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Abstract
In efforts to resolve social dilemmas, reinforcement learning is an alternative to imitation and
exploration in evolutionary game theory. While imitation and exploration rely on the performance
of neighbors, in reinforcement learning individuals alter their strategies based on their own
performance in the past. For example, according to the Bush–Mosteller model of reinforcement
learning, an individual’s strategy choice is driven by whether the received payoff satisfies a preset
aspiration or not. Stimuli also play a key role in reinforcement learning in that they can determine
whether a strategy should be kept or not. Here we use the Monte Carlo method to study pattern
formation and phase transitions towards cooperation in social dilemmas that are driven by
reinforcement learning. We distinguish local and global players according to the source of the
stimulus they experience. While global players receive their stimuli from the whole neighborhood,
local players focus solely on individual performance. We show that global players play a decisive
role in ensuring cooperation, while local players fail in this regard, although both types of players
show properties of ‘moody cooperators’. In particular, global players evoke stronger conditional
cooperation in their neighborhoods based on direct reciprocity, which is rooted in the emerging
spatial patterns and stronger interfaces around cooperative clusters.

1. Introduction

Cooperative behavior is prevalent in nature and our society, even in the situations where free-riding is
profitable [1–4]. Evolutionary game theory, based on two-player games (e.g. prisoner’s dilemma games),
multi-player games (e.g. public goods games), and their variants, serves as an efficient theoretical
framework for exploring the emergence and maintenance of cooperative behavior [5–11]. To date, a large
number of theoretical mechanisms have been proven to reveal the cooperative behavior of groups, such as
self-organization [12], random walk within an appropriate range of temperatures [13], heuristics selection
[14], higher-order interactions [15], in-group favoritism [16], social exclusion [17], assortativity [18],
sentiment contagion [19], strategy equilibrium [20], risk perception [21], role specialization [22], cyclic
dominance [23] and so on. Moreover, some pioneers have used statistical physics to reveal that adopting a
strategy that punishes defectors while rewards cooperators can gain an evolutionary advantage [24, 25].
Most of these mechanisms revolve imitation (i.e. random imitation, imitation of the best, etc) [5, 26–30],
however it is undeniable that some recent works have shown that in repeated dilemma games, individuals
tend, based on limited information, to adopt simple and effective behavior patterns instead of adopting
cautious and complex behavior patterns based on various information. For example, individuals exhibit
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adaptive learning behavior, tit-for-tat (TFT), win-stay-lose-shift (WSLS), and so on, just based on limited
historical information [31–35].

Individuals’ adaptive behavior based on experience usually consists of two aspects. On the one hand, an
individual’s future strategy follows specific action rules. For example, always cooperating, always defection,
TFT, tit-for-two-tats (TF2T), generous tit-for-tat (GTFT), WSLS, grim cooperate, and extortioner have
been identified as representative action rules in repeated prisoner’s dilemma games [36–39]. Experimental
studies also suggest that participants’ decision-making behavior can be characterized as noisy TFT, and it is
the dominant strategy in a pairwise interactive environment [40]. In addition, the behavior patterns behind
the demise of the commons across different cultures have also been studied [41].

On the other hand, humans and many species are capable of complex cognition, many of the cognitive
skills have been considered as mechanisms for promoting the evolution of cooperation, such as learning
[42], theory of mind [43], intent recognition [44, 45], intelligence [46], emotion [47, 48], etc. Here we focus
on learning ability, and typically individuals use learning theory based on reinforcement learning to adjust
their future decisions. Macy and Flache [49] used the traditional Bush–Mosteller (BM) stochastic learning
model [50] for binary selection, and called it BM model of reinforcement learning. This model consists of
two parts. At first, a player chooses an action based on the probability of cooperation and obtains the
corresponding benefit. The player calculates her stimulus measured by whether the income satisfies
aspiration. Second, driven by the reinforcement learning algorithm, the player updates the tendency of
cooperation based on the current action and stimulus.

