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Abstract. We investigate the emergence of target waves in a cyclic
predator–prey model incorporating a periodic current of the three competing
species in a small area situated at the center of a square lattice. The periodic cur-
rent acts as a pacemaker, trying to impose its rhythm on the overall spatiotempo-
ral evolution of the three species. We show that the pacemaker is able to nucleate
target waves that eventually spread across the whole population, whereby three
routes leading to this phenomenon can be distinguished depending on the
mobility of the three species and the oscillation period of the localized current.
First, target waves can emerge due to the synchronization between the periodic
current and oscillations of the density of the three species on the spatial grid. The
second route is similar to the first, the difference being that the synchronization
sets in only intermittently. Finally, the third route toward target waves is realized
when the frequency of the pacemaker is much higher than that characterizing the
oscillations of the overall density of the three species. By considering the mobil-
ity and frequency of the current as variable parameters, we thus provide insights
into the mechanisms of pattern formation resulting from the interplay between
local and global dynamics in systems governed by cyclically competing species.
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1. Introduction

Spatially extended excitable systems are investigated frequently due to their ubiquity in several
biological, chemical and physical settings [1]–[6], as reviewed comprehensively in [7, 8]. In
particular, pattern formation and the related self-organized emergence of target waves have
received ample attention in the past [9]. Interestingly, although typically lacking an excitable
character, systems describing competing interactions in natural and social systems may exhibit
similar phenomena as well [10]–[14], including the formation of target waves [15]–[20].
Previous works have revealed that patterns in excitable systems emerge primarily due to
the instabilities induced by the interplay between the fast excitatory and slow recovery
variables [21]–[23]. For example, the Bromous acid diffuses much faster than Ferroin in the
Belousov–Zhabotinsky reaction, and the cyclic adenosine monophosphate (cAMP) diffuses
much faster than membrane receptors in Dictyostelium discoideum. However, many patterns,
especially those occurring in mobile populations such as in migrating animals or moving
bacteria, cannot be explained by the mechanism that is applicable for the emergence of pattern
formation in excitable systems. This is mainly because the excitability as a dynamical property
is absent in systems where the moving of individuals makes all species equivalent in terms of
their diffusion [24, 25].

In the social amoeba D. discoideum, periodic currents of cAMP have been introduced in
order to study the movement of the cells controlled by the emerging propagating waves of
cAMP as during aggregation in the mound [26]–[28]. When D. discoideum cells were left
starving, they began to emit pulses of cAMP which were relayed to more distant cells by
radially divergent waves. Periodic injections of cAMP in slugs were found to be leading to the
chemotactic attraction of anterior-like cells to the tip of the micropipette [26, 27]. Dormann and
Weijer reported that propagating chemoattractant waves are thus able to coordinate the periodic
movement of the cells, and moreover, that synchronization between the frequency of cAMP
injection and cell movement may occur [28]. While recently Cyrill et al [6] proposed a model
that generates coherent target waves in recurrent single species populations, the mechanisms
behind the formation of target waves within multi-species populations in the presence of an
external periodic current have not yet been investigated.

