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ABSTRACT

Our social interactions vary over time and they depend on various factors that determine our preferences
and goals, both in personal and professional terms. Researches have shown that this plays an important
role in promoting cooperation and prosocial behavior in general. Indeed, it is natural to assume that ties
among cooperators would become stronger over time, while ties with defectors (non-cooperators) would
eventually be severed. Here we introduce reinforcement learning as a determinant of adaptive interaction
intensity in social dilemmas and study how this translates into the structure of the social network and its
propensity to sustain cooperation. We merge the iterated prisoner’s dilemma game with the Bush-
Mostelle reinforcement learning model and show that there exists a moderate switching dynamics of
the interaction intensity that is optimal for the evolution of cooperation. Besides, the results of Monte
Carlo simulations are further supported by the calculations of dynamical pair approximation. These
observations show that reinforcement learning is sufficient for the emergence of optimal social interac-
tion patterns that facilitate cooperation. This in turn supports the social capital hypothesis with a mini-
mal set of assumptions that guide the self-organization of our social fabric.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

In nature and society, there are various kinds of interactions to
support the stability of biological, social, and technological sys-
tems. On the one hand, through the interactions, agents could com-
pete for resources and pursue the goal of maximizing their
interests, which is consistent with the evolution theory in terms
of the survival of the fittest. On the other hand, however, there
extensively exists cooperative interaction behavior between
agents, which could not be well explained by the evolution theory.
Therefore, understanding the emergence of cooperation becomes a
key to solving some social dilemmas [1,2]. Aim to this issue, the
evolutionary game theory has provided an effective framework
because it can well capture the relationship between interactions
and the evolutionary dynamics of cooperation [3-5].
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With the evolutionary game theory, the prisoner’s dilemma
game (PDG) is frequently adopted as a standard framework to
reflect the interest conflicts between agents and groups [6-8]. In
this basic model, two agents need to choose a strategy from coop-
eration and defection at the same time. Thus, there are four differ-
ent strategy combinations, wherein mutual cooperation is the best
case for the collective benefit, while defection is the best decision
to maximize agent’s interest regardless of the strategy of the oppo-
site. In traditional cases, the iterated PDG is usually used in a well-
mixed infinite population, where agents will interact with the rest
in an equal way. However, it is difficult for cooperation to survive
under such a scenario. Aim to resolve this issue, hundreds of sce-
narios have been proposed both theoretically and experimentally.
Typically, Nowak summaries five rules for the evolution of cooper-
ation, including the kin selection, direct and indirect reciprocity,
group selection, and network reciprocity [9-11]. Besides, many
other mechanisms are demonstrated to promote the evolution of
cooperation, for instance, coevolution of strategy and structure
[12], and mobility[13]. In particular, network reciprocity indicates
that cooperators will resist the invasion of defectors by forming
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spatial clusters in networks [14-16]. Along this line, one can study
agents’ communications and their relationship formed via daily
routines on a network, in which vertexes represent agents and
edges reflect the relationship between them [17-20]. Taking
advantage of networks’ property, the research of cooperation on
various networks arises to figure out the topological effects on
cooperation [21-27]. Besides, some other mechanisms nourishing
cooperation in structured population have also been put forward
[28-39].

In spite of great progress, the vast majority of posting works are
based on a prior assumption that agents interact with all the near-
est neighbors. In other words, agents are supposed to have extre-
mely strong interaction intensities to interact with their nearest
neighbors during a whole evolutionary process, which is inconsis-
tent with realistic observations. In reality, agents may not neces-
sarily interact with all their nearest neighbors, and the
interaction with neighbors will also change under different condi-
tions. In this sense, the absolute interaction relationship between
agents can be replaced by a stochastic probability, namely, the
interaction intensity, which leads to diverse interaction patterns
for agents, and thus various evolutionary dynamics [40-43].
Although it has been demonstrated that adopting such interaction
probability in the iterated PDG is able to improve cooperation in
structured populations, these works mainly focused on a constant
interaction probability. It is apparent that the interaction intensity
of an agent will change according to the specific environment.
Thus, the adaptive interaction intensity needs to be studied, with
which agents could change their interactions adaptively.

