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Abstract

Collective behavior, from murmurations to synchronized beating of heart cells, governs some of
the most beautiful and important aspects of nature. Likewise, cooperation—the act of sacrificing
personal benefits for the common good—is one of the pillars of social evolution, and it is the basis
for the emergence of collective organized actions from single-cell organisms to modern human
societies. Here we merge these two phenomena into a single model, considering an ensemble of
networked oscillators, where each oscillator can be either a cooperator or a defector, and with only
cooperators contributing to synchrony. At the same time, the value of the order parameter in the
neighborhood of each oscillator is considered as an effective local temperature which determines
the strategy updating procedure in the evolutionary game. The emergence of cooperation is thus
intertwined with that of synchronization, producing a novel and fascinating dynamics which
includes a double explosive transition.

1. Introduction

The extensive cooperation in nature, ranging from microbiology [1] to human societies [2], has profoundly
changed the history of life. Nevertheless, cooperation is also known as one of the great unsolved natural
mysteries—being that it is inconsistent with the fundamental Darwinian principle of evolution that
organisms should act so as to maximize their own fitness—and a renewed attention to it started after
Nowak and May first placed the prisoner’s dilemma on a square lattice and opened up a completely new
field of research [3]. In their seminal work, indeed, cooperators, despite sacrificing personal benefits for a
common good, can actually survive by forming compact clusters. This phenomenon is known as network
reciprocity [4], and it spawned many relevant studies in self-organization [5], dilemma strength [6, 7],
spatial games [8], complex networks [9—12], coevolution [13, 14], to name but a few. Several recent reviews
cover the latest advances in detail [2, 6, 7, 15].
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The path of studies in synchronization is quite similar. Synchronization in large groups of oscillators is
ubiquitous in nature, spanning from cellular to societal levels, and with applications ranging from ensuring
proper organ health and functioning to mitigating unrest [16]. In the age of network science [17-22], it
became clear that both the structure and function of a network play a key role in synchronization [22-29].
Studies concentrated on the paradigmatic Kuramoto model, where oscillators are rotating on a unit circle
with an arbitrary natural frequency and are coupled by means of a harmonic function of their phase
differences [30—34]. Generally, a continuous transition from disorder to coherence occurs as the coupling
strength increases, but recent studies unveiled that altering the network structure or considering adaptation
can lead to explosive synchronization [25, 35—-38], where the transition is instead discontinuous and may be
even irreversible.

Three years ago, Antonioni and Cardillo [26] studied the coevolution of synchronization and
cooperation in costly networked interactions, where a dichotomous scenario is considered in which
oscillators may decide to cooperate (and pay the cost in order to be synchronized with the rest of the
population), or to free-ride (without incurring in any cost, but waiting that others synchronize to its state).
In this letter, we further explore this family of models, and merge synchronization and cooperation
processes in a single setting in which only cooperative oscillators aim to synchronize with each other. At the
same time, the local order induced by synchronization is seen as an effective local temperature which
determines the strategy updating process of oscillators’ strategies. Such a double feedback leads to novel and
fascinating dynamics, including a double explosive transition to synchronization and cooperation as the
coupling strength increases, as well as bistable steady states.

2. Model

Let us start by considering an ensemble of N networked oscillators, which evolve using the following
equations:

do; SO
i wi + )\aiZA,-j sin(0; — 0;), (1)
j=1
here, 0; and w; are the instantaneous phase and the natural frequency of the ith oscillator, respectively,
(i=1,2,...,N),and A is the coupling strength. Furthermore, {A,]} are the elements of the network’s
adjacency matrix (with Aj; = 1 if oscillators i and j are connected, and A;; = 0 otherwise). The degree of the
oscillator i is defined as the number of its neighbors, i.e., k; = ZJI\LI Ajj. Finally, o; is a time-dependent
binary variable which assumes the value of 1 when the oscillator is in the cooperative state C, and the value
of 0 when the oscillator is in the defective state D. In other words, a cooperating oscillator stays attached to
the network structure and in this way it cooperates to the formation of a synchronous state, whereas a
defective oscillator detaches from the network as it does not want to participate to the setting of any
collective state. Notice that equation (1) reduce to the classical Kuramoto model when, at all times,
«; = 1Vi, and when the network is a clique.

Each oscillator can be seen as a point in the complex plane rotating on the unit circle, and the extent of
synchronization is quantified by the order parameter R, defined by Re!? = ﬁszzl e, with ¥ being the
average phase. R = 0 corresponds to a fully incoherent state, where all oscillators rotate independently from
each other and with different frequencies. On the other hand, R = 1 indicates a perfectly synchronized
state, where all oscillators are locked to a common frequency, and all phases evolve in unison. As the
connectivity structure is that of a network, for each oscillator i one can also define a local order parameter r;
(measuring the extent of synchronization in node 7’s neighborhood) by means of the following equation:

N il
v, _ 2= A e

I (2)

e

Furthermore we consider that at discrete times t;, f, . . ., t, (with t; — t;_; = At for all integers
1 < j < n) each oscillator 7 plays an evolutionary game with pairwise interactions with all of its neighbors
in the network. At each round of the game and in each one of the existing links i — j, oscillator i
accumulates therefore a payoff 7;; according to the following matrix:

C D
C/1 0
D(b 0)' 3)

In expression (3) C and D stand, respectively, for cooperator and defector. For instance, when a C
oscillator encounters a D oscillator, the former receives the quantity 0 while the latter receives b. This
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framework can be seen as that of a prototypical prisoner’s dilemma game. In particular, b > 1 is called the
temptation to defect, in that it quantifies the extra payoff that a defector obtains when meeting a cooperator.

