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Abstract. Previous research has highlighted the importance of strong
heterogeneity for the successful evolution of cooperation in games governed by
pairwise interactions. Here we determine to what extent this is true for games
governed by group interactions. We therefore study the evolution of cooperation
in the public goods game on the square lattice, the triangular lattice, and the
random regular graph, whereby the payoffs are distributed either uniformly
or exponentially amongst the players by assigning to them individual scaling
factors that determine the share of the public good they will receive. We find
that uniformly distributed public goods are more successful in maintaining high
levels of cooperation than exponentially distributed public goods. This is not in
agreement with previous results on games governed by pairwise interactions,
indicating that group interactions may be less susceptible to the promotion of
cooperation by means of strong heterogeneity than originally assumed, and that
the role of strongly heterogeneous states should be reexamined for other types of
games.
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1. Introduction

One possible classification of evolutionary games [1–4] is those that are governed by pairwise
interactions and those that are governed by group interactions. The prisoner’s dilemma and the
snowdrift game [5, 6], as well as the stag-hunt game [7], are classical examples of evolutionary
games that are governed by pairwise interactions. The public goods game, on the other hand,
is a typical example of an evolutionary game that is governed by group interactions. Similarly
as in the transition from two-body to many-body interactions in many branches of physics, in
evolutionary games too the transition from pairwise to group interactions leads to a substantial
increase in complexity. For example, reciprocity [8, 9], i.e. the act of returning a favor for a
favor, is straightforward in games governed by pairwise interactions. As there are only two
players involved at each instance of the game, it is relatively easy to decide what to do based
on what the opponent has done in the past [10]. In games governed by group interactions,
however, it is much more difficult to keep track of the actions of all the other players, and hence
it is difficult to reciprocate. The same argument is valid for punishment [11], where unlike
returning positive actions, the goal is to identify those that inflict harm or act antisocially and
penalize them accordingly.

Regardless of the distinction between pairwise and group interactions, the central theme
of evolutionary game theory is the successful evolution of cooperation. According to Darwin,
natural selection favors the fittest and the most successful individuals, which implies an innate
selfishness that greatly challenges the concept of cooperation [5]. To cooperate namely means
to sacrifice some fraction of personal benefits for the sake of social welfare. The opposite
strategy is defection, implying that players who defect will always try to maximize their fitness
regardless of the consequences this might have for society. Since the focus here is on games
governed by group interactions, we may use the definition of the public goods game to illustrate
the key difference between cooperation and defection as follows. In a group consisting of
G players, those that cooperate will contribute 1 to the public good, while those that defect
will contribute nothing. Note that on a larger scale, the contribution of cooperators can be
considered as a contribution to society, which will typically contain a large number of such
groups. All the contributions will then be multiplied by a factor r , which is typically larger than
1 to take into account synergetic effects of collaborative efforts, and subsequently the resulting
amount will be shared amongst all the group members irrespective of their initial contribution.
From this definition it follows that defectors acquire an evolutionary advantage over cooperators
by withholding their initial contribution to the public good, and from the viewpoint of each
individual defection is thus clearly the rational strategy to choose. From the viewpoint of the
group and the society as a whole, however, cooperation is the optimal strategy as then the
multiplication factor r will have the biggest impact and accordingly the welfare of the society
will be maximized. The fact that defection maximizes individual payoffs while cooperation
maximizes social prosperity, and thus that what is best for an individual is opposite to what is
best for society, is traditionally referred to as a social dilemma. Failure to maintain cooperation
in such a case leads to the so-called ‘tragedy of the commons’ [12], where nobody contributes to
the public good (everybody defects) and the society is therefore destined to go bankrupt. Rather
surprisingly, and in fact in contradiction to the Darwinian concept of acting so as to maximize
personal fitness, economic experiments on public goods games indicate that humans cooperate
much more in such situations than expected [13], and in so doing these experiments call for the
identification of mechanisms that can explain the successful evolution of cooperation.
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Introducing additional strategies besides cooperation and defection has proven to be very
effective. For example, if players are given the chance to abstain from the public goods game
by not contributing but also by not taking part in the distribution of accumulated payoffs,
cooperation may be promoted by means of the spontaneous emergence of cyclic dominance
between the three competing strategies [14–16]. The introduction of peer-punishers, i.e. those
who are willing to bear additional costs in order to penalize defectors, has also proven to
be effective for the promotion of cooperation [17, 18], as was the introduction of pool-
punishers who contribute to the establishment of penalizing institutions [19, 20]. Rewarding
cooperative players instead of punishing defectors has also been considered as an additional
strategy that may promote cooperation [21–23], and the emerging ‘stick versus carrot’ dilemma
(whether to penalize defectors or reward cooperators) has recently received ample attention
[24]. Interestingly, random explorations of these additional strategies, termed conveniently as
‘exploration dynamics’ [25], may also substantially elevate the level of cooperation in a society.

