dimension reduction process remain close to each other. Long-distance
points keep their places at a distance, too.

The local linearity principle is used in the isometric mapping
method, and neighboring points are assumed to lie on a linear patch
of the manifold. Therefore, Euclidean distances for nearby points are
considered to accurately estimate geodetic distances. For remote points,
geodetic distances are estimated by adding adjacent distances on the
manifold. The algorithm of the isometric matching method is as follows:

• Step 1 Determine the nearest neighbors for all data points.
• Step 2 A weighted graph is created connecting each point to

its nearest neighbors, with nodes showing data points and links
showing distances between points.

• Step 3 In the generated neighborhood graph, their distances are
redefined, hence, the length of the shortest path between two
points.

• Step 4 Classical multidimensional scaling is applied to the new

distance matrix defined in step 3.
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Adjacent points are considered to have edges between them. The
weights of the edges, called 𝑑𝑥(𝑖, 𝑗) are assumed to be the Euclidean
distance between neighbors i and j. Under these two assumptions,
all data points are represented as nodes in a weighted G-graph. The
shortest paths named 𝑑𝐺(𝑖, 𝑗) in the weighted graph resembling the G
letter are calculated using the Floyd algorithm between all pairs of data
points. The calculated lengths are used as an estimate of the geodetic
distance called 𝑑𝑀 (𝑖, 𝑗) on the M manifold. Finally, dimension reduction
is performed by classical multidimensional scaling based on the nxn-
dimensional symmetric geodetic distance matrix 𝐷𝐺 = 𝑑𝐺(𝑖, 𝑗) between
all pairs of data points on the M manifold.

The isometric mapping method aims to reduce the size in a way
that preserves the geodesic distance matrix called 𝐷𝐺 between the data
point pairs. The error function is trying to be minimized in the isometric
matching method with the reduced-dimensional distance matrix called
𝐷𝑌 .

Isometric mapping finds the true dimensionality of nonlinear dis-
tances as long as sufficient data is provided. The success of the method
depends on the number of k and the radius 𝜖, which determine the
neighborhood. Since the isometric mapping method does not define a
mathematical function between the input and the output, it is one of the
disadvantages of the method that the whole process is repeated from
scratch when a new data point is added [44].

2.3.5. Locally Linear Embedding (LLE)
The LLE algorithm characterizes the low-dimensional local geome-

try of the data points by finding linear coefficients that reconstruct each
data point using only its nearest neighbors according to the Euclidean
distance. The error in re-weighting is also measured by Eq. (9).

𝐸(𝑊 ) =
∑

𝑖
|𝑥𝑖 −

∑

𝑗
𝑤𝑖𝑗𝑥𝑗 |

2
(9)

The j index in the equation shows the data points in the nearest k
neighborhood of the 𝑥𝑖 data point. Optimal weights in the error func-
tion are obtained using the least squares method under the constraint

∑

𝑗
𝑤𝑖𝑗𝑥𝑗 = 1 (10)

By fixing the optimal weights 𝑤𝑖𝑗 distances from the original dimen-
sion are represented in reduced dimension. The reduced-dimensional
representation of the original distances is accomplished by minimiz-
ing under the constraints of the quadratic objective function defined
by Eq. (11).

𝛷(𝑆) =
∑

𝑖
|𝑠𝑖 −

∑

𝑗
𝑤𝑖𝑗𝑠𝑗 |

2
(11)

1
𝑛

𝑛
∑

𝑖=1
𝑠𝑇𝑖 𝑠𝑖 = 𝐼 (12)

𝑛

𝑖=1
𝑠𝑖 = 0 (13)

The sparse eigenvalue–eigenvector approach can be used to solve
he minimization problem. Symmetrical and semi-positive nxn dimen-
ional sparse matrix for eigenvalue decomposition will be performed is
btained by Eq. (14).

