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We study the evolutionary dynamics of the Prisoner’s Dilemma game in
which cooperators and defectors interact with another actor type called exi-
ters. Rather than being exploited by defectors, exiters exit the game in favour
of a small pay-off. We find that this simple extension of the game allows
cooperation to flourish in well-mixed populations when iterations or repu-
tation are added. In networked populations, however, the exit option is
less conducive to cooperation. Instead, it enables the coexistence of coopera-
tors, defectors, and exiters through cyclic dominance. Other outcomes are
also possible as the exit pay-off increases or the network structure changes,
including network-wide oscillations in actor abundances that may cause the
extinction of exiters and the domination of defectors, although game par-
ameters should favour exiting. The complex dynamics that emerges in the
wake of a simple option to exit the game implies that nuances matter even
if our analyses are restricted to incentives for rational behaviour.
1. Introduction
In economic game theory, the conditions and consequences of quitting a game [1],
and voluntary participation in general, are fundamental topics [2]. In the theory of
the evolution of cooperation, however, they are rarer guests [3,4]. Because evol-
utionary game theory traditionally concerns competition between species, it is
not surprising that the primary focus is on involuntary interactions [5,6]. Never-
theless, there is an increasing interest in modelling the interface between
cooperation and social behaviour in human populations. We will also take this
route and extend the canonical model of cooperation between selfish individ-
uals—the Prisoner’s Dilemma [2,7,8]—with an option of exiting the game. To
more realistically incorporate sociality, our players, or actors, will interact over
model social networks [8–10].

There are historical examples where the option to exit a game could have had a
dramatic impact on the outcome. In the final years of the 1950s, China carried out
far-reaching collectivization of its society. Everyone in the countryside had to
belong to a ‘people’s commune’ where people shared everything—farming
tools, seeding crops, draft animals, kitchens and healthcare. Even private cooking
was banned and replaced by communal canteens. Between 1958 and 1962, one of
the worst famines in the history of humanity struck the country [11]. Ever since
then, scholars have debated the connections between these social changes and
the famine [12].

One intriguing theorywas proposed in 1990 by the economist Justin Yifu Lin of
Peking University [13]. He pointed out that with the establishment of the people’s

http://crossmark.crossref.org/dialog/?doi=10.1098/rsif.2020.0777&domain=pdf&date_stamp=2021-01-13
mailto:shi_lei65@hotmail.com
mailto:w-zhen@nwpu.edu.cn
https://doi.org/10.6084/m9.figshare.c.5250742
https://doi.org/10.6084/m9.figshare.c.5250742
http://orcid.org/
http://orcid.org/0000-0002-0777-0425
http://orcid.org/0000-0003-1203-9984
http://orcid.org/0000-0002-3087-541X


Table 1. Pay-off matrix for the weak Prisoner’s Dilemma with an exit
option.

C D E

C 1 0 0

D b 0 0

E ϵ ϵ ϵ

The first row indicates that when a cooperator, C, meets another
cooperator, defector D, or exiter E, they earn a pay-off equal to 1, 0, or 0,
respectively. Analogously, when a defector meets a cooperator, defector, or
exiter, they earn a pay-off equal to b∈ (1, 2], zero, or zero, respectively.
Finally, exiters earn a pay-off equal to ϵ∈ [0, 1), irrespective of whom
they meet. In the most general variant of the Prisoner’s Dilemma, a
cooperator meeting another cooperator would earn the pay-off R, a
cooperator meeting a defector would earn S, a defector meeting a
cooperator would earn T, and a defector meeting another defector would
earn P, where these pay-offs must satisfy T > R > P > S.
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communes, leaving a collective was no longer an option. He
reasoned that this revocation of the right to exit took away a dis-
incentive to free ride, as now farmers could no longer avoid
negative feedback loops of perfidy. Just how important this
mechanism was in the onset of famine has been debated. For
example, Dong & Dow [14] and MacLeod [15] contend that
Lin was wrong to use various economic arguments, while
Orbell et al. [16] and Orbell & Dawes [17] lend support to the
general idea of exit options promoting cooperation.

