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Vibrational resonance manifests itself in certain nonlinear systems that are subject to the
action of a biharmonic force with very different frequencies. A proper frequency and/or
amplitude of the high-frequency harmonic signal can lead to a resonantly enhanced
response of the system with respect to the low frequency signal. In the present study we
extent the concept of vibrational resonance to a thermotropic bistable surface-stabilized
ferroelectric liquid crystal cell. Furthermore, we systematically investigate the impact
of different origins of static disorder and reveal that different kinds of static disorder
affect the resonant response in a qualitative different way.
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1. Introduction

Weak signal detection by nonlinear systems can be considerably affected by external
influences. Perhaps the most famous example of this verity is stochastic resonance, where
a proper intensity of random fluctuations resonantly enhances the response of a nonlinear
system to a weak deterministic signal [1]. The very general phenomenon of stochastic
resonance appears in the processing of harmonic [2] and aperiodic signals [3] by nonlinear
systems and has thus been recognized as important in several scientific disciplines ranging
from physics [4–6] to biology [7, 8] and chemistry [9]. Interestingly, even the popular
nanoscale systems have become associated with stochastic resonance. Badzey et al. [10]
have shown that nanomechanical oscillators in a dynamic bistable state exhibit a more
controllable switching in the presence of noise. Furthermore, experiments on a single-
walled carbon nanotube transistor have confirmed that a proper value of noise can help a
threshold-like nanotube transistor to detect subthreshold electric signals [11].

Different kinds of external influences have been perceived to improve the signal pro-
cessing. Besides the most commonly employed white noise also colored noise [12, 13]
and chaotic signal [14] were found to enhance the response of a nonlinear system to weak
forcing. Remarkably, Landa and McClintock [15] have revealed that a resonant behavior
in a bistable potential with respect to a low-frequency force can be provoked by a high-
frequency periodic force. This phenomenon, called vibrational resonance (VR), closely
resembles stochastic resonance, except that in this case the role of noise is replaced by a
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high-frequency harmonic signal. Here, the dependence of the system response versus the
amplitude of the high-frequency action also exhibits a bell-shaped resonant form. Besides
bistable systems [15–17] the phenomenon of VR has been studied in excitable [18, 19],
multistable [20] and spatially extended systems [21, 22]. Notably, special attention has
also been devoted to the role of additive noise on VR as well [23–25]. First experimental
evidences of VR have been provided by Chizhevsky et al. [17] in a bistable vertical cavity
laser system and by Baltanás et al. [16] in analog electronic circuits. The most recent ex-
perimental and theoretical investigations of VR are devoted to weak signal detection [26],
signal transmission [22] and its applications in biosciences [27, 28].

In the present paper we aim to extend the scope of VR to a polymer stabilized liquid
crystal (LC) confined within a plan-parallel cell. We have recently shown that under proper
conditions the dynamics of this LC cell can be mapped to an ensemble of coupled bistable
oscillators and thus represents a suitable candidate for the manifestation of stochastic
resonance [29]. Inspired by our previous findings we explore the VR phenomenon in the
setup as well, giving special emphasis to the role of static disorder. As mentioned above,
a polymer network is usually introduced to the LC cell, which on one side significantly
increases the mechanical strength, but on the other side it introduces a certain degree
of static randomness in the system [30, 31]. Notably, Tessone et al. [32] have shown
that a proper degree of static disorder can, following the model of stochastic resonance,
enhance the response of the system to weak external signals by means of diversity-induced
resonance. Subsequent studies have revealed that in various systems also the interplay
between dynamical noise and static disorder leads to a nontrivial resonant behavior [29,
33, 34]. However, to the best of our knowledge, the influence of static disorder on the VR
phenomenon has not yet received any attention. We address this issue in the present study by
systematically analyzing the impact of different types of static disorder. Our results reveal
that resonant responses provoked by the high-frequency signal are indeed affected by static
disorder as well as that different kinds of disorder change the behavior in a qualitatively
different way. Moreover, it turns out that any type of static randomness has a completely
different impact on VR as additive dynamic noise.

