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Abstract
Many physical and social systems are best described by networks. And the structural properties of
these networks often critically determine the properties and function of the resulting mathematical
models. An important method to infer the correlations between topology and function is the
detection of community structure, which plays a key role in the analysis, design, and optimization
of many complex systems. The nonnegative matrix factorization has been used prolifically to that
effect in recent years, although it cannot guarantee balanced partitions, and it also does not allow a
proactive computation of the number of communities in a network. This indicates that the
nonnegative matrix factorization does not satisfy all the nonnegative low-rank approximation
conditions. Here we show how to resolve this important open problem by optimizing the
identifiability of community structure. We propose a new form of nonnegative matrix
decomposition and a probabilistic surrogate learning function that can be solved according to the
majorization–minimization principle. Extensive in silico tests on artificial and real-world data
demonstrate the efficient performance in community detection, regardless of the size and
complexity of the network.

1. Introduction

Describing and modeling real-world complex systems such as protein–protein interactions [1–3], the brain
connectome [4–7], friendship relationships [8–12], or public transport [13–16, 18]) by means of complex
networks provide many insights towards better understanding their structure and function. As a critical
properties of real networks, community structure asserts that some groups of nodes—the
communities—are much more densely connected with each other than with other nodes outside of the
group [19–22]. The existence and properties of the community structure can have far-reaching
consequences for many processes that unfold on networks, including the prolonged duration of epidemics
[23], difficulties in eliminating vaccine hesitancy [24, 25], and biased recommendations [26] and
accelerated rumor spreading [27–30]. Due to the theoretical and practical importance [31–34], the
detection of network communities has been a popular and vibrant research area, with numerous
applications across the physical and social sciences [35–38].

Existing methods for detecting network communities mainly rely on the optimization of quality
functions that are defined according to the similarity between different nodes. Nonnegative matrix
factorization is a mainstream technology for detecting network communities [39]. The basic protocol of the
nonnegative matrix factorization methods uses nonnegative low-rank approximations to factorize a
node-to-node similarity matrix into node-to-cluster low-rank matrices. Ding et al [40] verified the
approximate equivalence between the nonnegative matrix factorization and the seminal k-means clustering.
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However, the nonnegative matrix factorization methods do not satisfy all of the nonnegative low-rank
approximation conditions, so that they may lead to unbalanced network partitions in which some
communities are assigned with much more nodes than others [39]. Besides, nonnegative matrix
factorization methods are limited to account for curved manifolds and to proactively compute the
optimal number of communities [41].

To resolve these limitations, we introduce the identifiability of network communities as the objective of
optimization, which is defined as the discrepancy between the network similarity matrix and the
doubly-stochastically normalized community incidence matrix. This objective function is solvable for all
possible community partitions, and the optimal number of communities can also be determined
proactively. To deal with sparse similarity inputs, we use the Kullback–Leibler divergence instead of the
conventional distance-based measures. We also propose a new form of nonnegative matrix factorization to
explore the solution space, which yields a probabilistic objective function that can be solved by an efficient
algorithm using the majorization–minimization principle. We perform extensive experiments on multiple
types of datasets, showing that our approach substantially improves the accuracy and computational
efficiency of community detection, regardless of the size and complexity of the network.

2. Identifiability

Consider a network with N nodes that form r communities. The operation of assigning nodes into each
community is described by an N × r binary community indicator matrix W̄ , in which each entry W̄ik = 1
(or 0) indicates that the node i is (not) assigned to the community k. The dot product of the community
indicator matrix is defined as the community incidence matrix B̄ = W̄W̄T, in which each entry B̄ij = 1
(or 0) indicates that the nodes i and j are (not) assigned to the same community. To reduce the unbalanced
partitions, it is more convenient to use the normalized community indicator matrix W with each entry

denoting Wik = W̄ik/
√∑N

v=1 W̄vk, since the normalized community incidence matrix B = WWT becomes

a doubly stochastic matrix (i.e.
∑N

i=1 Bij = 1,
∑N

j=1 Bij = 1) [40, 43].
Let S be the similarity matrix, in which each entry Sij accounts for the probability of similarity between

nodes i, j. For example, the similarity of two nodes in the protein–protein interaction networks can be
quantified by the Hamming distance between their amino acid sequences [1]. The probability of similarity
is expected to be higher for the nodes within the same community than those part in different
communities, so that the normalized community incidence matrix B converges to the similarity matrix S
when nodes are accurately assigned to each community.