The cyclic predator–prey model provides a concise description of competition in a
multi-species environment. An experimental study by Kerr et al [24] revealed that the
mechanism of the rock-paper-scissors game can promote the biodiversity of the three strains
of Escherichia coli. Recently, Reichenbach et al proposed a rock-paper-scissors game with
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mobile players [10, 32], where the mobility was found to have a critical effect on species
diversity. In particular, when the mobility was below a critical value, all species were found
to coexist by forming spiral waves, whereas above this threshold, biodiversity was jeopardized.
Motivated by the experimental studies on the three strains of E. coli [24, 25] and the species
of D. discoideum [26]–[28], we here investigate the pattern formation in a cyclic predator–prey
model, incorporating a localized periodic current of the three competing species. The periodic
current essentially acts as a pacemaker on the population, trying to impose its rhythm on the
spatiotemporal evolution of the species, but it can also be regarded as a localized inhomogeneity
affecting the overall system dynamics [29, 30]. We report the emergence of coherent target
waves, in general emerging due to the nucleation induced by the localized current. More
precisely, three routes to target wave formation can be distinguished based on the interplay
between local and global dynamics. Local thereby refers to the properties associated with
the oscillations within the paced region of the spatial grid, whereas global refers to the
overall dynamics of the three species. In particular, target waves can emerge due to either the
constant or the intermittent synchronization between the local and global dynamics, or when
the frequency of the pacemaker, reflecting directly the so-called local dynamics, is much higher
than the frequency characterizing the oscillations of the overall density of the three species,
i.e. the global dynamics. Interestingly, although the presently employed model is based on
microscopic interactions among individuals only, the target waves emerge on a macroscopic
level. Furthermore, our work indicates possibilities of pattern control and selection in systems
governed by cyclical interactions.

2. Three-species cyclic predator–prey model

Based on the previous works of Reichenbach et al [10, 31, 32], we employ a three-species cyclic
predator–prey model with the following specifications. Nodes of an L × L square lattice present
mobile individuals belonging to one of the three species, which we denote by A, B and C . Each
node can either host one individual of a given species or it can be vacant. Vacant sites, which we
denote by ⊗, are also the so-called resource sites. Within the model three processes are possible,
namely predation, reproduction and exchange, whereby these occur only between neighboring
nodes.

Predation. Species A eliminates species B at a rate 1, whereby the node previously hosting
species B becomes vacant. In the same manner, species B can eliminate species C , and
species C can eliminate species A, thus forming a closed loop of dominance between them.

Reproduction. Individuals can place an offspring at a neighboring vacant node ⊗ at a rate 1.

Exchange. Two individuals, including vacant sites, can exchange their position at a rate α,
thus introducing the mobility of the participants. According to this description, predation
(upper row), reproduction (middle row) and exchange (lower row) can be described by the
reactions:

AB
1

−→ A⊗, BC
1

−→ B⊗, C A
1

−→ C⊗,

A⊗
1

−→ AA, B⊗
1

−→ B B, C⊗
1

−→ CC,

XY
α

−→ Y X,
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Figure 1. Schematic representation of the periodic current introduced to an
11 × 11 lattice. Here the radius is equal to R = 3.5. The blue area is subjected to a
periodic injection of the three species, in the recurrent order A → B → C → A,
each and every multiple of T0 (see also the main text for details). The gray
area is initially populated either by A, B, C and ⊗ with equal probability
(initial condition 1 (IC1)) or solely with vacant sites (initial condition 2 (IC2)).
Throughout this paper, we will use R = 10.5 and L such that 0.016 R/L 6 0.02
unless stated otherwise. We note that the results reported below are robust to the
variations of this ratio as long as the pacing area (blue) is large enough to nucleate
target waves by appropriate M and T0.

where XY ∈ {A, B, C, ⊗}. According to the random walk theory [35], the mobility of
individuals M can be defined in terms of the exchange process as M = 2α/L2, meaning that
it is proportional to the typical area explored by a mobile individual per unit time.

Unlike the deterministic approach, which regards the time evolution as a continuous
process, here we make use of a stochastic simulation algorithm whereby the temporal evolution
can be considered as a random walk process. The most commonly applied stochastic simulation
algorithm was developed by Gillespie [33, 34], where reactions occur in a random manner.
In particular, predation and reproduction occur with probability 1/(α + 2), whereas exchange
(moving) occurs with probability α/(α + 2). If one ignores the spatial structure and assumes
the system to be well mixed, the model can be described by partial differential equations. The
results presented below, however, are obtained via Monte Carlo simulations of the L × L square
lattice, whereby we use no-flux boundary conditions and the algorithm of Gillespie [33, 34] for
determining the probabilities for the three possible processes. An elementary Monte Carlo step
consists of randomly choosing an individual who interacts with one of its four nearest neighbors,
which is also selected randomly, and then executing the process as determined by Gillespie’s
algorithm. One full Monte Carlo step consists of N = L2 elementary steps, during which, in
accordance with the random sequential update, each player is selected once on average. The
resolution of time is thus measured in full Monte Carlo steps.