Driven by the application of methods from statistical physics (see [26] for a comprehensive
review), as well as by the fascinating complexity arising from the evolutionary competition
between the strategies, physicists have also made important contributions to the understanding
of the successful evolution of cooperation. Foremost, research published in recent years has
made it clear that heterogeneities amongst players play a crucial role in the evolution of
cooperation. Scale-free networks, for example, have been recognized as very potent promoters
of cooperative behavior [27–30]. In fact, evolutionary games on complex and co-evolving
networks [31–37] in general tend to promote cooperation past the boundaries imposed by regular
lattices [38, 39]. Similarly, heterogeneities in strategy adoption probabilities can also enhance
cooperation [40, 41], especially if the strategy adoption is favored by the more influential
players [42, 43]. Heterogeneities can also be introduced directly to payoffs in terms of noise
[44–46] or quenched diversity [47], whereby cooperators are promoted as well provided that
the uncertainties are adequately adjusted and distributed.

While the majority of previous works aimed at disentangling the impact of heterogeneity
on the evolution of cooperation focused on games governed by pairwise interactions, recent
results indicate [48–53] that cooperation within the public goods game is also susceptible to
the same mechanism of promotion. However, if payoffs are evaluated from public goods games
in multiple groups, the indirect linkage of players due to their membership of the same groups
may result in qualitatively different behavior [54] as reported previously for games governed by
pairwise interactions [55]. This motivates us to examine to what extent strongly heterogeneous
states do in fact promote the evolution of cooperation in games governed by group interactions.
For this purpose, we study the evolution of cooperation in the public goods game on three types
of regular graphs, namely on the square lattice, the triangular lattice, and the random regular
graph (RRG). These are characteristic for interaction graphs with (square and triangular lattice)
and without (RRG) spatial structure, as well as for interaction graphs with zero (square lattice
and RRG) and a high (triangular lattice) clustering coefficient, thus covering a broad plethora
of properties that are known to vitally affect the evolution of cooperation [26]. Heterogeneity
is then introduced by means of either a uniform or an exponential distribution of payoffs
amongst the players, thereby violating the traditional assumption of equally distributed public
goods amongst all group members. According to the statistical properties of the two considered
distributions, exponentially distributed public goods give rise to strongly heterogeneous states,
while uniformly distributed public goods correspond to moderate heterogeneities affecting
the evolution of cooperation. Unexpectedly, we find that moderate heterogeneities promote
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Figure 1. Schematic presentation of interaction graphs considered in this paper.
While the square lattice (left) and the RRG (right) both contain groups with
G = 5 players each, the triangular lattice (middle) has G = 7. Only vertices
encircled in red have all their neighbors depicted.

cooperation better than strongly heterogeneous states, which is not in agreement with results
obtained previously for evolutionary games governed by pairwise interactions [47].

The remainder of this paper is organized as follows. In the next section we describe the
employed evolutionary public goods game and the interaction graphs, while in section 3 we
present the results. Lastly, we summarize our findings and compare them with those reported
earlier for evolutionary games governed by pairwise interactions.

2. Setup

Assuming structured interactions defined by either the square lattice, the triangular lattice, or
the RRG, as schematically depicted in figure 1, L2 players are arranged into overlapping groups
of size G such that every player is surrounded by their G − 1 neighbors. Accordingly, each
individual belongs to g = G different groups. Initially each player on site x is designated either
as a cooperator (sx = C) or defector (sx = D) with equal probability. Cooperators contribute a
fixed amount (here considered being equal to 1 without loss of generality) to the public good
while defectors contribute nothing. The sum of all contributions in each group is multiplied by
the factor r and the resulting public goods are distributed amongst all the group members. If
sx = C the payoff of player x from every group g is Pg