Wewill not dwell further on the question of howwell Lin’s
hypothesis explains the connectionbetween the collectivization
and the famine. Instead, intrigued by this historical example,
we will investigate in a more generic setting how much a
simple right to exit can impact the evolution of cooperation.
Our starting point is the Prisoner’s Dilemma—a basic math-
ematical formulation of the situation in which cooperation
would be most beneficial in the long run, but only considering
the next interaction defection would be advantageous [2,5,8].
There aremanymechanismspromoting cooperation in the Pris-
oner’s Dilemma. Nowak [18] divides these mechanisms into
five categories—kin andgroup selection, aswell as direct, indir-
ect and network reciprocity. Others try to identify common
principles behind all these mechanisms [19–21].

People interact in social networks [8]. The structure of the
networks can influence the game dynamics. Therefore, many
authors have investigated games in which actors interact over
model networks [9,10]. We will investigate the Prisoner’s
Dilemma with an exit option on the regular lattice, as well as
three additional types of network models: (i) small-world net-
works that have many triangles and short path lengths
characteristic of social networks [22], (ii) random regular
graphs known to be very robust to perturbations, and (iii)
scale-free networks that have fat-tailed degree distributions
characteristic of socioeconomic systems [23].

Networked populations have received tremendous atten-
tion among evolutionary game theorists upon the discovery
that the Prisoner’s Dilemma in lattices may generate spatial
chaos [24]. Exploring the role of network topology [25], and
especially that of heterogeneous networks [26], has proven
fruitful, leading up to a landmark result that, when social
networks are scale-free, cooperation dominates throughout
much of the phase space of the Prisoner’s Dilemma and other
common social-dilemma games [23,27]. Even in the multi-
player generalization of the Prisoner’s Dilemma called the
PublicGoodsGame [28], cooperationhasbeen shown tobenefit
if the game is played in heterogeneous networks [29]. Although
networked populations promote cooperation without adding
strategic complexity, there have been numerous studies that
extend the Prisoner’s Dilemma in networks with, for example,
punishment [30], reward [31] and reputation [32]. Interestingly,
empirical studies have failed to confirm some of these theoreti-
cal results. A scale-free topology, for example, was unable to
promote cooperation among human actors above the levels
established in a lattice [33]. Similarly, introducing peer punish-
ment into simple networks of human actors left cooperation
levels unchanged, all the while diminishing other benefits of
network reciprocity [34]. Empirical studies have—unrelated
to networks—been known to produce conflicting or surprising
results. Peerpunishment thusmay [35] ormaynot [36] promote
cooperation,whereas rewardingmaydo so, but in a convoluted
manner of exploiting a known cognitive bias [37].

Empirical studies notwithstanding, networked populations
remain a pillar of modern evolutionary game theory. We build
on this pillar by introducing a simple exit option that guaran-
tees a small pay-off to an exiter irrespective of what other
actors do. Such a small pay-off should intuitively be understood
in the context of our motivational example on farming collec-
tives, in which the farmer who exits their collective forgoes a
larger potential benefit (i.e. the economies of scale) but still
benefits from cultivating their own land. We begin our analysis
with a well-mixed population in which both one-shot and iter-
ated Prisoner’s Dilemma games with an exit option are played.
We thereafter progressively add more complexity by consider-
ing populations in a lattice formation, as well as homogeneous
and heterogeneous networks. In doing so, we observe a multi-
tude of dynamic phenomena ranging from cyclic dominance to
global oscillations to hub-node stabilization.
2. Methods
The key elements of our modelling approach comprised
(i) actions and pay-offs, (ii) population structure, (iii) action selec-
tion, and (iv) simulation settings. We proceed to briefly describe
each of these elements.