In recent years, the reinforcement learning (RL) methods,
rooted in psychology and neuroscience, have become another
approach to understanding the cooperation in evolutionary pro-
cesses [44,45]. Ordinary RL algorithms contain the Monte Carlo
method [46], Sarsa [47], dynamic programming [48], temporal dif-
ferences method[49], Q-learning [50]. The core idea of RL methods
is that the action an agent takes in the next step is affected by the
reward, which is the feedback of the environment to its current
state. For example, positive feedback, like a high reward, will lead
to the enhancement of its current action when encountering the
same state the next time, and vice verse [51,52]. Motivated by this
mechanism, works that combine reinforcement learning and evo-
lutionary game for solving social dilemmas have attracted much
research interest [53,54]. These studies have established a reason-
able framework, under which the strategy (cooperation or defec-
tion), is similar to the action in RL, and the payoff can be
regarded as the reward. The Bush-Mostelle (BM) model, another
classic RL algorithm, enables agents to adaptively change their cur-
rent actions according to their rewards from the current states,
which is helpful to depict the self-regarding process [55,56]. Under
the BM model, the larger the reward exceeds an agent’s aspiration,
the more possibly the agent will continue adopting its current
action. Based on this, we could study the dynamical process of
the evolutionary game with the adaptive interaction intensity.
Specifically, agents could strengthen (or weaken) the current
strategies (interaction intensities) when receiving a higher (or
lower) payoff than aspiration.

In this paper, we focus on exploring the effect of the adaptive
interaction intensity on cooperation in both structured and well-
mixed populations. We also investigate the co-evolution progress
where the interaction intensity of agents changes as their strate-
gies update. The main contributions of this paper can be summa-
rized as i) We propose an adaptive interaction intensity model to
optimize population benefits and inspire agent behaviors. ii) We
construct a valid dynamical pair approximation framework for
adaptive interaction intensity, which fills the gap in this direction.
iii) We demonstrate the self-organization behavior pattern in the
interaction fabric, which reflects the internal factors of social har-
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mony. In the following part, we first show that the introduction of
adaptive interaction intensity improves the cooperative level of
iterated PDG on square lattices. We analyze the influence of the
adaptive interaction intensity on cooperation from the view of
co-evolution processes and microscopic mechanisms. Further-
more, we use the pair approximation method to obtain an analyt-
ical result. Finally, we validate the robustness of the proposed
mechanism on a well-mixed population.

2. Preliminaries

Game theory provides a framework to investigate human
behaviors in interactions. In a two-agent two-strategy game, each
agent has two optional strategies, cooperation (C) or defection
(D). After the interaction, agents obtain payoffs according to the
payoff matrix:

C D
c(R S (1)
D\T P

where R, P, S, and T denote the reward for mutual cooperation, pun-
ishment for mutual defections, sucker’s payoff, and the defective
temptation when one agent chooses cooperation and the other
chooses defection, respectively. These parameters decide the game
type. If the parameters satisfy the condition T >R >P > §, it is a
prisoner’s dilemma game; if the parameters satisfy the condition
T >R >S>P,itis a snowdrift game; if the parameters satisfy the
condition R>T > P > S, it is a stag hunt game; if the parameters
satisfy the condition R > T and S > P, it is a coordinate game.

Every agent in a game pursues the maximum of its own payoff.
Nash equilibrium refers to a strategy combination that contains the
optimal strategies of two agents. The Nash equilibrium is (D, D) in
prisoner’s dilemma game, (C,D) and (D,C) in snowdrift game,
(C,C) and (D, D) in stag hunt game, and (C, C) in coordinate game.