= (𝐼 −𝑊 )(𝐼 −𝑊 )𝑇 (14)

The eigenvectors corresponding to the smallest nonzero eigenvalue
of the d matrix provide independent coordinates centered at the

rigin. The algorithm for the local linear mapping method is as follows;

• Step 1 Determine k for the neighborhood and the number of
dimensions d in the reduced coordinate system.
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• Step 2 For each 𝑥𝑖 point, the nearest k neighbor is determined. p
Table 1
All classifier performances were tested in this study using the Principal Component
Analysis method. The maximum classifier accuracies are shown in boldface for each
subject. Classifier performances are given as accuracies where the perfect accuracy is
1.00. Naive Bayes classifier gave the highest accuracies for all subjects where subjects’
features had been utilized using the principal component analysis method.

Classifier Subject 1 Subject 2 Subject 3 Subject 4 Average

k-Nearest Neighbors 0.17 0.15 0.24 0.14 0.18
Decision Tree 0.21 0.27 0.43 0.19 0.27
Support Vector Machines 0.38 0.42 0.38 0.33 0.38
Stochastic Gradient Descent 0.38 0.23 0.33 0.38 0.33
Random Forest 0.25 0.38 0.29 0.29 0.30
Multi-Layer Perceptron 0.25 0.38 0.33 0.24 0.30
Naive Bayes 0.58 0.50 0.81 0.71 0.65
Logistic Regression 0.17 0.31 0.14 0.19 0.20
AdaBoost 0.25 0.23 0.48 0.33 0.32

Table 2
All classifier performances were tested in this study using the t-Distributed Stochastic
Neighbor Embedding method. The maximum classifier accuracies are shown in boldface
for each subject. Classifier performances are given as accuracies where the perfect
accuracy is 1.00. Naive Bayes classifier gave the highest accuracies for almost all
subjects where subjects’ features had been utilized using the t-Distributed Stochastic
Neighbor Embedding method.

Model Subject 1 Subject 2 Subject 3 Subject 4 Average

k-Nearest Neighbors 0.21 0.19 0.24 0.19 0.21
Decision Tree 0.33 0.31 0.19 0.43 0.32
Support Vector Machines 0.17 0.27 0.05 0.24 0.18
Stochastic Gradient Descent 0.17 0.27 0.14 0.19 0.19
Random Forest 0.17 0.35 0.14 0.24 0.22
Multi-Layer Perceptron 0.17 0.38 0.10 0.33 0.24
Naive Bayes 0.25 0.42 0.48 0.48 0.41
Logistic Regression 0.21 0.23 0.10 0.19 0.18
AdaBoost 0.17 0.42 0.33 0.38 0.33

Table 3
All classifier performances were tested in this study using the Multidimensional Scaling
method. The maximum classifier accuracies are shown in boldface for each subject.
Classifier performances are given as accuracies where the perfect accuracy is 1.00.
Naive Bayes classifier gave the highest accuracies for almost all subjects where subjects’
features had been utilized using the Multidimensional Scaling method.

Model Subject 1 Subject 2 Subject 3 Subject 4 Average

k-Nearest Neighbors 0.25 0.35 0.14 0.29 0.26
Decision Tree 0.21 0.15 0.29 0.14 0.20
Support Vector Machines 0.25 0.46 0.29 0.14 0.29
Stochastic Gradient Descent 0.25 0.31 0.33 0.29 0.29
Random Forest 0.25 0.27 0.24 0.29 0.26
Multi-Layer Perceptron 0.13 0.42 0.24 0.19 0.24
Naive Bayes 0.54 0.46 0.67 0.48 0.54
Logistic Regression 0.25 0.27 0.14 0.14 0.20
AdaBoost 0.29 0.31 0.33 0.29 0.30

• Step 3 The weights of each point 𝑥𝑖 to its nearest neighbors
Equation is reconstructed with 𝑥 to calculate linear weights 𝑤𝑖𝑗 .

• Step 4 Equation xx and 𝑠𝑖 points are created in the reduced
d-dimensional space so that the weights determined in Step 3
remain the same.

When these performances are examined in detail, it is seen that
he most successful classifier is Naive Bayes algorithm. Therefore, the
ighest performance metrics and performing number of components
btained for all feature reduction methods using Naive Bayes classifier
re given in Table 6. The average classifier performances are 0.65, 0.57,
.52, 0.35, and 0.40 with 22, 15, 17, 6, and 9.5 components for PCA,
LE, MDS, ISOMAP, and T-SNE, respectively.