C = (1 + hx)r N g
C/G − 1 and if sx = D

the payoff is Pg
D = (1 + hx)r N g

C/G, where N g
C is the number of cooperators in group g while hx

is the scaling factor by means of which the heterogeneity in the distribution of public goods
is introduced. The scaling factors are drawn randomly from either the uniform distribution
h = η(−2χ + 1) or the exponential distribution h = η(−logχ − 1). Here χ are uniformly
distributed random numbers from the unit interval, and

∫ 1
0 h(χ)dχ = 0 in all cases, so that

the average L−2
∑

hx over all the players is zero. Moreover, η scales the magnitude of
heterogeneity and will, together with r , be considered as the key parameter affecting the
evolution of cooperation. Naturally, η = 0 returns the traditional version of the game, while
large η lead to segregation of players, which may be additionally amplified by considering
exponential rather than uniformly distributed hx . It should be noted that heterogeneity is here
not quantified explicitly (e.g. by means of standard deviation of hx ), but rather it refers to the
diversity of players in the sense of to what extent they can differ from one another. Since
the exponential distribution segregates the players much more than the uniform distribution,
the former is referred to as being substantially more heterogeneous (see also [47] for explicit
shapes of the two distributions and alternative ways of interpretation).
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Related to this setup, it is important to note that quenched heterogeneities introduced via
hx may evoke the existence of the Griffiths phase [56], which has recently attracted considerable
attention [57, 58], also in studies concerning the evolution of cooperation [59]. The essence of
the problem of quenched heterogeneities for the extinction processes has been well described
in [60, 61], where it was shown that such systems are frequently characterized by patches of
different sizes, providing better conditions for one of the strategies (or species) to survive. Due
to the localization, the subordinate strategy can die out very slowly on the separated (or weakly
interacting) patches, with an average lifetime increasing with the patch size. Noest [60, 61]
demonstrated that for suitable conditions (determined by the distribution of patch sizes) the
extinction of the subordinate strategy follows a power law, whereby the exponent depends on
the parameters. The latter fact can cause serious technical difficulties in the classification of
the final stationary state, especially related to the C + D → C transition in game theoretical
models, as demonstrated for example in figure 3 of [59], where it can be inferred that even
very long simulation times might not be enough to reach the final stationary state, although the
trend (power law behavior) clearly indicates the disappearance of the subordinate strategy in
the limit when the time goes to infinity. We note that often the introduction of an additional
time-dependence in the background can make the analysis more convenient. For example, if
the quenched heterogeneities are varied on an extremely slow time scale (much slower than
is characteristic for the main evolutionary process), the final conclusions remain the same,
yet the occasional variations can accelerate the extinction significantly. This approach seems
viable for alleviating difficulties that are frequently associated with models entailing quenched
heterogeneities.

Monte Carlo simulations are carried out comprising the following elementary steps. First,
a randomly selected player x plays the public goods game with their G partners as a member
of all the g = 1, . . . , G groups. The payoff the player thereby acquires is thus Psx =

∑
g Pg

sx
.

Next, player x chooses one of their nearest neighbors at random, and the chosen co-player
y also acquires a payoff Psy in the same way as player x . Finally, player x enforces their
strategy sx onto player y with the probability w(sx → sy) = 1/{1 + exp[(Psy − Psx )/G K ]},
where K = 0.1 quantifies the uncertainty by strategy adoptions and G normalizes the effect
for different interaction graphs (see [54] for details concerning the selection of the K value and
the applied normalization). These three elementary steps ((i) random selection of player x and
the determination of Psx , (ii) random selection of neighbor y and the determination of Psy ,
(iii) attempted strategy transfer with probability w(sx → sy)) are repeated consecutively,
whereby each full Monte Carlo step (MCS) gives a chance for every player to enforce their
strategy onto one of their neighbors once on average and is comprised of L2 three elementary
steps described above. The average fractions of cooperators (ρC) and defectors (ρD) in the
population were determined in the stationary state after sufficiently long relaxation times.
Depending on the actual conditions (proximity to extinction points and the typical size of
emerging spatial patterns) the linear system size was varied from L = 200 to 800 and the
relaxation time was varied from 104 to 106 MCS to ensure proper accuracy.