The Bush-Mostelle (BM) method, one of the classic reinforce-
ment learning algorithms, describes the self-regarding process
based on the current reward and action. It describes the probability
that an agent takes the specific action next time. Assume agent’s
action (C or D) and reward in time t as a; and r;, the probability
Pr.1 of taking action C in ¢ + 1 is described as:

pf+(1_pt)sts at:C,StZO
S a=Cs <0

Deut = Dt + D¢St, [_ , St < 7 @
pliptsh a[—D,SrZO
pr—(1-py)se, ar=D,s; <0

where s; (-1 < s; < 1) is the stimulus in t and is defined as:

s; = tanh[g(r; — A)], 3)

where A is the aspiration level and g (8 > 0) is the sensitivity to
re — A. Positive s, will increase the probability of taking action C
and reduce the probability of taking action D, while negative s, will
reduce the probability of taking action C and increase the probabil-
ity of taking action D. Specially, when t = 0, p, obeys the uniform
density on [0, 1], independently for different agents.

3. Model and method

We consider evolutionary games on square lattices with peri-
odic boundaries and Von Neumann neighborhood, where each ver-
tex denotes an agent who can interact with four nearest neighbors
Q along edges. Agents play the pairwise prisoner’s dilemma game
with their neighbors. To simplify yet without losing generality, we
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adopt the weak prisoner’s dilemma game as our main model in the
following discussions, where S=P=0,R=1and T=b (b = 1).
Then, we define p, ., as the willingness that agent x would like
to interact with neighbor y. In our model, we assume the willing-
ness of an agent to interact with different neighbors is indepen-
dent, and so does the willingness of different agents. Thus, the
interaction intensity, i.e., the probability that agent x and her
neighbor y would successfully interact, can be denoted as:

Dxy = Px—y X Py_x- (4)

Based on this defination, p,,, the interaction intensity between x
and y, depends on the interacting willingness of x towards y,p, .,
and the interacting willingness of y towards x,p, .,. Note p,, = p,,
because of the symmetry. We assume that each pair of agents inter-
acts following the interaction intensity with probability 1 -,
where € denotes the probability that agents would randomly choose
to interact or not. (In this paper, the parameter € will be set as 0.1
for all simulations.)

For convenience, we divide the four nearest neighbors into two
sets based on whether the interaction happens, including the inter-
active neighbors ; and non-interactive neighbors Q,. In each
Monte Carlo step, agent x plays the game with her interactive
neighbors and obtains an accumulated payoff I, at the step t. With
all these definitions, we can then describe the dynamics of our
model as two processes. First, agent x updates strategy according
to the “imitation rule”, where uses Fermi function is a well-
known method to calculate the imitation probability:

f= 1
Y 1 4exp (I —

; (5)
I1,) /K]

where II, is the accumulated payoff of the randomly selected
neighbor y and the noise K is set to be 0.1. Then, the interactive will-
ingness of agent x towards y will adaptively change according to the
BM model:

pxﬂy(t) (‘1 _pxﬂy(t))SXY(t) axy(t) = 1?5xy(t) > 0

_ pX*?y(t) px ( ) y(t)vaxy(t) Lsxy(t) < 0

PesltF D=0 b () = Pa sy (055(0). 8y (1) = 0.5 (6) > O
pxﬂy(t) (] pxﬂy(t))SXY(t) axy(t) = Ovsxy(t) < 0

(6)

where a,, = 1 and a,, = 0 represent interaction and non-interaction
between agent x and y at the step t, respectively, and s, (t) denotes
an stimulus that can be described as:

Sxy(t) = tanh [ﬁ(rxy( ) — Ax(t)]7 (7)

where 1y, (t) is the payoff of agent x obtained from neighbor
¥,A«(t) = I, /4 is the aspiration level averaged over the four nearest
neighbors, and f represents the sensitivity of sy, (t) to ry,(t) — Ax(f).
Finally, we can give detailed aspirations and payoffs of focal coop-
erators and defectors in different configurations in Fig. 1. Note that

N D) @) 00 00 00
oca
plaer D) P) DD @) OO

Fig. 1. Aspirations of cooperators and defectors. Aspiration is defined as the average
payoffs of agents. Blue and red circles represent cooperators and defectors,

respectively, and circles colored with both yellow and red represent non-interac-
tion or defectors. Agents can only obtain payoffs by interaction with cooperators.