2. Vibrational Resonance in a Polymer Sliquid Crystal Cell

We consider a ferroelectric LC confined to a plan-parallel cell of thickness d. For illustration
purposes we consider rod-like LC molecules. In the helicoidal smectic C phase and thin
enough cells the LC forms a layered structure which is schematically depicted in Fig. 1
together with the coordinate system. The translational order is characterized by smectic
layers that are stacked along the z-axis, and the normals of the cell walls are parallel with
the x-axis of the system. The cell confinement can suppress the helicoidal structure if the
thickness d of the cell is less or comparable to the pitch of the helix p [35]. The resulting
unwound SmC structure is on average homogeneously tilted along a single direction. In
the case of isotropic planar anchoring (i.e. molecules tend to lie in the confining plane
within which all directions are equivalent), the molecules tilt either along the positive or
the negative y-axis and the polarization is aligned either along the positive or the negative
x-axis, respectively. In other words, the equilibrium configuration corresponds to spatially
homogeneously tilted molecules either for an angle θ or −θ , whereby the states are separated
by en energetic barrier. One can switch between these configurations by an external field
electric field E applied along the x-axis. Standard SSFLC cells are extremely susceptible
to imperfections of the confining walls. One can substantially improve their mechanical
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VR in a Ferroelectric Liquid Crystal 15

Figure 1. The SSFLC cell – LC molecules are collected in smectic layers that are stacked along the
z-axis. For d < p the molecules are either tilted along the positive or the negative y-axis. Consequently
�P is aligned along the negative or the positive x-axis, respectively. An external electric field along
the x-axis favors one of the two possible configurations.

stability by introducing a proper concentration of polymer network into the LC [36]. The
resulting system is referred to as the PSFLC. In this manner the mechanical stability of the
LC component is gradually improved, but on the other side the network introduces a kind
of a bulk field.

We proceed by describing the bistable equilibrium structure in the unwound SmC phase
quantitatively in terms of the tilt angle θ and the polarization �P . Since the molecules can only
be tilted for an angle θ or −θ the director field �n is defined as follows: �n = (0, | sin θ |, cos θ )
and the polarization is defined as �P = (±P, 0, 0). A simple form of the appropriate free
energy density f expression in terms of θ and P, taking into account all the key features of
the system, can be expressed as [37]

f = f0 + α0(T − Tc)θ2

2
+ βθ4

4
− CPθ + 2θP 2

χε0
− EP + J

2
|∇θ |2 − wθ2

2
(1)

Here P stands for the in-plane spontaneous polarization of LC molecules, f0 is the free
energy density contribution of the undistorted smectic A phase, α0, β, C and χ are ma-
terial constants, ε0 is the dielectric constant, J is the representative elastic constant of the
smectic C phase, E is an external electric field applied along the x-axis, and w = w(

⇀

r )
describes the coupling strength between LC molecules and the polymer strands. We pro-
ceed with minimization of f with respect to P and introduce dimensionless scaled quanti-

ties �f̃ = (f −f0) β

α2
0 (Tc−T )2 θ̃ = θ

√
β

α0(Tc−T ) , Ẽ = ECε0χ ( β

α0(Tc−T ) )
3/4, K̃ = K

β

d2α2
0 (Tc−T )2 ,

w̃ = w
β

α2
0 (Tc−T )2 , ∇̃ = d∇. Discarding the tildes it follows

�f = −θ2

2
+ θ4

4
+ J

2
|∇θ |2 − θE − wθ2

2
(2)

The first two terms enforce values θ = θ0 ≡ ±1, the 3rd term penalizes deviations from
a spatially homogeneous ordering, the 4th term introduces the source of the coherent
input signal, and the last term introduces coupling between LC molecules and the polymer
strands. Taking into account a standard form of the dissipation free energy term [29, 38] and

D
ow

nl
oa

de
d 

by
 [

M
at

ja
z 

Pe
rc

] 
at

 0
4:

20
 1

8 
Ja

nu
ar

y 
20

12
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after discretization θi = θ �ri), we obtain the following system of dimensionless dynamical
equations:

∂θi

∂t
= θi − θ3

i +
∑

j

Jij (θj − θi) + E + θiwi (3)

Here θi represents the scaled tilt angle value at the i-th site of the lattice which follows
from the discretization, wi stands for the local LC-polymer interaction and Jij measures
the coupling strength between the i-th and j-th LC molecule, the index j runs over the
nearest neighboring sites of the i-th site, and t stands for the dimensionless time. Note that
Jij values could be site dependent due to the spatially random structure of the perturbing
polymer network.

In Eq. (3) the properties of the coupling matrix Jij and the static random field wi

uniquely determine qualitatively different origins of static disorder. In particular, a binary
distribution of Jij being either 0 or J 0 results in the random dilution (RD) universality class,
whereby p stands for the fraction of diluted links. Randomly distributed elements of Jij

inside [J0 − �J, J0] yield the random bond (RB) universality class, whereby the limiting
case �J = 2J0 represent the spinglass (SG) universality class. Moreover, we consider
the random field (RF) universality class, where Jij = J0 and values of wi are distributed
randomly in the interval [−�w,�w].

In order to explore the vibrational resonance phenomenon we consider the external
electric field being constituted by a low- and a high-frequency periodic signal:

E = A cos(ω1t) + B cos(ω2t), (4)

where ω2 >> ω1 and A and B are the amplitudes of the low- and high-frequency signals,
respectively. Note that the amplitude A = 0.05 is too low to provoke switching between the
two possible configurations of the liquid crystal molecules without a proper high-frequency
electric periodic field.

In order to quantify the collective response of the system to the low-frequency periodic
field, we calculate the Fourier coefficients Q for the mean field


 = 1

N

∑
i

θi , (5)

where the coefficients are defined as

Q′ = ω1

πn

∫ 2πn/ω1

0

(t)eiω1t dt, Q = ∣∣Q′∣∣ . (6)

In Eq. (6) n = 100 signifies the number of oscillation periods used for the calculation, after
20 initial periods of the temporal traces were discarded as transients.

Now let us investigate the response of the examined model [Eqs. (3) and (4)] with re-
spect to the varying amplitude and frequency of the high-frequency signal. Results shown
in Fig. 2 reveal that for various frequencies ω2 the response Q first increases with increasing
amplitude B and then passes through a maximum and decreases again. This confirms that
there is indeed an optimal amplitude of the high-frequency signal at which the switch-
ing of the molecules orientation is at best correlated with the weak low-frequency signal.
Moreover, we notice that higher frequencies of the high-frequency signal require larger
amplitudes of the high-frequency vibration B, whereas the amplitude of the resonant re-
sponse Q remains more or less intact providing that the difference between the frequencies
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VR in a Ferroelectric Liquid Crystal 17

Figure 2. Vibrational resonance in the examined system – the resonant response quantified via Q in
dependence on the amplitude of the high-frequency signal B and the ratio between the frequencies of
the low- and high-frequency signals. The color coding is linear, blue depicting 0.0 and red 0.4 values
of Q. The number of bistable oscillators was N = 100 and other parameters used by the calculation
are: Jij = J0 = 1.0, ω1 = 0.05.

is large enough (ω2/ω1 > 50). Results presented in Fig. 2 thus confirm that a ferroelectric
LC confined to a plan-parallel cell is a suitable candidate for the manifestation of VR.
However, in the next section it remains of great interest to explore the impact of static
disorder on the phenomenon, especially because in the examined system it arises naturally
due to the random character of the polymer network that is introduced to the LC.