Furthermore, motivated by the application of periodic currents of cAMP in the experiments
with D. discoideum [26]–[28], we introduce a localized periodic current of the three competing
species, as described and schematically presented in figure 1. In particular, the periodic current
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is applied over a small (compared to the overall system size) area located at the center of
the spatial grid. The periodic current thus acts as a pacemaker on the population, trying to
impose its rhythm on the spatiotemporal evolution of the three species. The current is defined
as follows: at time t = 0 the nodes inside R (see figure 1) are populated by species A, at time
t = T0 these nodes are populated by species B, at time t = 2T0 these nodes are populated by
species C , at time t = 3T0 these nodes are again populated by species A, and continuing further
in this manner. Importantly, during nT 0 < t < mT 0, where n ∈ Z+ and m = n + 1, the evolution
of species inside R (blue area in figure 1) is governed by the same Monte Carlo updating as
outside (gray area in figure 1). Moreover, from the definition of the current it follows that its
period equals Tin = 3T0. In the following, we will consider the mobility M and the time T0

between successive replacements of a species inside R as the two crucial parameters effecting
the emergence of target waves in the examined model.

Before we present the results, we note that in the absence of the periodic current, the model
returns identical results in terms of the coexistence of species depending on M , as reported
earlier by Reichenbach et al [10]. In particular, while low M ensures the coexistence of all the
three species, there exists a critical M ≈ 10−3, beyond which diversity is no longer sustained.

3. Emergence of coherent target waves

We start by presenting snapshots of the spatial grid obtained at different times t in figure 2(a).
It is evident that the initial random configuration (t = 0) is gradually replaced by supremely
ordered target waves (t = 600T0), which emerge after a transient period that is characterized by
disordered turbulence at intermediate times (t = 200T0 and t = 400T0). The emergence of target
waves depicted in the rightmost panel of figure 2(a) is a direct consequence of the localized
periodic current, i.e. the pacemaker, which periodically introduces an inhomogeneous nucleus
at the center of the spatial grid. These inhomogeneities, in form of regions dominated by a single
species, spread and eventually self-organize into a beautiful manifestation of pattern formation
in a population governed by cyclical interactions. A more precise temporal evolution of target
wave formation in the system can be visualized by means of the corresponding space-time plot,
as shown in figure 2(b). From the latter, it is indeed evident that the target waves begin to grow
around the impact site of the periodic current (centered at X = Y = 250; note that L = 500),
which periodically introduces inhomogeneous regions governed by a single species. Following a
period of disordered patterns and very turbulent waves (t < t1), as well as an intermediate period
during which target waves gradually begin to dominate (t1 6 t 6 t2), the complete dominance
of ordered target waves finally prevails (t > t2) in a resonance-like manner due to the interplay
between the localized periodic current and the overall spatiotemporal dynamics of the three
species. It is worth noting that both the times t1 and t2 in figure 2(b), denoting the start of
target wave formation and their complete dominance, respectively, depend somewhat on the
random realization of initial conditions and the location of the periodic current. However, such
deviations are negligible and do not affect our results vitally.

