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Building detection is a critically important task in the field of remote sensing and it is conducive to urban
construction planning, disaster survey, shantytown modification, and emergency landing, it etc.
However, few studies have focused on the task of the clustered building detection which is inescapable
and challenging for some relatively low space resolution images. The appearance structures of those
buildings are not clear enough for the single-building detection. Whereas, it has been found that the dis-
tributions of clustered buildings are mostly dense and cellular, while the backgrounds are not. This clue
will be beneficial to the clustered building detection. Motivated by the fact above and other similar den-
sity estimation applications, this work mainly focuses on the information mining mechanism of dense
and cellular structure. Firstly, we propose a concept of Clustered Building Detection (CBD), which con-
tributes to develop clustered building detection techniques of remote sensing images. Secondly, a sal-
iency estimation algorithm is proposed to mine the prior information for the clustered buildings.
Thirdly and most notably, combining with the CBD and the density saliency map, a Population
Capacity Estimation (PCE) method is presented. The PCE can be easily used to estimate the population
carrying capacity of certain areas and future applied for national land resource management.
Moreover, a Clustered Building Detection Dataset (CBDD) from Gaofen-2 satellite is annotated and con-
tributed for the public research. The experimental results by the representative detection algorithms
manifest the effectiveness for the clustered building detection.

� 2021 Elsevier B.V. All rights reserved.
1. Introduction

Object detection plays a critically significant role in the field of
remote sensing [1–6]. As a typical representative, building detec-
tion particularly plays a paramount role among natural disaster
survey, illegal construction surveillance, shantytown modification,
population capacity estimation, anti-terrorism surveillance, emer-
gency landing, etc [7–11]. There are a multitude of works about
building detection of remote sensing images. These existing meth-
ods can be basically divided into hand-designed feature based
methods and Deep Neural Network (DNN) based methods. The
hand-designed feature based methods usually require much tech-
nical expertise and skills [12]. To obtain semantic information of
the man-made objects, Morphological Building Index (MBI) is pro-
posed to describe the characteristics of shape, spectral, geometric
and contextual information [7]. But the original MBI method can
not deal with the problem of multi-scale building objects. In order
to overcome the inherent defects of MBI, multi-scale morphologi-
cal attribute index is presented to automatically extract buildings
[13]. Candidate building pixels are extracted to the Maximum
Stable Extremum Region (MSER) which will be fused into Indepen-
dent Component Analysis (ICA). And then the geometric features
are used to choose final buildings [9]. Inspired by the discrimina-
tion of the observed geometric features, Geometric Building Index
(GBI) is also proposed for accurate building detection [14]. Com-
bining statistical method with Plateau Objective Function (POF),
space statistical optimization technique is utilized to extract build-
ing footprint [10]. Although solving some problems of the building
extraction/detection, these methods still have many limitations for
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high-resolution remote sensing images. The reason is that the scale
variety, illumination intensity, different shapes, and complex back-
grounds of the remote sensing images are challenging to be dealt
with perfectly.

Reaping huge fruits from the theory and practice of DNN based
methods, and in order to overcome the limitations of the tradi-
tional building detection models, a multitude of DNN based studies
on building detection have emerged [15–17]. Shahzad et al. [18]
adopted a Fully Convolutional Network (FCN) to solve the problem
of automatic building detection. To obtain the mid-level semantic
information, Li et al. [19] proposed a cascaded DNN architecture
incorporating Hough transform algorithm. To represents the build-
ing’s high level features in the task of rural building detection and
positioning, Sun et al. [20] utilized a two-phase Convolutional Neu-
ral Network (CNN) model to mine hierarchical features. And Xu
et al. [21] captured the multiscale representation through a Feature
Pyramid Network (FPN) which attempts to hierarchically learn
much more discriminative features by combining the global
semantic structures and local attention details. And the work
[22] takes full advantage of the multi-resolution features to distin-
guish objects and cluttered backgrounds. To obtain a good univer-
sality and robustness, Dong et al. [23] designed suitable object
scale features for the CNN model. To manage the problem of scale
variety, Hamaguchi et al. [24] integrated several CNN models to a
robust unified model. Each of the CNN model is a specialist for a
certain size buildings. A multi-branch conditional Generative
Adversarial Network (GAN), the first GANs-based data augmenta-
tion, is proposed to release the problem of sample diversity [25].
Alidoost et al. [26] investigated the ability of CNN model for build-
ing detection. The CNN model is also used to verify the roof iden-
tification with a single aerial image. For detecting small and
dense buildings, Shu et al. [27] proposed a center point guided
method which is an end-to-end model for both training stage
and testing stage. This method aims at finding possible so-called
center point proposals for subsequence refinement module.
Whereas, Ji et al. [28] presented a Siamese weight-shared U-Net
network and contributed a multi-source dataset for building detec-
tion, especially conducive to large-size buildings. In order to detect
buildings in arbitrary direction, Yang et al. [29] proposed a U-
Rotation Detection Network (U-RDN) to detect the bounding
boxes. To solve the regional mismatching problem, Bai et al. [30]
employed a Density Residual Network (DRNet) and Region of Inter-
est (RoI) to align the texture information. In [31], Yang et al. pro-
posed a clustered object detection (ClusDet) network which is an
end-to-end framework. The key components of ClusDet include a
cluster proposal sub-network, a scale estimation sub-network,
and a detection network. To alleviate the computational time cost,
Xie et al. [32] presented a locally constrained YOLO [33] framework
which is a one-stage algorithm and the computation approximates
real time. Integrating with saliency map, Du et al. [34] proposed a
saliency-guided single shot detector to suppress clutter in complex
scenes. Applying the condition random field (CRF) and visual sal-
iency, a hierarchically coarse-to-fine model with a coarse layer
and a fine layer is proposed to detect the airport of remote sensing
images [35]. Based on the heatmap saliency, a Target Heatmap
Network (THNet) is proposed to address the problems of huge stor-
age and time consumption [36].