0 1/4 2/4 3/4 4/4

0 1b/4 2b/4 3b/4 4b/4
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Ty (t) = 0 when there is no interaction between two agents or the
neighbor (opposite) y adopts the defection strategy, which means
agents can only obtain a payoff from interaction with cooperative
neighbors. In addition, when a,,(t) = 0,1,y = 0 and s, is either less
than or equal to zero. However, the BM model normally contains
four scenarios. Thus, without loss of generality, we still describe
the whole four scenarios in Eq. (7).

Initially, each agent randomly chooses cooperation or defection
with the same probability and her willingness to interact with each
nearest neighbor subjects to a uniform distribution [0, 1]. To avoid
the willingness being too small or large during the evolutionary
process (the evolution process may be frozen), we set the mini-
mum of the willingness as 0.01 and the maximum as 1. We con-
duct all the Monte-Carlo simulations (MCS) on a square lattice
with L = 300 to obtain the evolution data. We take an average of

the last 5,000 steps (with a total being 3 x 10*) to represent the
steady states, and average over ten independent simulation runs
for a fixed set of parameter values.

4. Pair approximation

As shown in Fig. 2, a randomly selected 2-site configuration of a
square lattice is the basic structure of the pair approximation
method and it can contribute to the pair evolutionary dynamics,
where the focal agent B is the randomly chosen nearest neighbor
of the focal agent A in the strategy updating process. The payoff
of A (IT4) and B (ITp) are determined by their nearest neighbors
X,¥,z,Band u, v,w, A, respectively. For example, if A adopts cooper-
ation, B adopts defection, and A learns the strategy of B, as a result,
the pair ¢ — c and ¢ — d will decrease while the paird —cand d — d
will increase.

In our model, the accumulated payoff of the focal agent depends
on the actual interactive neighbors. In order to calculate the pay-
offs of focal agents, we need to know the interaction intensity of
agents toward cooperators (interaction intensity towards defectors
is omitted because it produces no payoffs). For a focal cooperator
agent A, her neighbors are divided into interactive neighbors and
non-interactive neighbors according to whether the interaction
happens. Then, the overall ¢ — ¢ link denotes the link between A
and all her cooperator neighbors, and the actual ¢ — ¢ link denotes
the link between A and her interactive cooperator neighbors. Thus,
for the whole population, we use the overall ¢ — ¢ link n..(t) to
denote links between the focal cooperator agents and their cooper-
ator neighbors regardless of the interaction intensity, and the
actual ¢ — c link n./(t) to denote links between the focal coopera-
tor agents and their interactive cooperator neighbors. In other
words, n.c/(t) is the subset of n(t). In this paper, these parameters
are obtained from the Monte-Carlo simulation results. Specifically,
the ratio of actual interacting c — c links n./(t) to the overall c — ¢
links n..(t) in the last m steps of the total M steps is used to repre-

X u

y - @
A B
Z W

Fig. 2. 2-site configuration. A randomly selected 2-site configuration in square
lattice, where A and B are two focal agents with nearest neighbors x,y,z B and
u, v,w, A, respectively. Agent A learns the strategy of agent B according to the
“imitation rule”.
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sent the average interaction intensity of cooperators towards coop-
erators, which can be denoted as Tc,c:

8)

In the same way, the average interaction intensity of defectors

towards cooperators I, can be written as:

nd‘c/(t)
9)

Id,c =

For a given 2-site configuration in which A is a cooperator and B is a
defector, the focal agent A accumulates a payoff:

HC(X7y7Z7TC‘C> = Tc,c X Ne(X,¥,2) x 1, (10)
and the focal agent B accumulates a payoff:
My (u, v,w,1ac) = lac x ne(u, v,w) x b, (11)

where n.(x,y,z) and n.(u, v,w) denote the number of cooperators
among neighbors x,y,z and u, v, w of focal agent A and B, respec-
tively. In a given configuration, when A is a defector and B is a coop-
erator, the focal agent A’s payoff can be calculated similarly.