2.1. Actions and pay-offs
For the sake of simplicity, we chose to base our model on the
weak Prisoner’s Dilemma [38]. In this game, cooperators encoun-
tering cooperators receive the pay-off equal to unity. Cooperators
encountering defectors receive nothing. Conversely, defectors
encountering cooperators receive the temptation pay-off b > 1.
Defectors encountering defectors receive nothing. We added a
third action to this set-up, dubbed exit, such that exiters typically
receive a small-but-positive pay-off ϵ > 0 irrespective of whom
they encounter. Cooperators and defectors encountering exiters
receive nothing. Additional limits imposed on the pay-offs
were b≤ 2 and ϵ < 1 in order to (i) make the cumulative value
of mutual cooperation greater than or equal to that of defection
and (ii) make exiting less valuable than cooperating, respectively.
The described set-up is neatly summarized in table 1.

2.2. Population structure
We assumed two general types of populations: well-mixed and
networked. In the former case, an actor can encounter any other
actor. In the latter case, an actor encounters only their neighbours
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Figure 1. Cooperation is sustained, but rarely dominant, in networked popu-
lations with exit. We plot the full e-b phase diagram as obtained by Monte
Carlo simulations of the weak Prisoner’s Dilemma comprising an exit option
in a lattice. When the exit option is highly rewarding, e ⪆ 0:52, exiters
dominate. A less rewarding exit option, e ⪅ 0:52, leads to four different out-
comes. If temptation is small, b ⪅ 1:04, network reciprocity eo ipso ensures
that cooperators remain in the population indefinitely alongside defectors
(the C + D phase). Larger temptation values, b ⪆ 1:04, lead to defector
domination for ϵ≤ 0 (the D phase), but otherwise sustain the coexistence
of all three actor types (the C + D + E phase) or lead to cooperator domina-
tion (the C phase). Note that purely cooperative outcomes emerge only over a
small domain of the e-b phase plane.
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as prescribed by the network. The basic network structure used in
simulations was the regular lattice in two dimensions. Neighbour-
hood was von Neumann’s, meaning that each actor has four
neighbours: left, right, up, and down. Boundary conditions were
periodic, meaning that, in a lattice of size L × L, actors in the Lth
row (column) are linked to actors in the first row (column). We
also generated regular small-world networks and random regular
networks by rewiring the underlying lattice, where the probability
of rewiring any particular link ranged from 1% (small-world) to
99% (random). To generate scale-free networks for simulation pur-
poses, we used the Barabási–Albert algorithm [39]. All networks
used in this study are visualized in electronic supplementary
material, figure S1.

2.3. Action selection
In well-mixed populations, action selection followed the usual
replicator dynamics. Actors in networked populations selected
their actions through imitation. Specifically, denoting the pay-off
earned by a focal actor i with Πi and the pay-off of a randomly
selected neighbour jwithΠj, the probability of the actor i imitating
the neighbour j was given by the Fermi rule,

Wi j ¼ 1
1þ exp ((Pi �P j)=K)

, (2:1)

whereKmeasures the irrationality of selection. Note that, asK→ 0,
the Fermi rule turns into the Heaviside step function such that
Wi←j = 1 ifΠi <Πj, andWi←j = 0 ifΠi >Πj, whileWi←j = 0.5 ifΠi =Πj

holds by definition. We set K = 0.1 throughout the study.

2.4. Simulation settings
We arranged simulations in a series of Monte Carlo time steps. In
each time step, we randomly selected a focal actor who then
played the game with all their neighbours. We thereafter randomly
selected one of the focal actor’s neighbours, and allowed this neigh-
bour to play the game with all their neighbours as well. We finally
compared the pay-offs of the focal actor and the selected neighbour
to determine whether the focal actor imitates the neighbour or not.