Following Macy and Flache’s study, reinforcement learning mechanisms have attracted the attention of
many scholars [51]. At present, for a fixed aspiration level, some researches have shown that BM players can
cooperate with each other when payoff satisfies the aspiration [52–54]. In addition to changing actions,
individuals can also adjust aspiration level, irrespective of BM reinforcement learning model or other
reinforcement learning models [55]. In short, the principle of reinforcement learning is that individuals
form two cognitive mechanisms, namely approach and avoidance, from experiential information. Approach
means that payoff satisfies aspiration, so an individual’s probability of repeating her previous action
increases. Conversely, avoidance means that payoff is lower than aspirations, then individual’s probability of
repeating previous action decreases.

Considering that in the reinforcement learning mechanism, stimulus is measured by the individual’s
satisfaction with the payoff, and is used as an important indicator to drive the individual to adjust her
action probability, it is essential to emphasize that each player receives payoffs with different sources. On the
one hand, individuals get the corresponding payoff when interacting with each neighbor, and on the other
hand, they receive cumulative payoffs. In view of this, it is natural to assume players’ stimulus with various
sources, like the payoff. Here, we divide agents into global players and local players, depending on their
sources of stimulation. With such a framework, the global player’s stimulus means the focal player’s overall
satisfaction with all neighbors in the neighborhood, which is measured by the difference between
cumulative payoff and total expectation. The local player’s stimulus means the focal player’s satisfaction
with a specific neighbor, which is determined by the difference between payoff from the neighbor and local
expectation. In this article we focus on the performance of two types of players with different sources of
stimulus under reinforcement learning rule. Simulation results show that global players play a leading role
in promoting cooperation, and the probability of cooperation in the steady state follows two separated
states, that is high cooperation and low cooperation. While the probability of cooperation of local players
follows a normal distribution and assists the global players to achieve a high level of cooperation.

2. Methods

Players follow the reinforcement learning rule on the grid with 100 × 100 nodes with periodic boundary
conditions. All players decide whether to cooperate or defect according to an intended probability and play
the prisoner’s dilemma game with their four neighbors. If a pair of players choose to cooperate, they both
gain the reward R = 1. If they both choose to defect, then they both get the punishment P = 0. If one
chooses to cooperate and the other chooses to defect, the former gets the sucker’s payoff S = 0, and the
latter obtains the temptation T = b(b > 1), respectively. Therefore, the cumulative benefit Φ of focal agent
reads as:

Φ =
4∑

i=1

Pyi , (1)

where Pyi is the payoff that focal player gets from her neighbor yi (figure 1). Since individual satisfaction
with the current payoff will cause the fluctuation of individual emotion, stimulus, st, is measured as a
function of the difference between payoff and expectation, according to different sources of stimulation.
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Figure 1. Reinforcement learning environments for two species of players on grid network. (a) Global player (left) considers the
combined performance of her neighbors, her stimulus st is generated by whether the cumulative payoff Φt satisfies total
expectation 4A, and she obtain the intended probability to cooperate pG(t+1) following the reinforcement learning rules given by
equation (4) based on the current willingness to cooperate pGt, stimulus st, and action at. (b) Local player (right) is more
concerned about the performance of each neighbor, and her four independent stimulus syi t are generated by measuring whether
the payoff Pyit from each neighbor satisfies the single expectation A, and then her willingness to cooperate towards each neighbor
pyi(t+1) is obtained according to reinforcement learning rules, so the local player’s intended probability to cooperate pL(t+1) is the
average of her willingness to cooperate towards four neighbors pyi(t+1) .

Players in the network are divided into two categories (figure 1): global players and local players (which are
randomly distributed on the network), and the proportion of global players is u. In particular, given an
aspiration level A, global players care about the comprehensive performance of the entire neighborhood,
while local players care more about the performance of each neighbor. Thus, for a global player, her
stimulus, st, is measured by the difference between cumulative payoff Φt and total expectation 4A. While for
a local player, she is faced with four independent stimulus from each neighbor, syit(i = 1, 2, 3, 4), measured
by the difference between payoff Pyi and single expectation A (figure 1). The details are as follows [51, 55]:

st = tanh[β(Φt − 4A)], (2)

syit = tanh[β(Pyit − A)], (3)

where the aspiration level A is fixed at 0.5. Parameter β measures the sensitivity of the stimulus to the
difference between payoff and expectation.