The pair evolution with interaction intensity is determined by:

pc,c = Z[Tlc(xy}’»z) + l]pd,xpd,ypd,z Zpaupc,vpc,wfd(x.y,z]d‘c)Hc(u,v,w,ic.c)

XYz up,w
+ Z[_nc (X7y7 Z)]pc,xpc.ypc,z Zpd,upd‘vpd,wfc(x_y_zjm)ﬂd(u‘y‘wjd[) s
XYz uv,w

(12)

Ped= Z[l —N¢(X,,2) + 1]pd.xpd.ypd,z Zpc,upc,vpc.wfd(xy,z.idc)ﬁc(u,y.ch_c)

Xy.z uo,w
+ Z[nﬂ (X7y7z) - z}pc,xpc.ypc,z Zpdﬂpd-Vpdvac(xy.z.i[_c)ﬂd(u,v‘w.id_c)7
XYz u,o,w
(13)
where n.(x,y,z) denotes the number of cooperators among neigh-
bors x,y,z of the focal agent. Inserting Eq. (11) and (12), f,_,, sub-
jects to the Fermi function as described in Eq. (6)
- _ — 1
fd(XVJ’-ZJd.c)*C(U»V-,W-lc,c) ~ 1+exp| (Mg (xy.2lac)-Te (wrwlec) ) /K] 14
; : (14)

fC (xyzlec)—d(uowlse) ~ Trexp (e (xy.2dec )T (u. 0wy ) ) /K]

And p,.. denotes the frequency of overall ¢ — c links in the popula-
tion, p. 4, denotes the frequency of overall ¢ — d links in the popula-
tion, p,. denotes the frequency of overall d—c links in the
population, and p,, denotes the frequency of overall d — d links in

the population. Note that we have omitted the multiplier factor
2pca
pip]
see that p. 4 = pg. and p.. + Pcg + Py + Pag = 1 because of the sym-
metry and the natural constraint. Then, the frequency of coopera-
tion can be acquired as f.=p. +p.q Apparently, when the

interaction intensity I., equals to 1, it becomes the same case as
the traditional pair approximation method. In other words, our
model makes an extension of the previous work in terms of the evo-
lutionary process and thus provides a more comprehensive frame-
work [57].

because it has no influence on the equilibrium. One can also
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5. Results

In weak prisoner’s dilemma game, the defective temptation b is
a pivotal parameter that influences the frequency of cooperation,
while in the BM model, # plays an important role in deciding the
stimulus, which is related to the dynamics of interaction intensity.
So we start by exploring how the frequency of cooperation varies
as a function of the parameter b and . As shown in Fig. 3, obvi-
ously, cooperation is promoted by the introduction of the adaptive
interaction intensity when compared to the traditional case (i.e.
p = 0). That is, the critical values at which cooperation becomes
extinct are enlarged. In particular, cooperation is significantly
enhanced when g is large. For instance, when 8 = 2, defectors can-
not dominate the population until b is larger than 1.5. While for
small g, the enhancement of cooperation is relatively slight. For
example, when g = 0.1, cooperators can barely survive when b is
around 1.05. In addition, it is worth noticing that there is a sharp
transition from the full cooperation phase to the full defection
phase in the population. Given a certain g, as b increases, coopera-
tors first dominate the population (marked as the blue area in
Fig.3), then transiently co-exist with defectors (marked as the nar-
row white area), and finally die out with the dominance of defec-
tors (marked as the red area).

We then adopt the extended pair approximation method to the-
oretically demonstrate the promotion of cooperation and the sharp
transition of the cooperation frequency. Take the cases of = 0.1
and g = 2, where cooperation is fragile and competitive in face of
the invasion of defection, as an example. In Fig. 4, we plot the coop-
eration frequency f. as a function of b based on both simulation
and theoretical results. It shows the same transition trends in both
simulation and theoretical analysis, although there exists little dif-
ference in the specific values since the evolutionary process on lat-
tice networks is very complicated and often beyond the
consideration of the pair approximation method. Comparison
between simulation and theoretical results also confirms that the
adaptive interaction intensity has a beneficial effect on coopera-
tion. Namely, large B extends the range of b where cooperators
survive.