We paid special attention in simulations to ensure that
(i) transient dynamics had subsided and (ii) finite-size effects
had been eliminated. We thus ran simulations for O(104) time
steps, typically 50 000, while averaging actor abundances over
the last O(103) time steps, typically 5000. Networks used in the
study contained O(103) nodes, typically 5000.
3. Results
3.1. Well-mixed populations
Westart ouranalysis fromoneof the simplest possible situations.
Specifically, we consider a one-shot Prisoner’s Dilemmawith an
exit option in a well-mixed population and, as mentioned, we
simplify the exposition without much loss of generality by
assuming the pay-off structure of the weak Prisoner’s Dilemma
(table 1). Under these conditions, only themonomorphic exiting
equilibrium is stable, which is why the existence of the exit
option is in noway helpful in establishing cooperation; see elec-
tronic supplementary material, remark 1. Actors simply choose
to exit the game even if the pay-off obtained by doing so is arbi-
trarily small; it is better to have some return with certainty than
to risk getting exploited by defectors.

The situation changeswhenwe replace the single-shot game
byan iteratedgame. Iterations, provided the gameproceeds suf-
ficiently many rounds, may favour cooperation; see electronic
supplementary material, remark 2 and [7]. The exit option
helps to eliminate defection irrespective of how small the exit
pay-off is. Put more technically, the equilibrium of
full defection is unstable in this case and cannot be reached by
meansof evolutionarydynamics. Even if thepopulation initially
consisted of defectors alone, such a population would crumble
under the slightest perturbation. The reason for this is that, pro-
vided the exit pay-off is positive, exiting always confers more
benefit than defecting. Actors ultimately choose to cooperate
because, without defection as a viable option, cooperation is
more beneficial than exiting the game. If we extend the game
by adding a variable representing actor reputation, the effect is
the same; see electronic supplementary material, remark
3. Our model thus shows that, for well-mixed populations, the
availability of the exit option supports cooperation, but only
when accompanied by another mechanism, e.g. iterations (i.e.
direct reciprocity) or reputation (i.e. indirect reciprocity), that
makes cooperation feasible in the first place. These results
open the questionofwhat happenswhen the exit option is avail-
able in networkedpopulations, inwhich themechanismknown
as network reciprocity favours cooperation.

3.2. Regular lattice
To answer the question of how cooperation fares in networked
populations with an exit option, we resorted to numerical
Monte Carlo simulations; see Methods for details. We first per-
formed simulations in lattices characterized by the von
Neumann neighbourhood and the periodic boundary con-
ditions. The game parameters were the pay-offs b, 1 < b≤ 2,
and ϵ, −0.1 < ϵ < 1.

In figure 1,we showa phase diagramcovering the full range
of parameter values. We can see that adding an exit option can
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lead to complicated dynamics. First, when the exit pay-off is
e ⪆ 0:52, exiters outcompete other actor types (the E phase in
figure 1). Conversely, when e ⪅ 0:52, there are four possible out-
comes. Small temptation b ⪅ 1:04 allows network reciprocity
alone to secure the coexistence of cooperators and defectors,
while exiters get eliminated from the population (the C +D
phase in figure 1). Larger temptation b ⪆ 1:04 gives rise to
either (i) defector domination for ϵ≤ 0, (ii) the coexistence of
all three actor types, or (iii) cooperator domination (respectively,
theD phase, theC +D + E phase, and theC phase in figure 1). A
chief distinction between well-mixed and networked popu-
lations emerging from these results is that the latter permit
dimorphic and trimorphic equilibria in which the different
types of actors coexist. The exit option thus seems unable to
entirely displace defection in networked populations, which is
in contrast to our findings in well-mixed populations with
either iterations or reputation, as described above.