The building detection works reviewed above are mostly about
the buildings which have clear appearance structure. We can sel-
domly find any detection works about the clustered buildings.
The remote sensing objects are not only sparse and non-uniform,
but also tend to be highly clustered in certain regions. Take build-
ings for example, the remote sensing images consist of sparse
buildings and clustered buildings. For sparse buildings, the appear-
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ance structures are clear so that the objects can be distinguished
from the surrounding background. While for the clustered build-
ings, the appearance structures are not as clear as the sparse build-
ings. Especially, for some low space resolution images, the
buildings are very small in terms of pixels, making them hard to
be distinguished from the surrounding background. However, the
Clustered Building Detection (CBD) is equally significant for the
applications of the remote sensing images. The CBD also possesses
wide applications among urban planning, natural disaster survey,
illegal construction surveillance, anti-terrorism surveillance, and
emergency landing. Typically for some remote sensing platforms,
the spatial resolution is not clear enough for extracting structure
information of single buildings. Take Gaofen-2 satellite as an
example, some new challenging problems occur when performing
building detection on the 4-meter multi-spectral images.

We have observed that the distributions of clustered buildings
are mostly dense cellular, while the backgrounds not. This clear
clue will be beneficial to the detection of clustered buildings. The
knowledge of dense and cellular structure can be discovered to
predict the clustered buildings of remote sensing images. Another
clue and inspiration is from the works of the density estimation
applications introduced in Section 2, such as crowd counting esti-
mation, traffic jams, calculating cells and bacteria from micro-
scopic images, and animal population estimates for ecological
surveys, etc. These scenarios have similar clustered aggregation
characteristics with the clustered buildings. Motivated by the facts
mentioned above, this work mainly focuses on the information
mining mechanism of dense and cellular structure. The contribu-
tions of the work are fourfold and summarized as follows:

1) We firstly propose the concept of Clustered Building Detec-
tion (CBD). The task of the CBD is a medium task between
the single building detection and the semantic classification.
The major challenge of CBD is how to detect the clustered
buildings without clear appearance structures from rela-
tively low space resolution images. The concept of CBD con-
tributes to develop the detection techniques for clustered
objects.

2) A density saliency algorithm is proposed to mine the infor-
mation of dense and cellular structure for the CBD. This algo-
rithm is beneficial to reduce the computation time in
detection stage, because the density saliency with low prob-
abilities can be regarded as the backgrounds.

3) A new Population Capacity Estimation (PCE) method is pro-
posed. This method can easily predict the population capac-
ity of certain rural areas. The PCE combines with the CBD
and the density saliency map which can be used for the land
resource monitoring in ther future. This is a significant appli-
cation exploration for domestic satellites.

4) A Clustered Building Detection Dataset (CBDD) is con-
tributed for the public research. The dataset contains totally
1564 samples and is manually annotated. The clustered
buildings mainly contains rural clustered buildings. The
images of CBDD are from the Gaofen-2 satellite which is Chi-
na’s first independently developed civilian optical remote
sensing satellite with a sub-meter spatial resolution.

The remainder sections of this paper are organized as follows.
Some related works are reviewed in Section 2. The proposed
methodology is introduced in Section 3 which includes three sub-
sections. The flow architecture of the proposed method is showed
inFig. 1. Combiningwith theflowarchitecture,wedetailly introduce
the three subsections. The experiments and results are explained in
Section 4. Finally, we make the conclusion in Section 5.



Fig. 1. Flowchart of the proposed methodology. The proposed methodology mainly contains three components. The first component is building saliency estimation which
consists of the generation of density points and the estimation of saliency heatmap. The second component is Clustered Building Detection (CBD) which is conducted on the
input image with the guided fusion of the saliency heatmap. The third component is Population Capacity Estimation (PCE), and in which the detection results retrieve the
geographic building areas from the saliency heatmap.
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2. Related works

The clustered building detection of the proposed methodology
in this paper are based on the density saliency estimation and
object detection methods. Therefore, the typical density estimation
methods and object detection methods are reviewed in this
section.

2.1. Density estimation

It is becoming a hot topic that the density estimation is used for
the crowd counting estimation. The crowd count estimation can be
used for mass estimation in wide applications, such as political ral-
lies, civil unrest, sports activities, etc [37–39]. In addition, crowd
counting methods also have great potential to handle the similar
tasks in other areas, such as estimating the number of vehicles in
traffic jams, calculating cells and bacteria from microscopic
images, and animal population estimates for ecological surveys,
etc [40–42].

In existing datasets for crowd counting, the person is usually
annotated as a point. The annotated point usually is the center of
the person head. Through a Gaussian kernel, the annotated point
maps will be converted into density maps, and these heatmaps will
be regarded as ground truth for training density map generating
models. The common model of the crowd counting estimation is
defined as in Eq. 1.

DðxmÞ ¼
XN
n¼1

Nðxm; zn;r212�2Þ; ð1Þ
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where DðxmÞ denotes the density map, the term xm is a vector of
two-dimension coordinate of image pixel, the term zn is a vector
of two-dimension coordinate of annotated points. The
Nðxm; zn;r212�2Þ is the 2D Gaussian distribution. r212�2 is the
covariance matrix. The loss function is usually defined as Eq. 2.