Each time the game is updated, the oscillator i calculates its total payoff 1I; = Z]N:1 Ajimij, and updates
its strategy by means of the Fermi rule. Namely, the oscillator i’s strategy c; imitates the strategy o; (with j
being a randomly chosen index among those labeling the nodes that form the neighborhood of node 7) with
probability:

1

1 1 e (G- I/=7)K) - (4)

P(Oéi — Oéj) =

In equation (4), K stands for an overall rationality coefficient (small K values indicate rational choices,
where node i tends to imitate the strategy with higher payoff, whereas large K values stand for irrational
choices), while each oscillator can behave differently because the local rationality, K; = (1 — r;)K is related
to the local order parameter r;. As a more physical picture, here (1 — r;) is interpreted as a local
temperature, and payoffs are seen as energy levels. Such a physical interpretation is easy to understand: if
r; = 1 is in-situ equal to one, then the system is fully ordered on the spot, i.e. the local level of entropy will
be the minimum and we can associate to such a frozen state a zero local temperature. On the contrary,

r; = 0 would imply maximum local disorder and entropy, and one can therefore associate such a tangled
state to the maximum value of a local temperature.

As we are mixing processes which are essentially different in time (the synchronization dynamics is
continuous, while the evolutionary game is discrete), it is then crucial to discuss (and ultimately fix) the
time scale at which the two processes need to be compared. If one takes as the unit reference for time the
timescale of equation (1) (which indeed contain frequencies), then one should carefully consider all the
following quantities; (i) the unit of time, t; (ii) the integration unit, i.e. the discrete unit used in simulations
of equation (1), and (iii) the Game/Sync unit, i.e. the lapse At between each one and the successive round
of the game. Namely, simulations proceed as follows; starting from random initial conditions and after a
convenient transient time has elapsed, equation (1) are evolved with fixed «; values along a single
Game/Sync unit At. Then the game is iterated, strategies of all nodes are updated, and all ¢;’s are set to the
corresponding new values which are then used for the next lapse At. In our case, the integration unit is
taken to be h = 0.01. The time-scale effects on the overall evolution of the system are presented in details in
our supplementary information (SI) (https://stacks.iop.org/NJP/22/123026/mmedia).

The main quantities monitored for the characterization of the emergent dynamics are: (i) the fraction of
cooperators pc = Zf\j:l «;/N, the order parameter R, and (iii) the average value of the local order

— 1 .
parameter Ry = ) i—; 1.

3. Results

Let us first report the full phase diagram in the relevant parameter space, the plane of A and b, which are the
coupling strength of synchronization and the temptation to defect, respectively, and which respectively rule
the evolution of the dynamics and of the game. The results are presented in figure 1, and are obtained on an
Erdds—Rényi (ER) random network [39] of size N = 8, 192 and with an average degree of (k) = 12.
Initially, the frequencies w; are taken from a homogenous random distribution in interval U(—1, 1).
Moreover, initial phases are taken randomly, and each oscillator is initially randomly chosen as C or D. In
figure 1 one notices immediately a high correlation between the patterns of R and R;. However, for A < 0.1
(where the system does not synchronize) and for b < 1.04, one sees that R is nearly zero whereas Ry, is
finite, and as a result p is almost unchanged in this region. After the critical coupling strength value at
which the synchronization emerges, it is also visible that cooperation can be maintained with a large
temptation value b—in other words, cooperation is promoted by synchronization. Finally, the novel result
is that the induced double transition to synchronization and cooperation is sharp and abrupt, resembling,
though in a completely different context, the features of explosive synchronization [25]. This is seen in
figure 2 which indeed shows that for moderate b or )\, the transition shows an explosive character.

In order to gather more information on the observed double explosive transitions, we need to investigate
the role of the overall rationality coefficient K. For this purpose, we gradually vary K, and monitor in
parallel the two evolutions of the system generated by two distinct sets of initial conditions. In the first set,
the system 1is initialized in its fully incoherent state, i.e. with R(# = 0) ~ 0, while in the second set the initial
phases are fully synchronized, i.e. one has R(t = 0) ~ 1. The asymptotic values of R and p in the two
simulations are denoted as Ry, R; and py, pcy» respectively. Figure 3 reports, for each value of K, the average
results from 50 different independent trials. Note that both p and R are always decreasing as K increases.
This implies that rationality helps to maintain cooperation, and therefore leads indirectly to
synchronization. The remarkable result here is the presence of a large hysteresis region (the green shaded
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Figure 1. Phase diagrams of the cooperation fraction p. [panel (a)], the global order parameter R [panel (b)], and the local
order parameter R; [panel (c)] in the (b — \) parameter space. Results are obtained from an ER network of size N = 8, 192.
Other parameters are: (k) = 12, K = 3.0, and Game/Sync = 10°.