3. Effects of Static Disorder on the Vibrational Resonance Phenomenon

As announced, we examine the effect of different origins of static randomness described
in the previous section on the resonant behavior in the examined system. For this purpose
we fix the frequency of the high-frequency signal to ω2 = 20 and focus on the response of
the mean field quantified via Q in dependence on the amplitude B and strength and type of
static disorder. Results for random dilution, random bond and random field types of static
disorder are shown in the left, middle and right panel of Fig. 3, respectively. Evidently,
the random dilution disorder weakly affects the resonant response, since the quality of the
maximal response is roughly the same for all fractions of diluted links p. Only a slight shift
of the optimal amplitude of the high-frequency signal B towards higher values is inferred
as p is increased. For the random bond type disorder the dependence of the resonant
response on the disorder strength is almost identical as in the case of random dilution as
long as �J < J0. However, for higher levels of random bonds the quality of the resonantly
enhanced response decreases rapidly, so that in the limiting case where �J = 2J0, signaling
the spin-glass universality class, the resonant behavior is more or less vanished. In contrast
to the previous cases, the random field type disorder results in a progressive decrease of
the resonant response already for small amplitudes of random fields. Furthermore, there is
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18 M. Gosak et al.

Figure 3. Resonant responses Q as a function of B and strengths of different types of static disorder:
random dilution (right panel), random bond (middle panel) and random field (right panel). Parameters
used by the calculation are: ω1 = 0.05, ω2 = 20, J0 = 1.0, N = 100. The color coding is linear, blue
depicting 0.0 and red 0.3 values of Q.

a significant increase in the required amplitudes of the high-frequency signal which ensure
optimal synchrony between the low-frequency signal and the tilting of the LC molecules.

Finally it remains of great interest to compare the impact of different types of static
disorder on the VR phenomenon with the influence of additive dynamical noise. For this
purpose we add the stochastic term Dξi(t) to the model described by Eq. (3), where D
signifies the intensity of additive Gaussian white noise ξi with zero mean and unit variance.
Results showing the quality of the resonant response Q as a function of B and D are shown in
Fig. 4. It can be observed that the optimal resonant response is reduced as the noise intensity
is increased. In addition, the peak is shifted toward lower amplitudes of the high-frequency
signal. This effect is somehow expected since the noise associates with the high-frequency
driving and advances the resonance. Interestingly, the VR phenomenon disappears for

Figure 4. Response of the system Q as a function of the amplitude of the high-frequency signal B
and dynamical noise. The color-profile and the parameter values are the same as quoted in the caption
of Fig. 3.
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VR in a Ferroelectric Liquid Crystal 19

higher noise amplitudes and for B → 0 the system exhibits classical stochastic resonance.
This observation is in agreement with previous studies [23, 24], where the effect of additive
noise on VR in a bistable system has been tackled theoretically. The main reason why we
present this more or less known result is to emphasize the radical difference between the
impact of static and dynamic disorder on the VR phenomenon. It is rather surprising that
the additive noise evokes the opposite effect of all kinds of static disorder.

4. Summary

We have studied the phenomenon of vibrational resonance in a polymer-stabilized liquid
crystal that was confined within a plan-parallel cell. The introduction of a polymer network
may significantly enhance mechanical strength, but in addition, it also introduces a certain
degree of static disorder to the system [30, 31]. Given that the dynamics of this system
can be described successfully by an ensemble of coupled bistable oscillators [29], the
essential ingredients are thus at hand that warrant the observation of interesting noise
induced phenomena. As mentioned, we have here focused on vibrational resonance and the
role of static disorder. It is worth pointing out that a properly adjusted level of static disorder
may enhance the response of a system to weak periodic driving [29, 32–34], although this
has not yet been studied in conjunction with vibrational resonance. We remind the reader
that vibrational resonance can be observed upon the action of a biharmonic force with
very different frequencies. A proper frequency and/or amplitude of the high-frequency
harmonic signal can lead to a resonantly enhanced response of the system with respect
to the low frequency signal. Our results reveal that resonant responses provoked by the
high-frequency signal are crucially affected by static disorder, and moreover, that different
kinds of disorder change the behavior in a qualitatively different way. Indeed, it turns out
that any type of static disorder has a completely different impact on vibrational resonance
as additive dynamic noise.
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