Loss ¼
XM
m¼1

FðDgtðxmÞ � DestðxmÞÞ; ð2Þ

where the term DgtðxmÞ is the density map of the ground truth, and
DestðxmÞ is the density map of the estimated density map. The Fð�Þ is
a distance function.

For crowded person density estimation in aerial images, the
work [38] proposed a Bayesian linear regression method to learn
a mapping function from local features to crowd density. Using
the local features of invariant color components, the work [40]
formed a Probability Density Functions (PDF) for sequence images
to capture density information of people. Based on the former idea,
the work [42] made a crowd motion estimation for the aerial
images. The work [41] developed a real-time monitoring method
for crowd counting combining video surveillance and GIS. The
method firstly obtained crowd counting models for each camera
utilizing statistics regression methods. And then the monitoring
system captured, analyzed, and presented all crowd counting
information integrating a large number of cameraes and GIS. The
work [39] contributed a big synthetic dataset without manpower
annotations. This dataset can give a more changeable environment,
larger range number of people for the crowd counting study. In
order to overcome the limitation of the ground-truth density
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map, the work [43] proposed a Bayesian loss from the point anno-
tations, and formed a density contribution probability model.

The evaluation metrics of the crowd counting estimation are
usually Mean Absolute Error (MAE) and Mean Square Error
(MSE). In certain space resolution of remote sensing images, the
clustered buildings have similar appearances with the crowd
scene. Hence, these density estimation works can provide some
inspirations for the preliminary estimation of the Clustered Build-
ing Detection (CBD).

2.2. Object detection methods

Object detection mainly focuses on the positioning and classifi-
cation of objects in discrete images or sequential videos. This task
is a fundamental problem in the field of computer vision. The
related techniques can be widely used in the video surveillance,
robot navigation, industry detection, and so on [44]. The traditional
object detectors are mainly based on the hand-crafted feature [45–
50]. The VJ detector [45], HOG detector [46], DPM detector [49] are
typical representatives of the traditional detection methods. The VJ
detector [45] is firstly regarded as the real-time method for human
face detection. Motivated by the requirement of pedestrian detec-
tion and scale-invariant feature transform, the HOG detector [46] is
a great improvement of feature representation for the task object
detections. The DPM detector [49] achieved the milestone of the
traditional approaches of object detection. The DPM is an extension
of HOG detector and the core idea is ”divide and conquer”. The
inference of DPM obtains the final results by assembling the results
of different object components. However, these hand-crafted
detectors need lots of expert experiences. The generalization abil-
ity of these classifiers can not meet the need of wide-range
applications.

As the development of the Deep Neural Networks (DNN), a
magnitude of DNN-based methods of object detection emerged
[51]. These methods can be divided into two-stage methods and
one-stage methods. Usually, the two-stage methods find the region
proposals at the beginning, and then predict the location and cat-
egory of proposal objects in the next step. The R-CNN [52] firstly
utilized the selective search method to generate region proposals.
Secondly, the AlexNet to used to extract the features from the
fix-resized image. Finally, the features from the candidates are pre-
dicted by SVM classifier. In order to overcome the limitation of the
R-CNN [52], the Fast R-CNN [53] which supports the bounding box
regression is proposed. However, the computation is still time con-
suming. Ren et al. [54] combines the region proposal network
(RPN) to propose a Faster R-CNN. The Faster R-CNN is the first
end-to-end detector of deep network. For generic instance seg-
mentation, He et al. added a segmentation branch to the Faster
R-CNN. This architecture is called Mask R-CNN [55].

In some works, the object detection is regarded as a regression
problem and implemented in one stage. These one-stage methods
predict the object location and category in an unified model, such
as YOLO [33], SSD [56], etc. Different from the two-stage methods,
the computational time of YOLO [33] method is relatively faster.
The YOLO method includes feature extraction and bounding box
detection. First of all, the YOLO divides the input image into S� S
grids. And next the bounding box and category probability of each
grid will be separately predicted. Whereas, the SSD [56] method
can balance the precision and the computational speed by combin-
ing the anchor-mechanism and regression theory. In order to settle
the imbalanced problem between the negative samples and posi-
tive samples, the RetinaNet [57] designed a Focal Loss, and
achieved the nearly mean average presicion with the two-stage
methods.

The anchor-based methods above usually select certain points
with certain step length in images. And then based on the center
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of each anchor, multiple bounding boxes are designed with fixed
height and width. These bounding boxes are used for predicting
the potential objects. However, a big problem of anchor-based
methods is how to design proper anchors and bounding boxes.

Recently years, a large number of anchor-free methods are pro-
posed, and these methods are mainly focus on the key points of the
objects. The CornerNet [58] formed a heatmap for each bottom-
right corner. The idea is that the detected paired corner points have
similar predicted embedding vectors. Some similar appearances
can generate similar embedding vectors, so this hypothesis is not
always useful. Adding a center point to the CornerNet [58], the
CenterNet [59] utilized a triplet to represent keypoints. However,
in the situation of dense objects, this method can not conduct per-
fectly. The CentripetalNet [60] attempted to avoid the shortcom-
ings of the CornerNet [58] and CenterNet [59], combining with
the centripetal shift of the corner keypoints.

The object detection methods have been successfully applied in
the natural scenes. With the evolution of huge demands, object
detection equally plays an important role in the remote sensing
field, such as airplane detection, ship detection, airport detection,
building detection, etc.