We can gain a better understanding of how the three types
of actors affect one another by looking at the change in their
abundances through time (figure 2). In the D phase (figure
2a), exiters are the first to giveway to defectors, followed shortly
thereafter by cooperators. In theC +D + E phase (figure 2b), it is
cooperators who start giving way to defectors, but then—with
fewer cooperators around—exiters temporarily outnumber
defectors. Fewer defectors, in turn, allow cooperators to partly
recover at the expense of exiters. This proceeds until recovering
cooperators once more start giving way to defectors. We have
thus described a phenomenon called cyclic dominance in
which three actor types dominate one another in an intransitive
manner. In our case, cooperators dominate exiters, who domi-
nate defectors, who dominate cooperators. Cyclic dominance
has proven influential in ecological [40] and evolutionary
game-theoretic [41] contexts, especially in voluntary dilemmas
and extensions thereof [3,42,43].

The phenomenon of cyclic dominance disappears in the C
phase (figure 2c) because, here, a substantial rise of exiters
drives defectors to extinction. At the same time, a tiny fraction
of cooperators survive and, in the absence of defectors, even-
tually take over the lattice. The rise of exiters in the E phase
(figure 2d), however, is so forceful that they wipe out coopera-
tors even before defectors, thus remaining the sole actor type in
the lattice.

The relationships between actor types described here could
be seen as power relations, in the sense of who dominates
whom and underwhich conditions. In figure 3, we further ana-
lyse such relations by examining the equilibrium abundances
of cooperators, defectors, and exiters along several transects
of the phase space. These horizontal transects reveal power
relations between the three actor types depending on the temp-
tation pay-off, b. In the usualweakPrisoner’sDilemmawithout
exit, this pay-off is equivalent to dilemma strength [44] and
thus a crucial determinant of the game outcome. Here, we
find that, when exiting is neutral or costly (ϵ≤ 0), network reci-
procity can support cooperation by itself for small values of
temptation (b ⪅ 1:04), but, generally, defectors dominate
(figure 3a). When, in contrast, exiting is marginally to moder-
ately profitable (0 , e ⪅ 0:52), network reciprocity still
supports cooperation for small values of temptation
(b ⪅ 1:04), but otherwise the domination of defectors is
replaced by the coexistence of all three actor types (figure 3b).

The coexisting state is unusual in that the abundance of exi-
ters increases with temptation, first more at the expense of
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defectors and later at the expense of cooperators. Temptation
thus fails to entice defection but instead pushes actors to exit
the game. This ultimately hurts defectors, who can even go
extinct by temptation being too large (b ⪆ 1:90) and exiting
sufficiently profitable (0:30 ⪅ e ⪅ 0:52). Without defectors to
exploit them, cooperators become free to dominate (figure 3b).

In a similar vein to horizontal transects, vertical transects
of the e-b phase plane also reveal power relations between the
three actor types, but this time depending on the exit reward
ϵ. For small temptation values, b ⪅ 1:04, network reciprocity
is enough to ensure the coexistence of cooperators and defec-
tors for a relatively wide range of exit reward values (figure
3c). After crossing ϵ≈ 0.45, exiters are able to reduce the
abundance of defectors, and after crossing ϵ≈ 0.50, defectors
are eliminated, thus allowing cooperators to flourish (figure
3c). Cooperator domination, however, is short-lived because
already beyond ϵ≈ 0.52 cooperators die out ahead of
defectors, so exiters ultimately prevail (figure 3c). For larger
temptation (1:04 ⪅ b ⪅ 1:90), the described situation partly
repeats, that is, for ϵ≈ 0.49 there is again a narrow strip of
cooperator domination, followed by a region of exiter domi-
nation (figure 3d ). The situation changes below ϵ≈ 0.49
because network reciprocity is replaced by cyclic dominance,
which ensures the coexistence of all three actor types between
0 , e ⪅ 0:49. Defectors prevail if ϵ≤ 0 (figure 3d ).