To evaluate the above-observed phenomena, Figs. 5 (f=2) and 6
(B=0.1) show the distribution of interactive neighbors and strate-
gies as the MCS step increases. Several characteristic spatial pat-

2.0

1.5

Q1.0

0.5

1.8

2.0

Fig. 3. Frequency of cooperation in b— f panel. Steady state frequency of
cooperation is plotted as a function of b and g. The panel is separated into three
phases. Blue, red and white represent full cooperation phase, full defection phase
and the mixed strategy phase, respectively. We obtain the results with a random
distribution for strategies.
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1.0 ~0-0-0-0-0-0-0: T T q
ﬁ —o— ﬂzz‘heu
—0= 2
08 I —o— ﬂzo-ltheu 1
—0—= p=0.1,
0.6} ¢ .
WL
04} ;
0.2F 1
0.0 h__0000000000000000000000000000000000000¢
1.0 1.2 1.4 1.6 1.8 2.0
b

Fig. 4. Frequency of cooperation as a function of b with various f. Squares and
circles represent the simulation and theoretical results, respectively. Orange and
green represent results obtained with g = 0.1 and g = 2, respectively. We obtain the
results with a random distribution for the strategy in simulations.

terns of the entire evolutionary process with a prepared initial dis-
tribution are used to demonstrate the microscopic evolutionary
dynamics under the influence of adaptive interaction intensity.
There are three types of agents on the network, i) cooperator (blue)
with at least one interactive neighbor; ii) defector (red) with at
least one interactive neighbor; iii) isolated agent (yellow) with
no interactive neighbors. As shown in Figs. 5(a) and 6(a), the ini-
tially prepared distribution divides the whole population into
cooperative and defective areas. Then, because of the randomly ini-

Neurocomputing 513 (2022) 104-113

tialized interaction willingness of agents, there are scattered yel-
low spots in blue and red stripes. In addition, since the early
evolution (the first two columns) of different b seems to be similar,
only some representative snapshots for all cases are plotted. In par-
ticular, we can observe the enduring (END) period where coopera-
tion endures the invasion of defection and the expanding (EXD)
period where cooperation spreads [58,59].

For the case of § = 2, isolated agents surrounded by cooperators
disappear very quickly in the early stage, which means they have
built at least one interaction with their cooperative neighbors.
However, in defective areas, isolated agents hardly establish inter-
action with neighbors. In a word, agents are more willing to inter-
act with cooperators than defectors. This leads to a strong
interaction intensity within the former and a weak interaction
intensity within the latter. As evolution proceeds, there will be dif-
ferent snapshots for different cases of b. When b = 1.45, the EXP
period that features the expanding of cooperation shows up, and
cooperation finally dominates the population. While the END per-
iod that features the endurance of cooperation is popular when
b =1.55[60]. b = 1.5 leads to the coexistence of cooperation and
defection in the population. Of particular interest, the invasion of
defection always brings isolated agents, which means that agents
prefer to maintain interaction with cooperative neighbors instead
of defective neighbors. In addition, agents are motivated to build
new interactions with the cooperative neighbors and cut off the
interaction with the defective neighbors. Therefore, during the
evolution process, agents will dynamically adjust their interaction
relationship with neighbors and gradually reach an optimal inter-
action intensity. Similar evolutionary patterns are reflected in the
case of = 0.1. But there exists some difference. Specifically, the
evolutionary process is slower in the case of g = 0.1. For example,

b=1.45

b=1.50

b=1.55

steps=0 steps=10

steps=30000

steps=100

Fig. 5. Snapshots of the strategy distribution in evolutionary process. Snapshots are taken at step 0, 10, 100, and 30000, respectively with b = 1.45,b = 1.5 and b = 1.55. The
layout follows the direction of arrows. Fist and second columns show the representative initial evolution process when g = 2 for different b. Blue, red, and yellow represent

cooperators, defectors, and isolated agents, respectively.
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from Fig. 6 (a) to (b), isolated agents surrounded by cooperators
need more time to build interaction with neighbors. Furthermore,
the invasion of defection causes less emergence of isolated agents,
which means the behavior of cutting off the interaction with defec-
tors becomes slower, too. These results imply that a small g will