3. The proposed methodology

The most existing works do not focus on the problem of Clus-
tered Building Detection (CBD) for remote sensing images. How-
ever, this problem is inescapable and challenging for some low-
space resolution remote sensing images. It has been found that
the distributions of clustered buildings are mostly dense and cellu-
lar, while the backgrounds are not. This clue is beneficial for the
detection of clustered buildings. Digging the knowledge of dense
and cellular structure can help predicting the clustered buildings
of the remote sensing images. Motivated by the fact mentioned,
this work mainly focuses on the information mining mechanism
of dense and cellular structure.

In the following subsections, we present the framework of the
proposed CBD and Population Capacity Estimation (PCE). The flow
architecture of the proposed method is showed in Fig. 1. The pro-
posed methodology mainly contains three components which are
introduced as following three subsections. The first component is
building saliency estimation which consists of the generation of
density points and the estimation of saliency heatmap. The second
component is the CBD which is conducted on the input image
fused by the saliency heatmap. The third component is the PCE
in which the detection results retrieve the geographic building
areas from the saliency heatmap.

3.1. Building saliency estimation

3.1.1. Density points
Observing the input image, the texture of the clustered building

is obviously different from the backgrounds. The appearance of the
clustered buildings are cellular structure, while the backgrounds
are not. Besides, the goal of this work is to find an explainable
way to the clustered building detection. In order to obtain the
building saliency heatmap of the cellular structure which is con-
ducive to the building detection, we firstly need to obtain the
map of density points which are dense in the clustered building
areas. The map of density points can be converted into building sal-
iency heatmap based on the statistical bins and Gaussian kernel. In
order to obtain the map of density points, the edge detection is
performed and then the edge map E is obtained and based on Eq.
(3).

Eðx; yÞ ¼ a� EXðx; yÞj j þ ð1� aÞ � EYðx; yÞj j ð3Þ
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where the EXj j and EYj j is gray value of horizontal edge detection
and vertical edge detection for the image separately, the term a is
a weighted factor and it is set as 0.5 in the paper. In order to calcu-
late the saliency map, we change the edge map E into the binary
image ET using the Eq. (4)

ETðx; yÞ ¼ sgnðEðx; yÞ � TÞ; ð4Þ
where the term T is the threshold for the binary image, sgnð�Þ is sign
function.

Thus, the density points are estimated. Compared to the crowd
counting dataset, these density points of clustered buildings can be
directly obtained only using texture estimation method without
manual annotations.

3.1.2. Saliency heatmap
The map of density points is utilized for generating the saliency

heatmap. Corresponding to the ET , let C ¼ C1;1;C1;2; . . . ;CP;Q�1;
�

CP;Qg denotes the two dimensional statistical bins,

Ci;j ¼
XM
x¼1

XN
y¼1

ETi;j ðx; yÞ; ð5Þ

where P; Q are separately statistical bin number of the horizontal
axis and the vertical axis, and M;N are the height and width of sin-
gle bin. Through the operation of Gaussian kernel, the filtered image
F is calculated as in Eq. 6. The pseudo color saliency heatmap is also
shown in Fig. 2.

Fðx; yÞ ¼ 1Pr
i¼�r

Xr
j¼�r

Gði; jÞ

Xr

i¼�r

Xr
j¼�r

Cðxþ i; yþ jÞGði; jÞ; ð6Þ

where the term r is the radius of the Gaussian kernel Gði; jÞ which is
defined in the following Eq. (7).

Gði; jÞ ¼ 1ffiffiffiffiffiffiffi
2p

p
r

exp � i� i0ð Þ2 þ j� j0ð Þ2
2r2

 !
; ð7Þ

where the ði0; j0Þ is center point of the certain sliding window, r2 is
variance of the Gði; jÞ.

Three examples with the saliency heatmaps for the clustered
building images are showed in Fig. 2. The heatmap can reasonably
express the visual saliency of the clustered buildings. Although
some pixels are mistakenly identified as saliency of high probabil-
ity, most of them can be excluded in the object detection stage.

3.2. Clustered building detection

3.2.1. Guide filter
The original images consist of complicated backgrounds which

may interfere the object detection and reduce the precision of the
detectionmetrics. Therefore, the input image is filtered by theGaus-
sian heatmap H. Here we design two strategies: Soft Guide Filter
(SGF) and Hard Guide Filter (HGF). The SGF only uses the probabili-
ties of the heatmap to filtered the original image in Eq. (8).

Ioðx; yÞ ¼ Iðx; yÞ � Hðx; yÞ; ð8Þ
where Hðx; yÞ ¼ Fðx;yÞ

maxðFÞ�minðFÞ. However, this strategy may be not ben-

eficial to reserving the color information of the clustered building.
Therefore, we also design the second strategy HGF in Eq. (9). The
original image is filtered in binary mask obtained with a threshold
on the heatmap. In this case, the color information of the clustered
building is reserved. In addition, the possibly mistaken detections
can be reduced.