3. Results

We start by presenting results obtained on the square lattice with G = 5 (depicted schematically
in figure 1, left) in figure 2. The left panel features the full r − η phase diagram for uniformly
distributed public goods. Focusing on the D → C + D transition line (depicted in red), marking
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Figure 2. Full r − η phase diagrams for the square lattice with uniformly
(left) and exponentially (right) distributed public goods. Red and green lines
delineate the D → C + D and C + D → C phase transitions, respectively. The
blue shading corresponds to the stationary density of cooperators ρC at each
particular combination of r and η, as depicted by the color bar at the bottom.
It can be observed that uniformly distributed public goods (left) promote
cooperation better than the more heterogeneous exponentially distributed public
goods (right). See also main text for details.

the survivability threshold of cooperators, we find that increasing values of η continuously
decrease the minimally required multiplication factor r . From r = 3.74 at η = 0.01 and η = 0.1
(note that such weakly expressed heterogeneity actually returns the traditional version of the
game where the public goods are distributed equally [54]), the minimally required multiplication
factor decreases to r = 2.45 at η = 1.0, and further to r = 0.45 at η = 10. Importantly, note that
such contradictory critical values of r that are smaller than 1 are possible only when individual
hx can exceed G, i.e. when some individuals can effectively collect shares of the public good
also from players that are not within the same group. For the uniformly distributed public goods
it is straightforward to determine that this happens when η = G, which is also approximately
where the critical multiplication factor r dips below 1. For such high η, however, the public
goods game is essentially overridden and the stationary state is always ρC ≈ ρD, irrespective of
r (within the mixed C + D phase). The pure C phase, i.e. ρC = 1, on the other hand, emerges
only for intermediate values of η, as depicted by the green line marking the C + D → C
transition.

By comparing the results depicted in the left panel of figure 2 with those depicted in the
right panel, we can observe that exponentially distributed public goods (right) on the square
lattice fail to promote cooperation to the same extent as uniformly distributed public goods
(left). While the position of the D → C + D transition line remains largely unaffected, the
mixed C + D phase is characterized by substantially lower values of ρC (brighter shades of blue
prevail). Moreover, the pure C region is substantially smaller, and the override of the public
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Figure 3. Full r − η phase diagrams for the triangular lattice with uniformly
(left) and exponentially (right) distributed public goods. Red and green lines
delineate the D → C + D and C + D → C phase transitions, respectively. The
blue shading corresponds to the stationary density of cooperators ρC at each
particular combination of r and η, as depicted by the color bar at the bottom.
Even if interaction graphs with a high clustering coefficient are considered
(such as the triangular lattice), uniformly distributed public goods (left) still
outperform exponentially distributed public goods (right) in terms of the
promotion of cooperation. See also main text for details.

goods game, where ρC ≈ ρD irrespective of r (within the mixed C + D phase) sets in already
for η & 0.7 (see left panel of figure 2). These observations indicate that strongly heterogeneous
states (constituted by exponentially distributed public goods) may be less effective in warranting
high levels of cooperation at low multiplication factors than moderately heterogeneous states
(constituted by uniformly distributed public goods). Irrespective of the type of heterogeneity,
however, the survivability of cooperators can be greatly enhanced, i.e. the minimally required
r for ρC to be larger than zero can be greatly reduced.

Figure 3 features the results of the same analysis as depicted in figure 2, only instead of the
square lattice the triangular lattice was used as the interaction graph. The use of the triangular
lattice is motivated by its high clustering coefficient (note that the square lattice has a clustering
coefficient equal to zero), which is a property that has been found crucial for the evolution
of cooperation, especially in games governed by pairwise interactions [26]. In particular,
while interaction graphs with zero or negligible clustering coefficients are characterized by
an optimal level of uncertainty at which cooperators can survive, as was reported in [44, 45],
interaction graphs with overlapping triangles (which are inherent to the triangular lattice, as can
be observed from figure 1) preclude such an observation, i.e. the D → C + D phase boundary is
monotonically descending towards lower r in the K → 0 limit. Remarkably, recent results for
games governed by group interactions indicate that there the interaction graph may play a less
crucial role, since in fact joint memberships of the same groups effectively link players who are
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Figure 4. Full r − η phase diagrams for the RRG with uniformly (left) and
exponentially (right) distributed public goods. Red and green lines delineate the
D → C + D and C + D → C phase transitions, respectively. The blue shading
corresponds to the stationary density of cooperators ρC at each particular
combination of r and η, as depicted by the color bar at the bottom. Lack of spatial
structure, if compared to the square and the triangular lattice, also imposes the
same conclusion, namely that uniformly distributed public goods (left) promote
the evolution of cooperation better than exponentially distributed public goods
(right).