Cyclic dominance gives rise to non-trivial dependence of
actor abundances on the exit pay-off. The average steady-
state abundance of exiters thus first goes up at the expense
of defectors from ϵ≈ 0.21, then goes down in favour of coop-
erators from ϵ≈ 0.30, only to go up one more time at the
expense of defectors from ϵ≈ 0.44 (figure 3d ). These undula-
tions in exiter prevalence show that, whenever exiting
suppresses defection, cooperation will soon increase. The
margin for cooperator domination is generally narrow and
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widens only for the largest temptation that we consider,
1:90 ⪅ b � 2 (see the C-phase in figure 1).

In contrast to the time series in figure 2, which show
the aggregate development of actor abundances along the tem-
poral dimension, snapshots of evolutionary dynamics provide
insights into the development of local actor abundances along
both spatial and temporal dimensions (figure 4). Snapshots
thus open up the opportunity to reexamine the described
phenomena from amicroscopic perspective. Fixing temptation
to b = 1.9, we learn that non-positive exit pay-offs make exiters
weaker than cooperators or defectors (top row in figure 4). Con-
sequently, cooperators and defectors jointly eliminate exiters,
after which cooperators succumb to defectors (top row in
figure 4). This sequence of events no longer transpires when
the exit pay-off turns positive. Then, instead, all three actor
types get perpetually stuck in a loop of cyclic dominance
(second row in figure 4). Making the exit pay-off even more
positive allows small pockets of cooperators to survive until
the elimination of defectors by exiters. Afterwards, cooperators
dominate exiters (third row in figure 4). Finally, if the exit pay-
off becomes too large, then even cooperators cannot stand up to
exiters. Pressured from both defectors and exiters, cooperators
get eliminated first, while defectors experience the same fate
shortly thereafter, leaving exiters to dominate alone (bottom
row in figure 4).

The above analysis of evolutionary snapshots demon-
strates that network reciprocity combines with the exit
option differently from iterations and reputation. The latter
allow that an arbitrarily small-but-positive exit pay-off under-
mines defection (electronic supplementary material, figure
S2). By contrast, in combination with network reciprocity,
cooperation primarily happens via the coexistence of all
three actor types owing to cyclic dominance. How general
are these observations? To answer this question, we proceed
to examine whether and how the underlying network
structure affects evolutionary dynamics.
3.3. Other networks
To understand the effects of network structure on evolutionary
dynamics, we ran simulations along the vertical transects of the
e-b phase plane in three additional network types: regular
small-world, random regular, and scale-free (figure 5). The
results of these simulations are thus analogous—and best
understood by comparing—to the results in figure 3c,d. In con-
structing regular small-world networks, we started with the
regular lattice and used random rewiring with the probability
of 3% to disconnect two neighbouring nodes and connect two
nodes that had been distant before. This construction reduced
the network diameter but left other properties, for example the
density of squares, almost unchanged, which is why the simu-
lation results for this network type and the regular lattice are
similar (figure 5a). The only noteworthy difference is that, for
small temptation values (b = 1.02), regular small-world net-
works support cyclic dominance more easily than the lattice
(upper panel in figure 5a). For larger temptation values (b =
1.4), we observe the same evolutionary dynamics in both
network types (lower panel in figure 5a).

In constructing random regular networks, we followed the
same procedure as for regular small-world networks, but with
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the rewiring probability as large as possible. This reduced not
only the network diameter but also the density of squares [45],
causing evolutionary dynamics to change in two important
ways (figure 5b). For small temptation (b = 1.02), cyclic domi-
nance vanishes (upper panel in figure 5b), whereas for larger
temptation (b = 1.4) there is a region of cyclic dominance as
before, but now this region is separated from the narrow
strip of cooperator domination by a strip of defector domina-
tion (lower panel in figure 5b). How is it possible that
defectors become dominant when the values of the exit pay-
off already strongly favour exiters?Wewill resolve thismystery
shortly, after looking at the evolutionary dynamics in scale-free
networks.