Ioðx; yÞ ¼ Iðx; yÞ � sgnðHðx; yÞ � THÞ; ð9Þ
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where the term TH is the threshold of the heatmap, sgnð�Þ is a sign
function.
3.2.2. Detection stage
The object detection for the clustered buildings is conducted

and the detection algorithms are performed on the guide fusion
map. In this work, the Faster R-CNN [54] is adopted as the primary
object detection tool. So the main framework of the Faster R-CNN
[54] is shown in Fig. 1. Through convolution layers, the feature
maps are obtained. And then the Region Proposal Network (RPN)
is utilized to extract region candidates from the feature maps.
Applying ROI pooling, the proposal feature maps are acquired,
and they are used to calculate the classification information and
localization information. By means of the full connection and soft-
max in the final layer of DNN, the classification probability can be
calculated. The classification score denotes the recognition proba-
bility of certain category. The localization of objects is usually
regarded as a regression problem. The total optimization loss is
the sum of classification softmax loss and box regression loss.
3.3. Population Capacity Estimation

In 2016, Jean et al. [61] utilized deep learning framework to
estimate country’s socio-economic indicators, such as the con-
sumption expenditure and family asset. The work adopted the
high-resolution remote sensing satellite images, urban nightlight
data as well as the family annual income and expenditure data
from the World Bank. Five African countries, such as Nigeria, Tan-
zania, Uganda, Malawi, and Rwanda, are selected to demonstrate
the effectiveness and feasibility. Inspired by this case and in order
to explore a promising application based on the Gaofen-2 satellite
images, a population capacity estimation (PCE) model of certain
area is established. The population capacity is related to the build-
ing areas and the population density. Therefore, the Geographic
Building Area (GBA) firstly needs to be estimated.

Rather than using rectangle predicted boxes, the saliency heat-
map are more reasonable to calculate the GBA. The rectangle pre-
dicted boxes contains many non-building areas which will cause
the results be far away from the real value. So the GBA can not
be directly calculated on the predicted pixel boxes. Whereas, the
saliency heatmap can be assisted to estimate the GBA. First, the
components of the saliency heatmap will be selected by using
the predicted boxes of detection results. The pixel areas of these
selected clustered buildings will be calculated. In order to calculate
the pixel areas for the population estimation, the building saliency
heatmap are utilized with the threshold TH which is defined in Eq.
9. The term TH is set according to the parameter experiments.
Therefore, the pixel areas are calculated by statistical method on
the building saliency heatmap with the threshold TH . Then the
GBA can be obtained through a conversion coefficient. Let Aavg is
the average living area and defined in Eq. (11). Thus, the Population
Capacity Estimation (PCE) can be calculated as Eq. (10).

PCE ¼
XL
i¼1

Ai � f � PRi

Aavg
; ð10Þ

where the term Ai is the pixel area of the i-th detected clustered
buildings. The term f is the conversion coefficient which converts
the pixel contour area to the geographic area, and it is decided by
optical parameter of the remote sensing satellite. The PRi is the Plot
Ratio of the i-th geographic clustered building, and which is the pro-
portion of the real building areas for the geographic area. The term L
is the connected domain number of the detected clustered
buildings.



Fig. 2. Examples of saliency heatmap of clustered building images. The clustered building images are in the left column, and the relative saliency heatmaps are in the right
column.
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According to the statistics data form the National Bureau of
Statistics of China,1 the average living area in urban area is 39.8
m2, and that in rural area is 48.9 m2 in the year 2019. Thus, the
Aavg is defined as following Equation.

Aavg ¼
39:8 if RC ¼ 1
48:9 otherwise

�
; ð11Þ

where the RC denotes regional category, and which can be divided
into urban area and rural area. Let RC 2 1;0f g denotes the set of
regional category. The elements in this set separately denote urban
area and rural area.
1 http://www.stats.gov.cn/.
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4. Experiments and results

4.1. Dataset

In order to verify the Clustered Building Detection algorithms,
one publicly available Clustered Building Detection dataset (CBDD)
is contributed and can be downloaded from Baidu Netdisk.2 The
images of the CBDD are sampled and annotated from the Gaofen
Image Dataset (GID) [62]. The GID is a large-scale dataset for land
use classification, and of which the images are from Gaofen-2 satel-
lite. The Gaofen-2 satellite belongs to the High-Definition Earth
2 https://pan.baidu.com/s/1w8zcX14Q-wJABh2ePSf6aw (password: 4aiv).

http://www.stats.gov.cn/
https://pan.baidu.com/s/1w8zcX14Q-wJABh2ePSf6aw


Table 1
Technical payload specification of the Gaofen-2 satellite.

Payload Spectrum Range (um) Spatial Resolution (m) Scanning Range (km) Side Swing Angle Revisit Time (day)

Panchromatic 0:45 � 0:90 1 45 (Two Cameras) �35� 5

Multispectral 0:45 � 0:52 (blue) 4 45 (Two Cameras) �35� 5
0:52 � 0:59 (green)
0:63 � 0:69 (red)
0:77 � 0:89 (near infrared)

Table 2
The building statistics of CBDD. The scale division follows the COCO.

Scale Instance Number Percentage Pixel Number

small 6 0.0007 < 322

medium 5354 0.5860 322 � 962

large 3776 0.4133 > 962
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Observation System (HDEOS) which is promoted by China National
Space Administration (CNSA). As the second satellite of the HDEOS,
the Gaofen-2 is the first sub-meter remote sensing satellite of China.
The main technical specifications of Gaofen-2 satellite is shown in
Table 1. Gaofen-2 carries two panchromatic and multispectral
(PMS) sensors. On the board of Gaofen-2 satellite, the scanning range
is 45 km with 2 combined swath. The resolution of panchromatic
sensor is 0.8 m in the sub-satellite point, and that is 3.24 m of the
multi-spectral sensor. The panchromatic sensor is with effective spa-
tial resolution of 1 m, and the multi-spectral sensor is with effective
spatial resolution of 4 m. The field of view of single camera is 2:1�.
The global covering observation of Gaofen-2 satellite is within 69
days, and its repeat observation is within 5 days. Since its launch
in 2014, Gaofen-2 has played a significant role in a host of applica-
tions, such as land resource survey, environmental monitoring, crop
estimation, and construction planning, etc.