We can also interpret matrix B in a probabilistic form. Denote Wik = P(i|k) as the conditional
probability that any node i belongs to a given community k, and P(k|i) the conditional probability that any
community k has a given node i. Considering an uninformative prior for selecting nodes, i.e. P(i) = 1/N,
we have

P(i|k) =
P(k|i)P(i)∑N
j=1 P(k|j)P(j)

=
P(k|i)∑N
i=1 P(k|i)

, (1)

according to the Bayes’ rule. The probability that two nodes i, j mutually share at least one community is k
is:

Bij =

r∑
k=1

P(i|k)P(j|k)∑N
�=1 P(�|k)

=

r∑
k=1

P(k|i)P(k|j)∑N
j=1 P(k|j)

=

r∑
k=1

P(j|k)P(k|i) = P(j|i). (2)

The identifiability of communities D(S‖B) is defined as the discrepancy between the similarity matrix S
and the normalized community incidence matrix B, so that the reduction in the identifiability indicates the
improvement of the community partition (figure 1). Let C(S|r) = min(B|r)D(S‖B) be the optimized (or
minimized) identifiability, given that the original network is partitioned into r communities. Evaluating
C(S|r) over all possible number of communities r (1 � r � N), we can jointly estimate the optimal number
and partition of network communities. The optimization of C(S|r) often need to search a sparse solution
space [43–45], so we propose a new framework for minimizing the identifiability.

3. Optimization of identifiability via matrix decomposition

In this section, we first formulate the identifiability using the Kullback–Leibler divergence, and then
introduce a multiplicative minimization algorithm that efficiently optimizes the identifiability.
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Figure 1. Illustration of optimizing the identifiability for detecting network communities. Each element of the similarity matrix
S accounts for the probability of similarity between two nodes, and each element of the community incidence matrix B accounts
for the probability that two nodes i, j mutually share at least one community. The identifiability of communities DKL(S‖B) is
defined as the Kullback–Leibler divergence between the similarity matrix S and the community incidence matrix B. The
reduction in the identifiability indicates the improvement of the community partition. Denote r as the number of partitioned
communities for the original network, the optimal number and partition of network communities are jointly estimated by
evaluating C(S|r) = min DKL(S‖B) across all possible values of r (1 � r � N).

3.1. Kullback–Leibler divergence
The use of simple discrepancy measures such as the Euclidean distance or Hamming distance does not
work well for many real-world problems that only contain weakly informative data. Inspired by the seminal
work of probabilistic latent semantic indexing [46], we resort to use the Kullback–Leibler divergence to
measure the discrepancy (or approximation error) between the dense normalized community incidence
matrix B and the sparse node similarity matrix S. As such, the optimization problem is summarized as
follows:

min
W�0

DKL(S‖B) =
N∑

i=1

N∑
j=1

(
Sij log

Sij

Bij
− Sij + Bij

)

subject to Bij =

r∑
k=1

WikWjk∑
vWvk

,

r∑
k=1

Wjk = 1, i = 1, . . . , N.

(3)

where the normalized community incidence Bij is estimated with the relative probability of randomly
selecting two nodes i, j that belong to the same community k, and nonnegative Wik = P(k|i) denotes the
probability that a given node i belongs to the community k. We use −Sij + Bij to measure the discrepancy
between these two different matrices, since we can naturally consider that the community incidence matrix
B should be close to the similarly matrix S for a good community partition. By eliminating all the constant
terms (e.g.

∑N
i=1

∑N
j=1 Bij = N) from the objective function of equation (3), the optimization is

transformed to the maximization of
∑N

i=1

∑N
j=1 Sij log Bij.

It offers several advantages to improve the efficiency of optimization: (1) only non-zero elements in the
similarity matrix S need to be evaluated by the objective and gradient functions; and (2) the logarithmic
functions in the low-rank community incidence matrix B only need additive calculations. Therefore, we use
a Dirichlet prior to lower the computational complexity (section 3.2) and use a convex–concave procedure
[47] for the optimization (section 3.3).
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3.2. Regularization
In equation (3), each row of matrix W is normalized. Suppose that the elements of each row in W follow a
Dirichlet distribution [46], the complexity of matrix W can be constrained with log-Dirichlet prior, i.e.,∑N

i=1

∑r
k=1 log Wik. Here, the complexity of a matrix also means the sparsity and regularity, and less

the log-Dirichlet prior, less the complexity of a matrix. Therefore, we use the following regularized cost
function:

J (W) = −
N∑

i=1

N∑
j=1

Sij log Bij − (α− 1)
N∑

i=1

r∑
k=1

log Wik. (4)

If all similarities Sij are integer-valued, the objective function of equation (3) can be the log-likelihood of
generative models as follows: (1) drawing the rows of W according to a uniform Dirichlet distribution
with parameter α; and (2) for t = 1, . . . , T, add one to each entry Wij ∼ multinomial ( 1

N B, 1). If α = 1, the
Dirichlet prior disappears; whereas if α > 1, by smoothing each entry of matrix W, the prior provides a
wider relaxation that is usually desired in preliminary stages of W learning. In this paper, we employ the
Dirichlet prior only to simplify the optimization steps, without change the control of KL divergence.

3.3. Optimization
We implement the optimization using nonnegative matrix factorization with multiplicative updating rule
[40]. We first split the gradient of the objective function J with respect to the nonnegative matrix W into
two nonnegative components:

∇ik
def
=

∂J
∂Wik

= ∇+
ik −∇−

ik . (5)

We then iterate the optimization using the following multiplicative updating rule:

Wik ← Wik
∇−

ik

∇+
ik

, (6)

which retains the nonnegativity of matrix W and does not need to adjust the step size per iteration. Since
the optimization monotonically reduces the objective function J , the multiplicative updating rule can
warrant the convergence of W. To deal with the row-based probability constraint on W, we introduce a
Lagrangian multiplier {λi, i = 1, . . . , N} which is subject to the following constraint:

L(W ,λ) = J (W) +
∑

i

λi

(
r∑

k=1

Wik − 1

)
. (7)

This improves the multiplicative update rule as follows:

W ′
ik = Wik

∇−
ik − λi

∇+
ik

, (8)

in which the gradient of the objective function J is split as:

∂J
∂W

= [(WTZW)kks−2
k + W−1

ik ]︸ ︷︷ ︸
∇+

k

− [2(ZW)iks−1
k + αW−1

ik ]︸ ︷︷ ︸
∇−

k

, (9)

where sk =
∑N

v=1 Wvk, and the ratio Zij = Sij/Bij only calculates non-zero entries of S, without requirement
to specify the entire matrix B. Given

∑
k Wik

′ = 1, we have

λi =
bi − 1

ai
, (10)

where

ai =

r∑
l=1

Wil

∇+
il

and bi =

r∑
l=1

Wil
∇−

il

∇+
il

. (11)

Combining equation (11) and equation (8), we have

Wik ← Wik
∇−

ik ai + 1 − bi

∇+
ik ai

. (12)

4



New J. Phys. 22 (2020) 063035 H-J Li et al

To retain the positivity of W, we add the term bi to both the denominator and numerator of equation (12),
which gives the following updating rule:

Wik ← Wik
∇−

ik ai + 1

∇+
ik ai + bi

. (13)

This algorithm warrants the convergence of the optimization because the cost function J can be
monotonically decreased in each iteration. We validate this point using the majorization–minimization
principle in the following. W and W̃ distinguish the current estimate and variable, respectively.

(1) Majorization

Letφijk =
WikWjk∑N
v=1 Wvk

(
r∑

l=1

WilWjl∑N
v=1 Wvl

)−1

.

L(W̃ ,λ)

� −
N∑

i=1

N∑
j=1

r∑
k=1

Sijφijk

[
log W̃ik + log W̃jk − log

∑
v

W̃vk

]

− (α− 1)
N∑

i=1

r∑
k=1

log W̃ik +

N∑
i=1

r∑
k=1

λiW̃ ik + C1

� −
N∑

i=1

N∑
j=1

r∑
k=1

Sijφijk

[
log W̃ik + log W̃jk −

∑N
v=1 W̃vk∑N
v=1 Wvk

]

− (α− 1)
N∑

i=1

r∑
k=1

log W̃ik +
N∑

i=1

r∑
k=1

λiW̃ ik + C2

� −
N∑

i=1

N∑
j=1

r∑
k=1

Sijφijk

[
log W̃ik + log W̃jk −

∑N
v=1 W̃vk∑N
v=1 Wvk

]

− (α− 1)
N∑

i=1

r∑
k=1

log W̃ik +

N∑
i=1

r∑
k=1

λiW̃ ik

+
N∑

i=1

r∑
k=1

(
1

ai
+

α

Wik

)
Wik

(
W̃ik

Wik
− log

W̃ik

Wik
− 1

)
+ C2 (14)

def
=G(W̃ , W),

where

C1 =

N∑
i=1

N∑
j=1

r∑
k=1

Sijφijk log φijk, (15)