Scale-free networks, constructed using the Barabási–
Albert model [39], lead to evolutionary dynamics that are
fundamentally different from other network types (figure
5c). Even if temptation is ramped up to b = 2, network reci-
procity supports a large cooperator abundance up to the
exit pay-off of ϵ≈ 0.48 (upper panel in figure 5c). After that,
the abundance of exiters increases linearly with the exit
pay-off up to ϵ≈ 0.91, when this actor type finally prevails.
A similar picture holds even for temptation b = 4, except
that the abundances of cooperators and defectors switch
places (lower panel in figure 5c).

It is illustrative at this point to look at the time series of
cooperator, defector, and exiter abundances when all three
actor types coexist (figure 6). In the regular lattice, we find
that initial large oscillations subside rather quickly, after
which there are only small oscillations around the average
abundances that are characteristic of cyclic dominance
(figure 6a). The situation is similar in regular small-world
networks, although the amplitude of oscillations around the
average abundances is larger than before (figure 6b). The simi-
larity between the time series in these two cases seems to arise
from almost the same density of squares in regular small-world
networks as in the regular lattice. It would appear that squares
keep oscillations local, and thereby small in amplitude (elec-
tronic supplementary material, figure S3A). This is perhaps
expected for the regular lattice that lacks long-distance links,
but less so for regular small-world networks that are much
more compact.

Consistent with the above ideas, we further observe that, as
the density of squares approaches zero in random regular net-
works, oscillations become network-wide and develop very
large amplitudes (figure 6c; see also electronic supplementary
material, figure S3). There are even instances in which ampli-
tudes are large enough to exterminate exiters, which is the
reason why defector domination appears in the lower panel
of figure 5b when the exit pay-off should strongly support
exiters. We also find that the nature of actor coexistence in
scale-free networks is entirely different from that of other
network structures. Hub nodes tend to cooperate, while
small-degree nodes tend to switch between defection and exit-
ing, which ultimately creates noisy rather than oscillating time
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series of actor abundances (figure 6d). We visualize the
described coexistence patterns by animated movies that are
available at doi.org/10.17605/OSF.IO/GRHSB.
4. Discussion
We have shown that adding an exceedingly simple exit option
to aweak variant of the Prisoner’sDilemma is enough to gener-
ate complicated dynamics. In particular, we have seen that, in
well-mixed populations, an arbitrarily small-but-positive exit
pay-off, ϵ > 0, is sufficient to destabilize defection; see electronic
supplementary material, remark 1. If there is also a viable
cooperation-promoting mechanism in the form of iterations or
reputation, cooperators can invade the population as long as
their initial fraction is above ϵ (electronic supplementary
material, figure S2B).

Combining the exit option with network reciprocity pro-
duces outcomes that differ greatly from those in well-mixed
populations [5]. We find that in networked populations an
arbitrarily small-but-positive exit pay-off typically leads to
the coexistence of cooperators, defectors, and exiters through
cyclic dominance. Coexistence by way of cyclic dominance is
a subject of intense study in the contexts of biodiversity
[40,46–49] and competition in microbial populations
[50–52]. The results with more than three species in ecosys-
tems, in fact, lend support to the conjecture that global
oscillations are a general characteristic of realistic food webs
[53]. Curiously, taking finite-size effects into account shows
that cyclic dominance may in some instances compromise bio-
diversity and even cause extinction [54]. In the context of the
evolution of cooperation, cyclic dominance often supports
cooperation despite a large temptation to defect [55], and in
evolutionary games with more than three strategies an impor-
tant finding is that cyclic dominance provides an escape route
from the negative impacts of antisocial punishment [56]. For a
detailed review of this extremely rich topic, see [41]. In the evol-
utionary game considered herein, it is particularly interesting
that square-dense network structures, such as the regular lat-
tice, keep cyclic dominance local. By contrast, networks
without squares, such as random regular networks, turn
cyclic dominance into a global phenomenon. Dramatic oscil-
lations may ensue (electronic supplementary material, figure
S3), giving rise to sudden extinction of exiters and subsequent
unexpected domination of defectors.