The proposed CBDD is sampled from the GID, and the space res-
olution of CBDD is 680�720. To achieve the goal of CBD, the exper-
iment dataset CBDD is manually labeled in the form of the PASCAL
VOC.3 The dataset contains 1564 images and the same number anno-
tation files. To facilitate the experimental comparison, the format of
the CBDD is also converted into another version in the form of
COCO.4 The GID has 150 samples from Gaofen-2 satellite. Each of
them is with a spatial resolution of 6800 � 7200 pixels fully covered

506 km2 geographic area. The spatial resolution of GID is 4 m, and
the images are acquired from the multispectral sensors of Gaofen-
2 satellite. Besides, these images are much diverse from not less than
60 China’s cities.

The building statistics of CBDD is in Table 2. The pixel numbers
of building objects range from hundreds to hundreds of thousands.
Particularly, the scale division of building instances follows the
COCO, thus the instance number of small clustered building is 6
and the percentage is 0.0007. Therefore, the experiments in this
paper mainly focus on the medium scale instances and large scale
instances. The small clustered buildings do not be taken into con-
sideration. The samples consist of mountain, great plain, river,
gobi, desert, etc. The backgrounds of the samples differ tremen-
dously, and which are also showed in Fig. 3.

4.2. Metrics and setups

4.2.1. Metrics
The COCO metrics are adopted to quantitatively evaluate the

proposed method. In the field of object detection, the Intersection
3 http://host.robots.ox.ac.uk/pascal/VOC/.
4 https://cocodataset.org/.
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over Union (IoU, Eq. (12)) means the overlap ratio between the pre-
dicted boxes and the ground truth boxes.

IoU ¼ Bpredict \ Bgt

Bpredict [ Bgt
; ð12Þ

where the Bpredict is the area of predicted box, and the Bgt is the area
of ground truth box. The COCO metrics are based on the precision
and recall as Eq. 13 and Eq. (14).

precision ¼ TP
TP þ FP

; ð13Þ

recall ¼ TP
TP þ FN

; ð14Þ

where the term TP is True Positives, FP is False Positives, and FN is
False Negatives. These terms are all calculated based on IoU.

The COCO metrics include AP;AP50;AP75;APs;APm, and APl. The
AP is the average precision over different IoU thresholds. The
AP50 is equal to the PASCAL VOC metric and the IoU threshold is
0.50. The AP75 is a much strict metric with IoU threshold of 0.75.
The APs is for the small objects which areas are smaller than 322.
The APm is for medium objects which areas are between 322 and
962. The APl is for large objects which areas are bigger than 962.
The series of AP metrics are comprehensive indicators for the
object detection.

4.2.2. Setups
In the experiments, we divided the annotated dataset into train

subset, validation subset, and test subset with the percentage
0:25;0:25, and 0:5. In our experiments, the train subset and valida-
tion subset are together used for the training. In the experiments, 6
representatively different methods, including Faster R-CNN [54],
YOLO [33], SSD [56], RetinaNet [57], CornerNet [58], CentripetalNet
[60], are selected to perform the clustered building detection.

The competitive experiments are all conducted on the MMde-
tection platform5 (The MMDetection is an open source object detec-
tion toolbox based on PyTorch. It is a part of the OpenMMLab project
developed by Multimedia Laboratory, CUHK6). The models are
trained with batch size 16 on 4 Nvidia GeForce GTX 1080 GPUs (4
images per GPU). The initial learning rate is set to 0.02 and weight
decay is 0.0001. The optimizer is SGD. The maximum epoch is set
as 200, because most of the models achieved convergence below
epoch 50. The random flip ratio is 0.5. Most of the comparative
methods on MMdetection are implemented with the COCO format,
so the CBDD is also converted from the PASCAL VOC format to the
COCO format.

In this paper, the conversion coefficient f of Eq. (10) is set as
10.33. The f is calculated from the spatial dimension (6800 �
7200 pixels) of the GID image and its geographic area (506

km2). The PRi in Eq. (10) of certain detected clustered building
area can not be directly obtained from the detected results. How-
ever, the buildings of the courtyards in China’s rural areas are
5 https://github.com/open-mmlab/mmdetection/.
6 http://mmlab.ie.cuhk.edu.hk/.
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Fig. 3. Examples of the annotated dataset CBDD. The examples consist of mountain, great plain, river, gobi, desert, etc. The samples are diverse because their backgrounds
differ tremendously.

Table 3
Parameter experiments of term TH based on the Faster R-CNN [54].

Method Backbone TH AP AP50 AP75 APm APl

Faster R-CNN [54] Resnet-50 0.1 0.409 0.796 0.375 0.389 0.435
0.2 0.410 0.797 0.369 0.397 0.447
0.3 0.408 0.802 0.375 0.390 0.440
0.4 0.401 0.791 0.351 0.383 0.437
0.5 0.398 0.786 0.347 0.381 0.430
0.6 0.395 0.782 0.345 0.379 0.427
0.7 0.393 0.779 0.345 0.378 0.425

Fig. 4. The average precision (AP) curve as the heatmap threshold TH . This experiment is based on Faster R-CNN [54] with the backbone Resnet-50.
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mostly constructed in families and the roads are laying between
neighbour buildings. Thus, the detected clustered buildings in this
paper can be regarded as single-floor buildings, and the PRi is set
as 0.5.
134
4.3. Results and analysis

The specific values of the parameters in the paper are set by
parameter experiments. The parameters include threshold T of



Fig. 6. The average precision (AP) curve as the threshold T of Eq. (4). This
experiment is based on Faster R-CNN [54] with the backbone Resnet-50.