.4. Classification

In pattern recognition problems, it is so vital to do the identification
rocess accurately. For SSVEP-based BCI studies, this process generally
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Table 4
All classifier performances were tested in this study using the Isometric Feature
Mapping method. The maximum classifier accuracies are shown in boldface for each
subject. Classifier performances are given as accuracies where the perfect accuracy is
1.00. Naive Bayes classifier gave the highest accuracies for almost all subjects where
subjects’ features had been utilized using the Isometric Feature Mapping method.

Model Subject 1 Subject 2 Subject 3 Subject 4 Average

k-Nearest Neighbors 0.25 0.31 0.29 0.24 0.27
Decision Tree 0.13 0.27 0.14 0.24 0.19
Support Vector Machines 0.17 0.31 0.29 0.19 0.24
Stochastic Gradient Descent 0.13 0.19 0.29 0.29 0.22
Random Forest 0.17 0.27 0.24 0.29 0.24
Multi-Layer Perceptron 0.13 0.23 0.29 0.24 0.22
Naive Bayes 0.29 0.35 0.33 0.43 0.35
Logistic Regression 0.21 0.23 0.19 0.14 0.19
AdaBoost 0.17 0.35 0.38 0.29 0.29

Table 5
All classifier performances were tested in this study using the Locally Linear Embedding
method. The maximum classifier accuracies are shown in boldface for each subject.
Classifier performances are given as accuracies where the perfect accuracy is 1.00.
Naive Bayes classifier gave the highest accuracies for all subjects where subjects’
features had been utilized using the Locally Linear Embedding method.

Model Subject 1 Subject 2 Subject 3 Subject 4 Average

k-Nearest Neighbors 0.21 0.27 0.24 0.24 0.24
Decision Tree 0.21 0.35 0.38 0.14 0.27
Support Vector Machines 0.25 0.42 0.29 0.24 0.30
Stochastic Gradient Descent 0.21 0.31 0.29 0.19 0.25
Random Forest 0.17 0.35 0.24 0.19 0.24
Multi-Layer Perceptron 0.17 0.46 0.33 0.29 0.31
Naive Bayes 0.50 0.54 0.71 0.52 0.57
Logistic Regression 0.25 0.35 0.10 0.19 0.22
AdaBoost 0.17 0.35 0.43 0.24 0.29

Table 6
The comparison of classifier accuracies were given where the classifier algorithm was
Naive Bayes. The maximum classifier accuracies were boldface and the number of
features (or components) are given in parentheses to achieve this performance for
each subject. Abbreviations of algorithms are PCA (Principal Component Analysis),
LLE (Locally Linear Embedding), MDS (Multi-Dimensional Scaling), ISOMAP (Isometric
Feature Mapping), and T-SNE (t-Distributed Stochastic Neighbor Embedding).

Subjects PCA Manifold learning methods

LLE MDS ISOMAP T-SNE

Subject 1 0.58 (24) 0.50 (21) 0.46 (15) 0.29 (9) 0.21 (2)
Subject 2 0.50 (24) 0.54 (21) 0.46 (16) 0.35 (3) 0.42 (7)
Subject 3 0.81 (20) 0.71 (11) 0.67 (16) 0.33 (3) 0.48 (13)
Subject 4 0.71 (20) 0.52 (7) 0.48 (21) 0.43 (9) 0.48 (16)

Average 0.65 (22) 0.57 (15) 0.52 (17) 0.35 (6) 0.40 (9.5)

relies on choosing appropriate machine learning (classification) algo-
rithms. These algorithms aim automatically estimate the class of the
data as represented by feature vectors [34,45]. In another word, the
classification performance of the SSVEP-based BCI is directly affected
by the machine learning algorithms. For that reason, in this study,
SSVEP records have been evaluated with nine well-known machine
learning algorithms [13,46–50]. These algorithms are explained below
briefly:

• Naive Bayes: The Naive Bayes method is based on the Bayesian
probability model [51]. The Naive Bayes classifier has a powerful
assumption of independence between predictors [52]. According
to this assumption, the probability of one feature does not affect
the probability of the other. A small amount of training data is
sufficient to estimate the required parameters. There are four sub-
types of the Naive Bayes algorithm. These are Gaussian, Bernoulli,
multinomial, and complement Naive Bayes algorithms.