Further, players’ current stimulus and action affect their intended probability to cooperate. Therefore,
they update the tendency to cooperate, pt, according to the reinforcement learning rule based on the current
intended probability to cooperate pt, stimulus st, and action at, BM model [51, 55]:

pt+1 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

pt + (1 − pt)st , (at = C, st � 0)

pt + ptst , (at = C, st < 0)

pt − ptst , (at = D, st � 0)

pt − (1 − pt)st , (at = D, st < 0).

(4)

Specifically, for global players, they obtain the intended probability to cooperate pG(t+1) at round t + 1
following the reinforcement learning rule based on the intended probability to cooperate pGt, stimulus st,
and action at at round t. However, it is worth noting that local players are sensitive to the performance of
each neighbor and can clearly feel the stimulus, syit , from each neighbor, thereby generating an intended
probability to cooperate for each neighbor, pyit (figure 1). Under such a situation, they first update the
tendency to cooperate with each neighbor based on the reinforcement learning rules, then their tendency to
cooperate pL(t+1) is measured by the average of intended probability to cooperate for each neighbor,
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Figure 2. Greater sensitivity to stimulus can trigger cooperative behavior of group. The probability to cooperate in the steady
state as a function of the sensitivity β and the temptation to defect b. From left to right, the cooperative behavior in three
situations: the total population, among the sub-population of global players, and the sub-population of local players are shown
respectively. (a) Greater sensitivity to stimulus promote the group to reach a high level of cooperation. (b) Global players are
more affected by the temptation to defect, and their cooperative behavior is dominant when b is small. (c) Local players are less
affected by the temptation to defect, and their cooperative behavior is dominant when b is high. All results are obtained for
A = 0.5, u = 0.5.

pL(t+1) =
1

4

4∑
i=1

pyi(t+1). (5)

In the beginning, each global player is randomly assigned the intended probability to cooperate, and each
local player is randomly assigned the vector of intended probability to cooperate, one intended probability
to cooperate for each of the neighbors.

Players were selected once on average to update their intended probability to cooperate in each time
step. For a full reinforcement learning run, we observed the probability of cooperation on the lattice with
size L = 100 over 800 000 time steps, of which the last 10 000 has up to a stable state.

3. Results

To explore the cooperative behavior of two species of players with different sources of stimulus under
reinforcement learning rules, we focused on how sensitivity β and the temptation to defect b affect the
cooperative behavior (figure 2). The results show that the difference between payoff and aspiration brings
player stimulus, and the player’s greater sensitivity to stimulus increases the tendency to cooperate.
However, the effect of sensitivity is limited, and when β exceeds a certain threshold, especially in the case
where β > 1, cooperative behavior does not continue to increase with β. In addition to this, cooperative
behavior gradually decreases with the temptation to defect b (figure 2(a)). However, the responses of the
two species of players to changes in b are quite different. Global players’ cooperation gradually decreases
with b from high to low levels (figure 2(b)), whereas local players are more tenacious and the effect of
changes in β and b on their cooperation behavior is minimal, with their cooperative behavior remaining
stable in the range of 0.2 to 0.3 (figure 2(c)).