Further elaborating on the emergence of target waves depicted in figure 2, we present in
figure 3(a) oscillations of the overall density of the three species after coherent target waves start
dominating the spatial grid. In accordance with the spatiotemporal dynamics of target waves, the
temporal outlays of the density of all three species are predominantly periodic, which manifests
as sharp peaks in the corresponding Fourier transformation of the series, occurring at multiples
of the main oscillation frequency. It is more instructive, however, to compare the oscillations of
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Figure 2. (a) Snapshots depicting a typical emergence of target waves in the
examined system over time. (b) Space-time plot corresponding to the snapshots
in panel (a), obtained at Y = 250 (cross-section of the Y -axis). To ensure
clarity, some frames within t1 6 t 6 t2 were discarded; t1 and t2 corresponding
to 33T0 and 466T0, respectively. In both panels, yellow, red and blue
squares denote species A, B and C , respectively, whereas the gray squares
depict vacant sites. Employed parameter values are: M = 10−4, T0 = 150
and L = 500. Initial conditions: IC1 (see the caption of figure 1). The full
spatiotemporal evolution of the system is recorded in the file video2 available
from stacks.iop.org/NJP/11/103001/mmedia, which is part of the supplementary
material accompanying this paper.

Figure 3. (a) Oscillations of the overall density of the three species on the spatial
grid after coherent target waves start dominating, i.e. t > t2. (b) Comparison of
the local (solid line) and global (dashed line) density of species A evolving in
time. Note the synchronization between the two depicted quantities (see also the
main text for details). Employed parameter values and initial conditions are the
same as in figure 2.
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Figure 4. (a) Characteristic snapshots of the spatial grid for M = 10−5 (left),
M = 10−4 (middle) and M = 10−3 (right), obtained after long transients have
been discarded. In all the three panels, yellow, red and blue squares denote
species A, B and C , respectively, whereas the gray squares depict vacant
sites. Employed parameter values are: T0 = 150 and L = 500. Initial conditions:
IC1 (see the caption of figure 1). For the full spatiotemporal evolution of the
system, see also the supplementary files video1 (M = 10−5), video2 (M = 10−4)
and video3 (M = 10−3) available from stacks.iop.org/NJP/11/103001/mmedia.
(b) Phase diagram revealing the evolutionary outcomes of the system depending
on the combination of M and T0. White region (S) indicates the formation of
turbulent or ordered spiral waves (left and right panels in (a)), hatched region (T)
indicates the formation of coherent target waves (middle panel in (a)), and the
gray region (U) indicates a uniform final state that is dominated by a single
randomly selected species.

the density of a given species measured only within the paced (injection) area and its overall
density on the spatial grid. Figure 3(b) features these two temporal plots for species A, and
it can be observed that the two are in synchrony. This confirms that the target waves emerge
as a consequence of the interplay between local (encompassing only the paced area) and global
(encompassing the whole spatial grid) system dynamics, which during the dominance of ordered
target waves (see rightmost panel of figure 2(a)) can be synchronized.

Nevertheless, the above results pertain to a single combination of M and T0, and
thus it is of interest to investigate the impact of other values of these two parameters
on pattern formation as well. Figure 4(a) shows the typical snapshots of the spatial grid
obtained for different mobility M of individuals after a long simulation time. Evidently, low
mobility fails to evoke target patterns. In the leftmost panel of figure 4(a), where M = 10−5,
turbulent spirals dominate over the entire lattice. For M = 10−4, on the other hand, the
locally introduced inhomogeneities due to the periodic current are appropriately enhanced
to eventually result in the emergence of target waves, as depicted in the middle panel of
figure 4(a). Increasing the mobility further to M = 10−3 evokes a transition from target to
spiral waves, as depicted in the rightmost panel of figure 4(a), which is due to the strong
mixing of individuals prohibiting the stability of the relatively stationary target wave pattern and
instead favoring the more dynamically evolving spiral waves. Full spatiotemporal evolutions of
the system are recorded in the supplementary files video1, video2 and video3 available from
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stacks.iop.org/NJP/11/103001/mmedia accompanying this paper, for M = 10−5, 10−4 and 10−3,
respectively.