• Multi-Layer Perceptron (MLP): The Multilayer Perceptron Algo-
rithm (MLP) is a supervised learning algorithm that can learn
a function by training on a dataset. It consists of input, output,
6

and hidden layers [13]. The input layer receives the data, and
the output layer makes decisions or predictions about the input.
There is an arbitrary number of hidden layers between these two
layers, which is the computational engine of MLP. It learns by
modeling the correlation between inputs and outputs. While the
model is being trained, the weights of the parameters are adjusted
to minimize errors.

• K-Nearest Neighbors (K-NN): The k-nearest neighbor algorithm
is a non-parametric method used in classification and regres-
sion [13]. The purpose of the KNN is to determine the class of
an object whose class is unknown in the multidimensional feature
space. A parameter ‘‘k’’ is user-defined in the algorithm. The class
of the undefined object is determined by taking the most common
class information from the ‘‘k’’ closest objects. When calculating
the distance of objects from each other, the ‘‘Euclidean’’ distance
metric is generally used.

• AdaBoost: The AdaBoost algorithm is an ensemble learning
method that was proposed by Freund and Schapire [47]. The
model can improve the classification accuracy of weak classifiers
by changing the distribution of sample weights. The AdaBoost
algorithm can transform a weak classifier that makes erroneous
predictions into a new classifier with high classification accuracy.

• Logistic Regression: The first study in the field of Logistic Re-
gression (LR) was made by Berkson [53] in 1944. Contrary to
its name, the LR algorithm is generally more suitable for classifi-
cation problems. The LR method is preferred when the outcome
variable is a two or multi-level categorical variable [54].

• Decision Trees: Decision trees are one of the common algorithms
in supervised learning. It has a predetermined target variable. It
offers a top-down strategy by design. It breaks a data set into
smaller pieces according to some rules. Decision trees can process
both categorical and numerical data. The decision tree algorithm
may differ according to the target variable type. The entropy and
Gini algorithms are the most widely used [13].

• Support Vector Machines: Support Vector Machines (SVM) were
first introduced by Vapnik [55] and it is one of the most used
machine learning algorithms today. It is used in data classification
and regression analysis. While generating a model, it places the
data in a high-dimensional space and configures the hyperplane
that will best separate this data in space [50].

• Stochastic Gradient Descent (SGD): The Gradient descent (GD) is
used in learning widely. Mathematically, they can be defined as
partial derivatives of an array of parameters with respect to their
inputs. In the stochastic gradient descent (SGD) algorithm, several
samples are randomly selected for each iteration, rather than all
of the adjusted data [46].

• The Random Forests (RF): The Random Forests (RF) algorithm
was developed by Leo Breiman for classification issues. Breiman
[56] added the ‘‘randomness’’ layer in addition to the ‘‘bagging’’
layer he had previously developed in the Random Forest method.
In standard trees, each node is separated using the best separator
among all variables. On the other hand, in RF trees, the discrim-
ination is made by the best classifier from a randomly selected
sub-classifier set at that node. Thus, RF is a method that can
produce better results compared to other classification methods
and is more resistant to the over-fitting problem [49].

2.5. Performance verification

In literature, commonly used leave one out and confusion matrix
evaluation criteria were used to assess the performance of the ma-
chine learning algorithms. The performance metric is the Accuracy
(Acc) [13]. According to the metrics, the AVI-SSVEP dataset is split
into two groups train and test data. The machine learning algorithms’
parameters are decided with the train data where the algorithms’
performances are predicted over the test data. In this scope of the study,

we preferred to divide the dataset into 70% for training and 30% for
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Table 7
Comparison of classifier performances with the similar studies from the literature.