C2 = C1 +

N∑
i=1

N∑
j=1

r∑
k=1

Sijφijk

(
log

N∑
v=1

Wvk − 1

)
(16)

are constants that are independent of the variable W̃ . The first two inequalities depend on the convexity
and concavity of the logarithmic functions. By further adding the same constant 1

ai
+ α

Wik
to both the

denominator and numerator, the third inequality warrants the positivity of each entry in the renewed
matrix, because x � 1 + log x when x > 0. The upper boundaries mentioned above are tight at W̃ = W , i.e.
G(W , W) = L(W ,λ).

(2) Minimization

∂G

∂W̃ik
= ∇+

ik − α

Wik
− Wik

W̃ik

(
∇−

ik −
α

Wik

)
+ λi +

(
1

ai
+

α

Wik

)
Wik

(
1

Wik
− 1

W̃ik

)
= −Wik

W̃ik

(
∇−

ik +
1

ai

)
+

(
∇+

ik +
bi

ai

)
. (17)
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Figure 2. Comparing the quality of detecting communities in the Lancichinetti–Fortunato–Radicchi benchmark networks for
our method versus 5 other well-known methods. (a) to (d) correspond to 4 typical community settings obtained by varying
network sizes and mixing parameter μ. Large values of mixing parameter μ indicate the increase in the fuzzy community
structures. The network size is (a) and (b) n = 1000 and (c) and (d) n = 5000, whereas the number of communities is (a) 100
small Lancichinetti–Fortunato–Radicchi communities, (b) 50 big Lancichinetti–Fortunato–Radicchi communities, (c) 300
small Lancichinetti–Fortunato–Radicchi communities, and (d) 200 big Lancichinetti–Fortunato–Radicchi communities. Our
method performs better than the other ones for most cases except worse than SA methods when mixing parameter μ is very
small.

Since the gradient is reduced to zero when the cost function converges, we have

Wnew
ik = Wik

ai∇−
ik + 1

ai∇+
ik + bi

, (18)

where Wnew
ik denotes the updated result. The above discussions verify that L(Wnew,λ) � G(Wnew, W) �

L(W ,λ). This indicates that our framework reduces each row of W as a probabilistic simplex, in which bi

accounts for the sum of the rows of unconstrained multiplicative results, and ai accounts for the balance
between the probabilistic simplex attraction and the gradient learning force.

3.4. Initialization and optimal number of communities
Our framework can start from any initial partition of communities. Given a randomly initialized
community indicator matrix W, we provide a tiny positive perturbation (e.g. 0.05) to each entry of W
before the optimization (i.e. with α = 1). The regularized condition (i.e. with various α �= 1) can also be
used to offer non-regularized initialization (i.e. with α = 1). Therefore, the parameter α is only used at the
initialization, with its optimal value determined by the minimum of D(S‖B) (i.e. the optimal partition of
communities). In addition, we set the similarity matrix S as the adjacent matrix A, which is sufficient to
extract the reasonable community partitions.

The number of partitioned communities r can be treated as an independent variable, whose optimal
value can be calculated proactively. Specifically, we evaluate the residual D(S‖B) with W discretized to the
community indicator matrix against each possible value of r, and then choose the optimal number of
communities r that lead to the lowest residual D(S‖B). We provide the pseudo-code of this algorithm inthe
Supplementary Material.
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Figure 3. Community patterns underlying the political book co-purchasing network. (a) Detected communities of the
co-purchasing relationships among 105 books, in which the size of each node accounts for its node degree. Community
correlation graph (b) at the first level with 7 communities and (c) at the second level with 2 communities. Communities are
colored according to the color of nodes within each community, and the size of each community is adjusted according to its
importance. The thickness of edges accounts for the community correlation strength above the average threshold.

4. Results

In this section, extensive experiments on multiple types of dateset are applied to demonstrate the high-level
performance and efficiency of the proposed method.

We first consider the seminal Lancichinetti–Fortunato–Radicchi benchmark networks, which comprises
a series of synthesized network models that maintain several major structural features observed in
real-world networks [42, 48]. We use the following set of parameters to generate the synthesized network
models: the average node degree k = 10, maximum node degree kmax = 50, minimum community size
minc = 100, and maximum community size maxc = 300. We examine several typical community
configurations by varying the network size and mixing parameter, as specified in figure 2

We apply our method and 5 different well-known algorithms to the benchmark networks and evaluate
the resultant quality of detected communities using normalized mutual information [48]. The normalized
mutual information computes the accuracy in detecting the true communities: the higher the normalized
mutual information, the better the performance of community partition. Figure 2 demonstrates the
improved performance of our method.