Neurocomputing 513 (2022) 104-113

slow down the evolution process for agents to obtain the optimal
interaction intensity.

To further explore the impact of the interaction intensity on the
evolutionary process, Fig. 7 presents the evolution characteristic of
cooperation and the interaction intensity. For different 8, it is clear

b=1.025

b=1.050

b=1.075

steps=0 steps=50 steps=150 steps=30000
Fig. 6. Snapshots of the strategy distribution in evolutionary process. Snapshots are taken at step 0, 10, 150, and 30000, respectively with b = 1.025,b = 1.05 and b = 1.075.
The layout follows the direction of arrows. Fist and second columns show the representative initial evolution process when g = 0.1 for different b. Blue, red, and yellow

represent cooperators, defectors, and isolated agents, respectively.

Pgc — fc
(b) - : - :

— P
1~0 T T T T

(a)

0.8

1.0

values

=2,b=1.5 o0

500 1000
steps

f=0.1, b=1.05 .0t

0.0 L
0 500

100 200
1500 2000 0

0 100
1500

200
2000

L
1000
steps
Fig. 7. Evolution of interaction intensity and cooperation frequency. The average values of the interaction intensity between cooperators p.., between defectors and

cooperators py., and the frequency of cooperation f, evolve with time, which are represented by blue curve, red curve, and black curve, respectively. From left to the right,
parameters are set as f = 0.1,b = 1.05 and 8 = 2,b = 1.5, respectively. The insets are the amplifications of the first 200 steps of whole evolution.
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that the overall evolutionary patterns are similar, except for some
notable differences. When B is small, the interaction intensity
evolves relatively slowly. Consequently, it leads to the inability
to provide the optimal interaction intensity for the evolution of
cooperation, to effectively promote cooperation. However, when
B is large, the interaction intensity evolves very fast, and it already
reaches a steady state before the EXP period. This implies for large
B, the population will efficiently establish an optimal interaction
relationship. In addition, this optimal interaction relationship can
benefit the cooperation of the population. These results are consis-
tent with observations in Fig. 3. (See Fig. 8).

The number of interactive neighbors distribution for both coop-
erators and defectors is various for different cases of g and b. In the
full cooperation phase (Fig. 8(a) and (d)), agents establish more
interactions with their neighbors to obtain higher payoffs. While
in the full defection phase (Fig. 8(c) and (f)), agents cannot receive
payoffs whether they interact with neighbors or not, so they will
finally form a random interaction relationship. It is worth noticing
that in Fig. 8(b) and (e), where the cooperators and defectors co-
exist at a steady-state, the distributions vary for different 8. The
number of interactive neighbors of cooperators under 8 = 2 is lar-
ger than the case of g = 0.1. On the contrary, the number of inter-
active neighbors of defectors under g = 2 is smaller than the case
of g = 0.1. This indicates that a relatively larger g is more beneficial
for cooperation. More importantly, one can find when g is large, the
distribution of both cooperation and defection is closer to that in
the phases of full cooperation and defection, respectively. This
means when f is large, the interaction intensity evolves faster, so
agents will efficiently establish a steady interaction relationship
that is closer to the optimal interaction intensity. Thus, it becomes
more clear that the interaction intensity is enhanced by coopera-
tion, which in return promotes cooperation in the population.
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At last, we test whether the model presents a similar effect on
the well-mixed network. Fig. 9 shows the cooperation frequency
at the steady-state on a well-mixed network with 25 nodes. Ini-
tially, cooperators and defectors distribute randomly with the
same probability, and the interaction willingness follows a uniform
distribution. Since the final cooperation frequency will always be 0
or 1, the cooperation frequency is an average of 50 simulations for
each combination of parameters § and b. The introduction of the