Study Classifier Optimization Number of Accuracy
Classes (%)

[21] Multi-Layer Perceptron Principal Component Analysis 2 53.3
[25] Multi-Layer Perceptron Landmark version of Maximum Variance Unfolding 2 89.6
[27] k-Nearest Neighbors Supervised Explicit Isometric Feature Mapping 2 92.7
[23] Support Vector Machines t-Distributed Stochastic Neighbor Embedding 2 94.1
[22] Linear Discriminant Analysis Multidimensional Scaling 2 95.0
[28] Support Vector Machines Dimensionality Reduction Mechanism 2 100
[26] Multi-Layer Perceptron Neighborhood Component Analysis 2 100
[30] Linear Discriminant Analysis Locality Preserving Projection 3 71.9
[24] Linear Discriminant Analysis Principal Geodesic Analysis 4 61.0
[29] Linear Discriminant Analysis Locally Linear Embedding 4 74.2
This study Naive Bayes Principal Component Analysis 7 65.2
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testing. Besides, we iterated each machine learning algorithm ten times
and averaged their success of them to reduce the effect of randomness
in the performances.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝐹𝑁 + 𝑇𝑁 + 𝐹𝑃

(15)

In this study, mentioned criteria above calculated with (15). In the
ormula, 𝑇𝑃 means true positive indicators of the correctly estimated
amples true class; on the other hand, 𝑇𝑁 means true negative repre-
ents the correctly predicted samples, not true classes; in addition, 𝐹𝑃
resents false positives representing the number of samples estimated
s positive where it belongs to negative class and finally, 𝐹𝑁 predicted
s negative samples but belongs to the positive class.

. Results and discussion

In this study, the multi-class classification problem of SSVEP signals
as analyzed with 9 different machine learning algorithms via Orange
ata Mining Programming and their performances were evaluated. The
etrics and values selected for the parameters of feature reduction and
achine learning algorithms are as follows:

• In the ISOMAP algorithm, the number of neighbors is chosen as
5,

• In the MDS algorithm, the max. iteration was determined as 300
and the initialization was determined as PCA (torgenson),

• In the t-SNE algorithm, distance metric was selected as Euclidean,
Perplexity equal 30, early exaggeration 200, and max iteration
equal 1000. In addition, PCA method were chosen as Initializa-
tion,

• The number of neighbors in the LLE algorithm was set to 10 and
the max. iteration was set to 100,

• RBF kernel function is applied to the Support Vector Machine
algorithm, and the iteration limit was set to 100,

• In the K-NN algorithm, the ‘‘k’’ value was chosen as 5. Euclidean
was chosen as the distance metric,

• In the MLP algorithm, the Relu activation function was set to
Adam solver and the maximum iteration was set to 200,

• Number of estimators 50 and learning rate 1 were preferred in
Adaboost algorithm.

While composing feature matrices with feature reduction methods,
he number of components in each dimension reduction method has
een increased one by one. Thus, it has been proved that the maximum
uccess rate is achieved with how many components. The highest
erformance metrics obtained for all feature reduction methods are
iven in Tables 1, 2, 3, 4 and 5 for Principal Component Analysis
PCA), t-Distributed Stochastic Neighbor Embedding (T-SNE), Multidi-
ensional Scaling (MDS), Isometric Feature Mapping (ISOMAP), and
7

ocally Linear Embedding (LLE) methods, respectively.
. Conclusion

In this study, we developed an automated signal processing process
o design an expert 7-class SSVEP-based BCI system. First, 55 different
eatures were extracted using temporal, spatial, and spatio-temporal
ethods. Then, traditional and recently hot topic manifold learning
ethods were analyzed and compared to successfully classify 7 dif-

erent frequencies with the most meaningful and least data. Finally,
lassification was made using 9 different machine learning methods.
ccording to the studies in the literature, the result is quite successful

or a 7-class study ( Table 7). According to the classification results,
CA was found to be the most successful method for all 4 subjects.
he accuracy rates were found between 0.50 and 0.81 using PCA.
he accuracy obtained using manifold methods was compared with
CA, which is considered the golden ratio. However, there is not a
ethod as successful as PCA. The LLE method is also seen as the most

uccessful method after PCA. Although MDS gives better results than
SOMAP and t-SNE methods, it does not seem to be more successful
han LLE for all 4 subjects. In this study, LLE was found to be the
anifold Learning Method with the best results. It has been concluded

hat the LLE method for SSVEP-based BCI studies is more successful
han other manifold learning methods. In addition, in this study, all
ethods except the ISOMAP method had the best results for Subject 3.
mong the classification methods, the Naive Bayes method was seen

o be the most successful machine learning method among all feature
eduction methods tested in this study.
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