Parallels between our exiters andwell-known loners, which
rose to prominence as a mechanism behind cyclic dominance
[3,42,43], undoubtedly invite comparisons between the
two. Loners are similar to exiters in that they opt out of the
game to avoid getting exploited by defectors; in doing so,
loners differ from exiters in that they generate a small-but-
positive pay-off for the co-player in the game, regardless of
whether this co-player is a cooperator, defector, or another
loner. In this sense, the fact that exiters are just as responsible
for cyclic dominance in networked populations as loners
shows that non-zero pay-offs received by cooperators and

doi.org/10.17605/OSF.IO/GRHSB
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defectorswhen interactingwith loners are practically irrelevant
for the observed dynamic phenomena. The exit option can thus
bedeemed if notmore basic, then at leastmore economical than
the loner option. Exiters, furthermore, leave both cooperators
and defectors completely hanging when they walk away
from the game, which seems to correspond to various real-
world situations. To exemplify, if completion of a scientific
project rests on collaboration, two genuinely cooperative
researchers should be able to complete the project as planned.
If one of the researchers has free-riding tendencies, the project
may still get completed, but the invested effort will be asym-
metric. If, however, one researcher outright abandons the
project for another project with a smaller but immediate pay-
off, the remaining researcher is left with little hope for success.

The view that the exit option is beneficial for cooperation is
being challenged by a new psychological study [57]. In their
social-dilemma experiment, the authors find that, with the
introduction of exit rights, exiting replaces defection, which
is in line with our model’s predictions. This further leads to
an increase in the relative cooperation frequency, where ‘rela-
tive’ refers only to games without exiters. In absolute terms,
however, the cooperation frequency decreases because many
players choose to exit. In the model, whether more exiting
leads to more or less cooperation depends on the exact set-
up. A larger temptation b typically gives more power to defec-
tors over cooperators; however, with more defectors in the
system, exiters also gain more space to spread, ultimately gen-
erating the situation in which more exiting is accompanied by
less cooperation (e.g. figure 3b). A larger exit pay-off ϵ mostly
gives more power to exiters over defectors; however, with
more exiters in the system, cooperators also gain more space
to spread, ultimately generating the situation in which more
exiting is accompanied by more cooperation (e.g. figure 5a).
It should not be forgotten here that, as the exit pay-off becomes
too large, exiters completely overpower the other two actor
types. Haesevoets et al. [57] conclude that ‘both research and
practice can gain greatly in richness by giving more consider-
ation to exit options in the study of cooperation’, which
is—given the richness of our results—a sentiment that we
wholeheartedly agree with.

Exit rights have, to a degree, been studied at the interface
between social and biological sciences. Themost usedmethod-
ology has been simulations with a focus on relative strategy
effectiveness in iterated games [58–60]. The results suggest
that an exit option is beneficial for cooperation because exiting
precludes exploitation by defectors. More recently, attention
has turned towards social-dilemma experiments in which exit-
ing has been realized through the ability to switch partners.
The results also suggest that exiting benefits cooperation
[61,62]. Our conclusion is somewhat more nuanced—while
exit rights can help, they are certainly not a panacea.

Returning to the example of the Chinese famine, our
results agree with Lin [13] in that having an exit option
could save cooperation in the system. It is hard to interpret
more of our results in that context; in conforming the
model to networked evolutionary games, we lost the connec-
tion to that motivational example. Instead, we discovered that
a seemingly minute adjustment to include exiters, leads to a
plethora of dynamic phenomena. This shows that nuances
matter even if we restrict ourselves to the goal of economic
and evolutionary game theory, that is, to elucidate incentives
for rational behaviours. If we wanted to raise the bar and pro-
ceed to modelling general human behaviour [20,63], details
of the model would be even more important.
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