1.4
b

1.6 18 2.0

Fig. 9. Frequency of cooperation in b — f panel. The panel shows the average
cooperation frequency of 50 independent simulations as a function as b and f. Red
represents full defection phase in all 50 simulations, and blue represents full
cooperation phase in all 50 simulations. The initial interaction willingness follows
the uniform distribution in [0, 1].
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Fig. 10. Illustrations of the well-mixed networks. (a), (b), and (c) represent the initial network, network in full cooperation phase, and network in full defection phase,
respectively. Grey lines denote the interaction between agents. Yellow nodes denote agents at the initial state regardless of their strategy. Blue and red nodes denote
cooperators and defectors, respectively. We obtain the results with parameters § = 2,b = 1.2 in (b), and b = 1.6 in (c).

adaptive interaction intensity improves cooperation. Moreover, as
B becomes large, the critical value at which cooperation goes
extinct is also enlarged.

The interaction networks of the full cooperation phase and full
defection phase are given in Fig. 10 (b) and (c), respectively. As the
initial interaction willingness of agents follows a uniform distribu-
tion, there will only be a quarter of edges having successful inter-
actions in the initial network, as shown in Fig. 10(a). In the full
cooperation phase, nearly all pairs between two cooperators have
successful interactions. While in the full defection phase, the inter-
actions are heavily sparse. Therefore, the results on both lattice and
well-mixed networks prove the interaction intensity is enhanced
between cooperators, and the optimal interaction intensity will
promote cooperation.

6. Discussion

We investigate the evolutionary process of the iterated pris-
oner’s dilemma game with adaptive interaction intensity based
on the reinforcement learning method. Different from the tradi-
tional evolution process, agents with adaptive interaction intensity
can decide whether to interact with nearest neighbors or not. The
results demonstrate that the adaptive interaction intensity
enhances the cooperation in the population and is beneficial for
solving social dilemmas. The evolution of the interaction intensity
and cooperation is affected by the sensitivity parameter of the BM
model. When this parameter is small, the interaction intensity and
the strategy will mutually influence each other for a relatively long
period. On the contrary, when the parameter is large, the interac-
tion intensity will fast evolve to an optimal point, which enlarges
the critical value of cooperation becoming extinct. In other words,
with a relatively large sensitivity, the adaptive interaction intensity
makes cooperation more competitive to survive. In addition, we
obtain a universal conclusion in the well-mixed population, which
excludes the influence of network structure. That is, cooperative
behavior enhances interaction, which conversely improves cooper-
ation in groups. The conclusions we obtained are also theoretically
confirmed by the extended pair approximation.

Inspired by the reality that the interactions between agents
change over time, we use the BM model to realize the adaptive
interaction intensity. The simulation and theoretical results
demonstrate adaptive interaction intensity can promote coopera-
tion greatly. One may find that since this mechanism allows agents
to timely terminate the interactions with poor-behaving neigh-
bors, it leads to the appearance of isolated agents who have no
interactive neighbors. However, we would stress that timely stop-
ping the interaction with poor-behaving neighbors and establish-
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ing new interactions with good-behaving neighbors still is a wise
choice in the long term. Because it promotes cooperation in the
population, which is beneficial for not only agents themselves
but also the whole population [57].

Our work is a simple attempt to introduce adaptive behavior
into evolutionary games. In addition to the adaptability of the
agents’ interacting behavior, it is also worth considering the envi-
ronmental interventions and constraints in the further works.
Along the line of our work, there could be some future endeavors.
For example, agents might be able to switch the type of the game
according to self-regarding skills and judgments (e.g., Q-learning
process [46]). We hope this work will be an inspiring exploration
that sheds light on solving social dilemmas.
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