4.1. Case study with political book co-purchasing network

We further apply our method to the famous co-purchasing network of Amazon political book [49] to show
the detection of community correlation patterns. In the political book co-purchasing network, the nodes
represent the books sold by the Amazon online website, and edges represent the pairs of books frequently
co-purchased. More detailed data description can be found at [49].

As in figure 3(a), our method partitions the network into a 2 level hierarchy, with seven nonparametric
and two parametric communities. Figure 3(b) shows the community correlation graph at the first level,
which reveals two hubs (communities 2 and 7), an outlier (community 4), and two wings (communities

7



New J. Phys. 22 (2020) 063035 H-J Li et al

Table 1. Structural properties and community partitions of six real-world large-scale networks obtained
from the Stanford Network Analysis Platform [50]. The quality of community partitions is compared using
the normalized mutual information (NMI), the modularity (Q) and the variation of information (VOI) with
perturbation probability 0.3. Here, N and M represent the number of nodes and edges, Rg and Rm represent
the number of communities obtained from the ground-truth and from our method, respectively.

Network N M Rg Rm NMI Q VOI

Amazon 334 863 925 872 75 149 73 961 0.423 0.5353 0.106
Dblp 317 080 1049 866 13 477 14 531 0.431 0.5213 0.127
Youtube 1134 890 2987 624 8385 10 156 0.356 0.4353 0.133
Livejournal 3997 962 34 681 189 287 512 176 351 0.323 0.5013 0.184
Orkut 3072 441 117 185 083 6288 363 5963 451 0.394 0.4633 0.205
Friendster 65 608 366 1806 067 135 957 154 937 640 0.441 0.3253 0.321

1–3 vs communities 5–7).The two wings of books are linked by the two hub communities.The books in
each wing share the same labels, so that they have a strong correlation even if they may never be purchased
together. Figure 3(c) shows the two macroscopic modules at the second level, which is obtained according
to the types of books. This indicates that the customers of Amazon are more likely to purchase the books
attached with the same labels (about 24%), and they rarely or never purchase books attached with different
labels (less than 1%).

Based on the above analysis, we can build a correlation strength matrix C, in which each entry Cks

calculates the coarse-grained relationship (i.e. the ratio of interconnect edges) between first-level
communities k and s. The correlation strengths of each community can be ranked to guide the strategic
planning for booksellers. Because of the high correlation among communities 1–3, the storage of books in
these communities can be increased together if the purchasing of books in community 2 is increasing. In
addition, since the community 2 is segregated from communities 5 and 7, the storage of books in the
communities 5 and 7 can be reduced, because they are never co-purchased with the books in community 2.

4.2. Scalability of the algorithm

To further validate the efficiency of our method, we apply it to six large-scale real-world data-sets obtained
from the Stanford Network Analysis Platform [50]: (1) the Amazon product network in which two products
(nodes) are connected together if they are co-purchased frequently; (2) the coauthor cooperation network
Dblp, in which two scientists are connected by an edge if they have coauthored a paper; and 4 social
networks from the following sources (3) Youtube, (4) Livejournal, (5) Orkut, (6) Friendster. The ground
truth partition is known for each of these networks. Table 1 presents the key structural properties and the
community partition using our method for these networks. We use the modularity [1], the normalized
mutual information [42] and the variation of information (VOI) to evaluate the performance. Since our
results are very close to the ground-truth results (real communities) for almost all tested networks, our
method is satisfactory to deal with large-scale networks with millions of nodes and edges.

5. Conclusions

In summary, we have developed a new community detection method, using nonnegative low-rank
approximations. We have two major contributions: (1) an efficient definition of identifiability is introduced,
which can be used to estimate the optimal number and partition of communities simultaneously; and (2) a
new relaxed formulation with low-rank doubly stochastic matrix decomposition and corresponding
multiplicative majorization–minimization algorithm are proposed, which allows high efficiency
optimization. We use extensive in multiple types of experiments to demonstrate the near optimal
performance of our method in dealing with a wide range of networks. We also show the scalability of our
method using real world large-scale datasets with billions of nodes.
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