Fig. 5. The average precision (AP50) curve as the heatmap threshold TH . This experiment is based on Faster R-CNN [54] with the backbone Resnet-50.
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Eq. (4), radius r and sigma r of Eq. (6). Some intelligent optimiza-
tion algorithms [63–66] could be considered to optimize these
parameters. However, these parameters are hyper-parameters in
different stages, so the optimization problem is not a convex opti-
mization problem. Therefore, we adopted alternating optimization
strategy (fix other parameters) to find the appropriate parameter
setting. The curves are separately showed in Figs. 6–8 in the
revised manuscript.

The parameter experiment of term TH is reported in Table 3.
This experiment results will decide the setting of the term TH .
The Faster R-CNN [54] is adopted with backbone Resnet-50 to per-
form the parameter experiment. The number of the probability
heatmap is floating, so the TH is between 0.0 and 1.0. For more
intuitive display, the primary indicator AP and AP50 are selected
to plot in Figs. 4 and 5.
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From the figures and the table, we can see the best metrics are
achieved when the term TH is set as 0.2 and 0.3. Therefore, the TH

can be set between 0.2 and 0.3. In the following experiments, the
TH is set as 0.25.

The parameter experiment of threshold T of Eq. (4) is showed in
Fig. 6. The AP achieves the best result when the threshold T is set as
150. Therefore, the threshold T is set as 150 in the following
experiments.

The parameter experiments of radius r of Eq. (6) and Sigma r of
Eq. (7) are separately showed in Figs. 7 and 8. Therefore, the term r
is set as 24, and the term r is set as 8 in the following experiments.

Table 4 shows the AP results of separately experimental strate-
gies. The testing methods are based on different image scales and
backbones which are using the presets for the COCO dataset. The
Resnet-50 and Resnet-101 are used for the Faster R-CNN. Because
the number of the small instances is small, and the experiment
results of APs are all 0. The APs are not essential to report in the
statistic tables. According to the preliminary experiment with the
guide fusion of saliency heatmap. The method based Resnet-50
achieved better APs (the primary AP is 0.405) than that of
Resnet-101 (the primary AP is 0.386). Then we add the guide
fusion to the Faster R-CNN with Resnet-50. We test both of these
two strategies, including soft guide fusion (SGF) and hard guide
fusion (HGF). The results demonstrate the strategy of HGF can
improve the AP scores of CBD, while the SGF can decrease the AP
scores. The reason for this phenomenon is that the SGF can erode
the available information of clustered buildings in color space.
Moreover, we can find the resized scales can effect the APs, such
as the testing results of YOLOv3 and SSD. Those methods which
resized scales are close to the original 680� 720 will have better
APs.

In Fig. 9, some example pairs are displayed from column (a) to
column (j). The detected results are on the top of the image pairs
and the corresponding saliency heatmaps are on the bottom of
the image pairs. On the whole, the detection results of the clus-
tered buildings are reasonable and satisfactory. We can see that
the actually detected objects have the most powerful energy areas



Fig. 7. The average precision (AP) curve as the radius r of Eq. (6). This experiment is based on Faster R-CNN [54] with the backbone Resnet-50.

Fig. 8. The average precision (AP) curve as the Sigma r of Eq. (7). This experiment is
based on Faster R-CNN [54] with the backbone Resnet-50.

Table 4
Clustered building detection results of competitive methods using COCO metric.

Method Scale Backbone

YOLOv3 [33] 320 � 320 Darknet-53
YOLOv3 [33] 608 � 608 Darknet-53

SSD [56] 300 � 300 VGG-16
SSD [56] 512 � 512 VGG-16

RetinaNet [57] 680 � 720 Resnet-50

CornerNet [58] 511 � 511 HourglassNet

CentripetalNet [60] 511 � 511 HourglassNet

Faster R-CNN [54] 680 � 720 Resnet-101
Faster R-CNN [54] 680 � 720 Resnet-50
Faster R-CNN+SGF (ours) 680 � 720 Resnet-50
Faster R-CNN+HGF (ours) 680 � 720 Resnet-50
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in the saliency heatmaps. These results can demonstrate that the
saliency heatmaps of the clustered buildings can guide the detec-
tion task. First, we calculate the predicted pixel areas of the
detected objects in the images. Second, we convert these predicted
pixels into the GBA. Finally, we report the accordingly predicted
population capacity estimation, that is predicted PCE. The pre-
dicted GBA and PCE of the examples are reported in Table 5, and
also displayed in the example images of Fig. 9.