The impact of different values of M and T0 can be captured succinctly by the phase
diagram presented in figure 4(b), which results from a systematic study of pattern formation
over the whole 2D parameter plane. Depending on the combination of M and T0, three different
evolutionary outcomes can be distinguished, namely, the formation of coherent target waves
(region T), the formation of turbulent or ordered spiral waves (region S), or the formation of
a uniform phase (region U) following the extinction of two species. From the phase diagram
presented in figure 4(b), it follows that the region of coherent target waves is relatively small, and
that the phenomenon thus results from a rather subtle interplay between the localized periodic
current and the overall dynamics of the three species. It is worth noting that these results are
largely independent of the system size as long as the ratio R/L remains the same, which ensures
that the local dynamics induced by the periodic current is sufficiently represented in the system.
Obviously, increasing the value of R by a given system size L facilitates the formation of target
waves, whereas smaller R are less likely to have a noticeable impact on the overall evolution of
the three species. In general, however, quantitative differences due to such variations are small,
affecting the borders of the hatched region (T) (figure 4(b)) in the M–T0 plane slightly. We
also note that the border separating turbulent and ordered spiral waves in the white region (S)
is located at M = 6 × 10−5. We have observed that small values of M lead to turbulent spiral
waves (see the leftmost panel of figure 4(a)), while larger values of M within the S region tend
to yield ordered spiral waves (see the rightmost panel of figure 4(a)).

4. Three routes toward target waves

In order to develop a better understanding of the emergence of coherent target waves evoked
by the localized periodic current for different values of M and T0, we change the initial setup
in that we use IC2-type initial conditions, i.e. apart from the paced area, the lattice is initially
populated solely with vacant sites (see also the caption of figure 1). This is inspired by the
growth experiments of E. coli [16, 17], and enables a clearer tracking of the localized nucleus
formation and the subsequent spreading of the periodically injected species across the spatial
grid. In the following, we will show that indeed three routes to the emergence of coherent target
waves can be distinguished.

First, we present the temporal evolution of the density of species A within the area that is
subjected to the periodic current for different values of M in figures 5(a)–(d). It can be observed
that the outlay for M = 10−6 (panel (a)) is aperiodic, indeed resembling chaotic oscillations (this
can be confirmed by calculating the maximal Lyapunov exponent [36], which for this case is
positive), becomes periodic for M = 10−5 (panel (b); oscillation period is T = 2Tin = 3600) and
M = 10−3 (panel (d); oscillation period is T = Tin = 1800), and exhibits intermittent episodes
of periodicity for M = 10−4 (panel (c)). Figures 5(e)–(h) feature the temporal outlay of the
overall density of the three species on the spatial grid for the corresponding values of M used in
panels (a)–(d). Finally, figures 5(i) and (j) depict the oscillations of species A within the paced
area (black line) and the overall density of species A (red line) jointly for M = 10−5 and 10−3,
respectively. Importantly, while for M = 10−5 the two depicted time courses are synchronized,
as is also the case in figure 3(b), for M = 10−3 the oscillation period of the overall density of
species A on the spatial grid is much larger than that of the density within the paced area. Thus,
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Figure 5. Panels (a)–(d) feature temporal evolutions of the density of species A
within the area that is subjected to the periodic current for different values of M
(10−6, 10−5, 10−4 and 10−3 from top to bottom). Panels (e)–(h) feature temporal
evolutions of the overall density of the three species on the spatial grid for
different values of M (10−6, 10−5, 10−4 and 10−3 from top to bottom). Panels (i)
and (j) depict the oscillations of species A within the paced area (black line)
and the overall density of species A (red line) jointly for M = 10−5 and 10−3,
respectively. Panel (k) shows system states in terms of the oscillatory properties
from M = 10−10 to 10−2. For all panels, the employed parameter values are:
T0 = 600 and L = 1024. Initial conditions: IC2 (see the caption of figure 1).