otherwise not directly connected [54]. By comparing the results presented in figures 2 and 3
for the same type of heterogeneity in hx , this is indeed fully confirmed as all the main features
are identical. Altogether, these results solidify the impression that strongly heterogeneous states
in the public goods game can be less effective in warranting high levels of cooperation than
moderately heterogeneous states.

As the last type of interaction graph we consider the RRG, which unlike the square lattice
and the triangular lattice, lacks spatial structure. Note that locally the random regular graph
is similar to the Bethe tree (see figure 1 right). Since the seminal paper by Nowak and May
[38] clearly established spatial structure as an important agonist for the successful evolution of
cooperation, it is certainly appropriate to test our results also against this variation. Moreover,
due to the lack of spatial structure, there is an expected difference in the directed percolation
universality class [62] if compared to the square lattice. Results presented in figure 4 depict full
r − η phase diagrams for uniformly (left) and exponentially (right) distributed public goods.
Compared to results obtained for the square lattice (see figure 2), on the RRG too the position
of the D → C + D transition line remains largely unaffected by the type of distribution of hx .
Moreover, the mixed C + D phase for exponentially distributed public goods (right panel of
figure 4) is characterized by substantially lower values of ρC (brighter shades of blue prevail) and
the pure C region is altogether missing. It is thus from results obtained for the RRG that in fact
the failure of strongly heterogeneous states to reach the same levels of cooperation promotion as
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moderately heterogeneous states is most obvious. At the same time, as already noted above for
the square as well as the triangular lattice, the position of the D → C + D transition line does not
shift due to the difference in the distribution of hx , which highlights that in games governed by
group interactions the details of the interaction graph play a less prominent role than is the case
for games governed by pairwise interactions. With ample support from these final observations,
we conclude that the strongly heterogeneous distribution is a less potent promoter of cooperative
behavior in the public goods game.

4. Summary

We have studied the evolution of cooperation on three different types of regular graphs in
the public goods game with uniformly and exponentially distributed payoffs, with the aim
of determining to what extent strongly heterogeneous states promote cooperative behavior.
The presented results have important implications for the evolution of cooperation in games
governed by group interactions. While past research has undoubtedly shown that strongly
heterogeneous states facilitate the evolution of cooperation in games governed by pairwise
interactions (for reviews see [26, 37]), results presented in this paper question this in relation to
moderate heterogeneities for games governed by group interactions. In fact, here we find that
uniformly distributed public goods are more successful in maintaining high levels of cooperation
than exponentially distributed public goods, which is different to what was reported previously
for games governed by pairwise interactions [47]. This conclusion prevails irrespective of
the type of interaction graph, and is in agreement with previous observations [54] in that
qualitative differences between the outcomes of games governed by pairwise interactions and
games governed by group interaction should be expected due to the indirect linkage of players
who are members of the same groups. A direct consequence of this indirect linkage is also
the fact that differences in the clustering coefficient play a minor role in the promotion of
cooperation, which is different from what was reported previously for games governed by
pairwise interactions [63], where a high clustering coefficient was found to be tightly linked
to flourishing cooperative states. Accordingly, in our case one could expect the triangular lattice
to promote cooperation much better than the square lattice or the RRG, yet the difference
is quite marginal. Moreover, it is also important to note that the RRG is fundamentally
different from the square and the triangular lattice in that it has no local structure. The indirect
linkage of players due to group interactions, however, renders these differences in structural
properties of the interaction networks virtually irrelevant. Altogether, the results presented in
this paper point clearly towards the fact that the transition from pairwise to group interactions
has important implications for the successful evolution of cooperation. We hope that this
work will inspire future studies aimed at clarifying the role of heterogeneity for other types
of games and further promote quantitative research on social systems with methods from
physics [64].
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[42] Szolnoki A and Szabó G 2007 Europhys. Lett. 77 30004
[43] Perc M, Szolnoki A and Szabó G 2008 Phys. Rev. E 78 066101
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