The evaluation of the PCE is not easy to make. For one thing,
the true population statistics of areas are not easily accessible.
Although a multitude of population statistics are possessed by
the administrative department, the statistics of particular areas
are not within easy reach. For another, the building areas do not
have directly strong correlations to the real population. We clarify
that the PCE is not the real population estimation of certain areas,
but it is just an indicator of potential bearing capacity. Therefore,
there is no available metric which can make an objective evalua-
tion for the PCE. This study provides a feasibility exploration for
the significant applications with Gaofen-2 and other domestic
satellites.
AP AP50 AP75 APm APl

0.291 0.724 0.162 0.293 0.300
0.294 0.733 0.161 0.292 0.296

0.312 0.725 0.208 0.295 0.338
0.346 0.765 0.260 0.344 0.355

0.227 0.628 0.089 0.245 0.205

0.177 0.370 0.149 0.265 0.135

0.357 0.715 0.308 0.356 0.362

0.386 0.758 0.352 0.378 0.422
0.405 0.797 0.364 0.397 0.433
0.388 0.782 0.346 0.373 0.422
0.410 0.797 0.369 0.398 0.447



Fig. 9. Typical results of CBD by Faster R-CNN+HGF. Image pairs are showed from column (a) to column (j). The detected results are on the top of the image pairs, while the
corresponding saliency heatmaps are on the bottom of the image pairs.

Table 5
The statistics of Population Capacity Estimation for some examples, and which are
also displayed in Fig. 9.

Image Pred. Pixels Pred. GBA (m2) Pred. PCE

(a) 47873 247264.05 5056.5
(b) 3967 20489.56 419.0
(c) 25762 133060.73 2721.1
(d) 10674 55131.21 1127.4
(e) 7494 38706.51 791.5
(f) 46824 241845.96 4845.7
(g) 16212 83734.98 1712.4
(h) 19332 99849.78 2041.9
(i) 36444 188233.26 3849.4
(j) 29245 151050.43 3089.0
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In order to show that the proposed method is practical or rea-
sonable, the village population statistics of China is reported in
Table 6. The originally statistical data is retrieved from the Ministry
of Housing and Urban–Rural Development of the Peoples Republic
of China.7 The village population statistics are average population of
administrative villages in different provinces and the national total.
In Table 6, the average population of administrative villages are from
7 http://www.mohurd.gov.cn/xytj/tjzljsxytjgb/index.html.
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hundreds to thousands. The experimental samples are sampled from
different cities throughout the country, hence the data in Table 6 can
be regarded as a rough estimation for the PCE. The calculated PCEs in
Table 5 are fit with the rural population distributions of China.

Some unsatisfying examples of clustered buildings are showed
in Fig. 10. The detected objects highlighted in yellow rectangles
are overlapped or contained. Especially, the appearances of these
ambiguity examples are mostly irregular, strip-like, large-size. This
phenomenon can cause a problem that the detected results may
not beneficial to the APs. It is because the APs are based on the
metrics of precision and recall. In the field of object detection,
the precision and recall are based on the accurate statistics of the
detected objects. But the overlapped results of the clustered build-
ings may result in inaccurate statistics. However, these detected
results can not be absolutely regarded as mistakes. On the con-
trary, the detected objects of these overlapped bounding boxes
are clustered buildings, and they are true when taking no account
of the manually annotated ground truths. There are two reasons for
this phenomenon. On one hand, the clustered buildings have flex-
ible structures which may cause ambiguity problem. On the other
hand, the annotation work is subjective for persons. Take one strip-
like object of image (b) in Fig. 10 as an example, one person anno-
tates the object using single rectangle box, while the other person
uses double. Accordingly, the occurrences of ambiguous results are
unavoidable in testing stage. The ambiguity problem of the clus-
tered objects could be a possible research topic in the future.

http://www.mohurd.gov.cn/xytj/tjzljsxytjgb/index.html


Table 6
The village population statistics of China (2019).

Name of
regions

Average population of administrative
villages

Name of
regions

Average population of administrative
villages

Name of
regions

Average population of administrative
villages

Beijing 925.24 Zhejiang 1226.43 Chongqing 2295.12
Tianjin 803.08 Anhui 2942.67 Sichuan 1334.90
Hebei 1061.72 Fujian 1474.64 Guizhou 1975.39
Shanxi 825.50 Jiangxi 1839.60 Yunnan 2548.04
Shandong 805.15 Inner

Mongolia
1214.88 Tibet 451.24

Liaoning 1597.38 Henan 805.15 Shaanxi 1320.47
Jilin 1443.20 Hubei 1457.12 Gansu 1175.28
Heilongjiang 1889.93 Hunan 1457.12 Gansu 900.98
Shanghai 1967.68 Guangdong 2560.88 Ningxia 1668.60
Jiangsu 2495.42 Guangxi 2860.93 Xinjiang 1261.04
Hainan 2003.00 National

Total
1506.24 – –

Fig. 10. Examples of unsatisfying detection results due to the flexible structures of the clustered buildings. Those objects highlighted in yellow rectangles are overlapped or
contained.
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5. Conclusion

In this paper, we proposed a concept of Clustered Building
Detection (CBD) which mainly contributes to develop the detection
techniques of cluster objects. Specifically, we proposed a building
saliency estimation method and two strategies for the guide fusion
of the saliency maps and original images. Typically, the proposed
fusion strategy of Hard Guide Filter (HGF) for Faster R-CNN
achieved the best AP scores. The AP score reached 0.410 and the
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AP50 score reached 0.797. Most notably, combining with the CBD
and the density saliency map, a Population Capacity Estimation
(PCE) algorithm is introduced. This algorithm can easily predict
the potential population capacity of certain areas. Moreover, a
Clustered Building Detection Dataset (CBDD) based on the
Gaofen-2 satellite images is contributed. We hope that this newly
proposed dataset CBDD will be one of the benchmark databases for
the researchers to develop novel algorithms for CBD. The experi-
mental results manifest the effects of the proposed method both
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qualitatively and quantitatively. However, the ambiguity problem
of the clustered objects could be a possible research topic in the
future.
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