Figure 6. Characteristic snapshots of the spatial grid for M = 10−6 (a), M =

10−5 (b), M = 10−4 (c) and M = 10−3 (d), corresponding to the oscillatory traces
depicted in figures 5(a, e), (b, f), (c, g) and (d, h), respectively. Other employed
parameter values and initial conditions are thus the same as in figure 5.

the two cases constitute two different routes toward target waves (see also figures 6(b) and (d)
for the corresponding snapshots) in the examined system. The third route emerges if M = 10−4,
where the synchronization between local and overall oscillations occurs only intermittently.
As a consequence, the resulting target waves do not have a well-defined wavelength, as can be
observed in figure 6(c). Figure 5(k) depicts succinctly the intervals of M (for the considered
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T0 = 600), resulting in a given route to coherent target formation. Notably, the gray region of
M (aperiodic regime) results only in disordered turbulent spiral-like waves (see also figure 6(a)
for the corresponding snapshots).

From the results presented in figure 5, we thus conclude that there exist three different
routes to coherent target waves in the examined cyclic predator–prey model incorporating
a periodic current. Firstly, target waves can emerge due to the synchronization between
the periodic current and oscillations of the density of the three species on the spatial grid,
as presented in figure 5(i). The resulting spatial portrait is shown in figure 6(b). Due to
the regularity of the oscillations, the target waves also have an easily inferable wavelength
λ = D/L , as noted in the corresponding snapshot. The second route is similar to the first,
the difference being that the synchronization sets in only intermittently. The resulting spatial
portrait is shown in figure 6(c), whereby the seeming lack of a well-defined wavelength is a
direct consequence of the intermittent temporal outlay of the variations in the species’ densities,
as shown in figures 5(c) and (g). Note that in figure 6(c), the circular ring of the blue species,
for example, is sometimes thinner and sometimes thicker, i.e. is not always the same. This
is because the oscillation period of the underlying temporal trace is not exact but varies
intermittently. Finally, the third route toward target waves is realized when the frequency of
the pacemaker is much higher than that characterizing the oscillations of the overall density of
the three species, as presented in figure 5(j). The resulting spatial portrait is shown in figure 6(d),
whereby the comparably very large λ, especially if compared to the λ of the snapshot presented
in panel (b), is directly linked to the large oscillation period of the overall density of the three
species (see figure 5(h) and compare with panel (f)). It is also worth noting that for sufficiently
large M , exceeding 5.0 × 10−4, the mobility quickly decimates any given species that is injected
within the paced area, and thus the artificially established dominance there is very short-lived
(note the sharp peaks in figure 5(d)). In fact, individuals of an injected species always aggregate
near the boundary of the paced area, and only then start to spread outwards across the spatial
grid. But since this aggregation and propagation take a long time, the period of the overall
oscillations is much longer than that of the oscillations within the paced area. On the other
hand, for extremely small values of M (<3.0 × 10−6), individuals spreading out of the area
that is subjected to the periodic current distribute almost homogeneously across the spatial grid
due to the relatively high rate of predation and reproduction if compared to the exchange rate
(mobility). Thus, the injected individuals become fragmented, in turn failing to evoke ordered
target waves, as depicted in figure 6(a). Accordingly, the oscillations of the species’ densities,
both within the paced area and overall, are aperiodic (see figures 5(a) and (e)).

Focusing further on the wavelength λ of the target waves depicted in figure 6 (where
applicable), one can thus observe that the mobility very much affects the typical spatial
distance between the neighboring wave fronts with the same species, and while the first route
(panel (b)) and the third route (panel (d)) yield target waves with an easily inferable λ; this is
not necessarily the case for the second route (panel (c)). In fact, results presented in figure 7(a)
show that the wavelength of the target waves displays non-monotonous behavior depending
on the mobility of individuals for T0 = 600 and 400, while it increases with M according to
λ ∼ log M1/2 for T0 = 300. Notably, this is different from what has been reported for spiral
waves [10], where λ ∼ M1/2 has been found to be applicable. Furthermore, results in figure 7(a)
suggest that, indeed, both M and T0 affect the route toward the emergence of target waves.
Figure 7(b) presents the results of an extensive analysis performed over the M–T0 parameter
space, in particular indicating the properties of the oscillations of species’ densities, similarly
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Figure 7. (a) Wavelengths λ of target waves depending on M for different values
of T0. The inset shows λ ∼ log M1/2. (b) Different system states in terms of the
oscillatory properties in the M–T0 parameter space. Note that the latter uniquely
determines the route to coherent target waves in the examined system (see also
the main text for details).