01 0.2 03
A

Figure 2. p. [panels (a) and (d)], R [panels (b) and (e)], and R, [panels (c) and (f)] vs b (upper row) and A (lower row). Same
stipulations as in caption of figure 1. On the top of each panel, the value of A (b) is indicated. From left to right, as b or A
increases, the transition (when it exists) becomes always explosive.

area of figure 3), where p,(Ro) and p¢; (Ry) coexist as bi-stable solutions, and which then implies
irreversibility [24, 40]. The bistability is easily understandable from figure 3, where for either large (>5) or
small (< 1) coefficient K, the effect of the local order parameter r; on the local rationality K is neglectable.
The group rationality is then maintained in a lower or high level, and thus totally favoring or suppressing
the cooperation. For a moderate K, however, if set K; to a large value initially, the cooperation is inhibited,
and indirectly suppresses the synchronization. As a feedback, the rationality K; is kept high and continue to
suppress cooperation. If we set a small K; initially, the mechanism is similar, but the cooperation and
synchronization are supported. We also obtain the hysteresis region on scale-free network [41] and the
results are presented in details in our SI.

The landscape of bistability in the space of the parameters {\, b, K} provides a more complete view of
the coevolutionary dynamics. If we determine the existence of bistability at one point with boundary
d = 0.1 (there are many other possible choices as the criteria, but the selection of criteria would not affect
our main results), then three regions are found from the simulation results:

e Reg.l: (|[Ry — Ry| < d) A (|pcy — pei| > d), where only cooperation shows bistability.

e Reg.Il: (|Ry — Ry| > d) A (|pcy — pcr| > d), where both cooperation and synchronization show

bistability.

e Reg.IIT: Otherwise, no bistability is observed.

The Reg.I and Reg.II in the full space are depicted in figure 4 (see the caption for the color code). It is
noteworthy that the bistability of synchronization is possible only if the bistability of cooperation exists. In
Reg.I, the coupling strength \ is too small that R(t = co) = 0 irrespectively of the initial condition, i.e.,
there is no synchronization. However, when the temptation b is moderate, the bistable phenomenon of
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Figure 3. pq, Ry, pe; and R, (see text for definitions, see legend for the color code) vs K. Parameters are N = 8,192,
(k) = 12,A = 0.3,b = 1.1, and Game/Sync = 10°. Bistability occurs in a wide range of K values (the green shadowed region).
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Figure 4. Bistability landscape for the cooperation and synchronization state. (a) Regions of bistability: Reg.I (red) and Reg.II
(blue), in the parameter space {\, b, K}. (b) Regions of bistability on the 2D-slice (K = 3), in the parameter space {\, b}. Results
are obtained from an ER network of size N = 8, 192 and the other parameters (k) = 12, and Game/Sync = 10%.

cooperation influenced by the initial group rationality can be observed. Specifically, strong rationality
stimulates a high level of cooperation, while weak rationality leads to a low level of cooperation. The
simultaneous bistability of cooperation and synchronization emerges together in Reg.II, where the coupling
strength ) is large enough and the temptation is moderate. Obviously, equation (4) shows that for an
extremely small rationality coefficient K ~ 0, local order parameter r; almost does not change the local
rationality K;. At this time, the two dynamics are dominated by the evolutionary game process, and there is
no bistability. While K is larger than a threshold (e.g., K = 1.2, in figure 3), then the co-evolution actually
begins and shows the bistability. To sum up, the bistability is induced by the interplay of the two dynamics.

4. Conclusion

In summary, we have studied the emergence of collective dynamics in a general model which intertwines
cooperation and synchronization. In particular, we have observed a double explosive transition for
synchronization and cooperation. Namely, we have shown that by either increasing the coupling or the
dilemma strength, the transition from incoherence to coherence (as well as that from full defection to full
cooperation) become abrupt, irreversible, discontinuous and explosive. By further considering the effect of
rationality, the transition implies a bistable state, where either a high or a low fraction of cooperators can be
maintained in a stable way. The exploration in the parameter space shows the dynamics demonstrating
co-evolution induces the bistability.

It is natural to ask whether the model used for the game (synchronization) could have broader
implications in the formation of the phenomena reported here. We argue that it does, e.g., the payoff matrix
equation (3) used in this paper is the so-called boundary game, while the pairwise game can be classified
according to the strength of two dilemmas, namely GID and GAD (see [42—-45]). In future work, we will
expand more universal games.

Further extensions of the model remain to be considered, especially at the interface of physics and
society [46], whereby synchronization represents physics, and cooperation represents society. For instance,
since multilayer networks go a step further in accurately reflecting the reality of interactions in nature and
society [36], it would be very important to confirm these results with more realistic network’s structures. It
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would also be interesting to go beyond pairwise interactions, and to study whether group interactions [2, 8]
have any role in shaping the dynamics of these family of models where dynamics and games co-evolve.
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