as in figure 5(k). Gray denotes that, for the particular combination of M and T0 values, the
emergence of coherent target waves is impossible due to an aperiodic outlay of the oscillations,
both within the paced area as well as overall (see figures 5(a) and (e) for an example). Yellow
indicates the emergence of coherent target waves via the first route, which is due to the
synchronization between the periodic current and oscillations of the overall density of the
three species on the spatial grid (see figure 5(i) for an example). Red indicates the emergence
of coherent target waves via the second route (the synchronization occurs intermittently)
(see figures 5(c) and (g) for an example), and blue indicates the applicability of the third
route (see figure 5(f) for an example). From the results presented in figure 7(b), it is also clear
that the non-monotonous dependence of λ on mobility for T0 = 400 and T0 = 600 depicted
in figure 7(a) is due to the emergence of target waves via the second route for intermediate
M (red stripes). Finally, we note that when the route toward the emergence of target waves is
switched, narrow parameter regions of spiral wave formation may appear (see also figure 4(b)),
which, interestingly, were also observed in the D. discoideum studies [6, 37].

5. Summary

In conclusion, we have studied the emergence of target waves in a cyclic predator–prey model
incorporating a periodic current of the three competing species in a small area situated at the
center of the square lattice. We have shown that a pacemaker-like periodic current may evoke
coherent target waves, provided the mobility of individuals on the spatial grid and the frequency
of the forcing are adequately adjusted. Furthermore, we have identified three possible routes
toward the emergence of coherent target waves, depending on the properties of the oscillations
of species’ densities within the paced area and across the whole spatial grid. In particular, target
waves can emerge due to the complete or intermittent synchronization between the periodic
current and oscillations of the overall densities of the three species, or they can emerge so
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that the frequency of the pacemaker is much higher than the frequency characterizing the
induced global oscillations of the three densities. Irrespective of the scenario, however, the
global oscillations and the associated target waves are a direct consequence of the introduced
pacemaker. Which route is chosen depends both on the mobility of the individuals as well
as on the selected oscillation period of the localized current. We thus provide insights into
the mechanisms of pattern formation resulting due to the interplay between local and global
dynamics in a system that is governed by cyclically competing species. Since the identified
mechanisms affect the spatiotemporal dynamics in a predictable way, and moreover, can be
tuned effectively via accessible system parameters like the frequency of the pacemaker, our
work indicates possibilities of pattern control and selection in systems governed by cyclical
interactions. Cyclical competitions evidently play an important role in the maintenance of
ecological biodiversity and the emergence of cooperation in structured populations [38]–[43].
Related to this, complex spatiotemporal formations have often been observed, as for example
spiral wave structures in the realm of the rock-paper-scissors game [44]. Coherent target waves,
however, are rarely reported in this context. Although target waves were observed in excitable
systems, the main difference in the present model is that the diffusion induced by individual
mobility is the same for all species. Therefore, the emergence of target waves is due to a
different mechanism. Notably, the periodic injection method has recently also been used in a
complex Ginzburg–Landau system for the purpose of spatiotemporal chaos control [29, 45].
According to our study, one can control the route toward target wave formation by adjusting
the frequency of the periodic current. In this way, the wavelength of target waves can also be
controlled, which may find useful applications in a variety of realistic systems, ranging from
targeted drug delivery to the sustenance of biodiversity. We hope that our study will promote
the understanding of social dynamics and strengthen the established importance of physics [46]
when striving toward this goal.
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