The dynamic process of the players’ cooperation probability and its distribution in the steady state for
different temptation to defect b is shown in figure 3. The results show that the evolutionary trend of global
player’s cooperation probability is determined by the temptation to defect. In contrast, local players’
cooperation probabilities do not fluctuate significantly with external factors, either in terms of dynamic
processes or changes in b values (figures 3(a) and (d)). Thus, the trend in the probability of cooperation of
the global players determines the trend of the group. In order to clearly show the distribution of the
cooperation probabilities of the two species of players in a steady state, local players and global players are
fixed in the upper and lower parts of the grid network, respectively, and the initial cooperation probabilities
of all players are given randomly. In particular, it is confirmed that fixing players’ position as shown above
does not affect individual decision-making. Furthermore, the results show that in a steady state, the
cooperation probability of local players presents a chaotic state, while the cooperation probability of global
players clearly shows two separate cooperation levels, namely high cooperation and low cooperation
(figures 3(b) and (e)). With a small b value, the high cooperation is dominant (figure 3(b)), while at a large
b value, the low cooperation is dominant (figure 3(e)). Further, the histograms of the probability of
cooperation for the two types of players are given, identifying from a quantitative perspective that the
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Figure 3. The distribution of individual cooperation probability of the two species of players shows great differences. The
individual cooperation probability of global players is polarized (close to 1 or close to 0), while the individual cooperation
probability of local players approximately obey a normal distribution with 0.5 as the center. (a) and (d) Time evolution of
cooperation probability for total population, among the sub-population of global players, and the sub-population of local
players. (b) and (e) Snapshots of the distribution of individual cooperation probability in steady state. Global players and local
players are placed in the lower and upper halves of the grid, respectively. (c) and (f) The distribution of individual cooperation
probability for two species of players. In panels (a)–(c), b = 1.2, and panels (d)–(f), b = 2.0, all results are obtained for A = 0.5,
β = 1.4, u = 0.5.

Figure 4. The transition probability of strategy for global players and local players as a function of the sensitivity β. Sensitivity β
can enhance individual cooperative behavior. (a) The global player’s cooperative strategy is significantly reinforcement as β
increases. (b) Sensitivity has few effect on local players in strengthening cooperative strategy. All results are obtained for A = 0.5,
b = 1.2, u = 0.5.

cooperation probability of global players has a two-level distribution, while the local player’s probability of
cooperation approximately follows a normal distribution with a mean of 0.5 (figures 3(c) and (f)).

Given the large differences between global and local players, we explored the change in the probability of
strategy shift with sensitivity β for the two types of players separately under the reinforcement learning rule
(figure 4). The proportion of C → C gradually increases, implying that global players’ cooperative behavior
is reinforced. The decline in the proportion of D → D means that the defection strategy is less likely to be
repeated, and the proportion of cooperation and defection substituted for each other is always consistent
and small. Thus in the case of small b, increasing β promotes global players to gradually converge towards
cooperation and avoid defection, driven by reinforcement learning rules (figure 4(a)). The trend in strategy
shifts for local players is similar to that of global players, but with small fluctuations (figure 4(b)). Thus
larger sensitivities β are more likely to motivate cooperative behavior in global players.

Then we investigated the influence of the proportion of global players in the network on cooperative
behavior (figure 5). The results show that the appropriate mixing ratio of the two types of players in the
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Figure 5. Moderating the frequency of global players in a group can significantly increase the level of cooperation. The
probability to cooperate in the steady state as a function of the density of global players u, and the temptation to defect b. Panels
(a)–(c) respectively show the cooperative behavior in three situations: the total population, among the sub-population of global
players, and the sub-population of local players. (a) Population reaches a high level of cooperation when the proportion of global
players is about 70%. (b) The cooperation probability of global players gradually strengthens as their density increases. (c) The
cooperation probability of local player gradually weakens as the density of global players increases. All results are obtained for
A = 0.5, β = 1.4.

Figure 6. The density of global players determines the predominance of cooperation. Panels (a)–(c) respectively give the
frequency of connection as a function of the proportion of global players, u, in the following three cases: pairwise interactions
without regard to the focal player, pairwise interactions centered on the global player, and pairwise interactions centered on the
local player. (a) Pairwise interactions in the total population between pairs of cooperating (CC) and pairs of defecting (DD)
agents, as well as between cooperating–defecting pairs (CD) and vice versa (DC), clearly shows that CC interactions are
dominant when the percentage of global players is over 40%. (b) CC interactions that centered on the global players (GCC) are
the primary source of group cooperation. (c) The CC interactions that centered on the local players (LCC) do not continue to
deteriorate with density of global players, but rise briefly. Here we take A = 0.5, β = 1.4, b = 1.2.

network can enable the group to achieve high cooperation (figure 5(a)). The cooperative behavior of global
players increases with the value of u (figure 5(b)), while the opposite is true for local players (figure 5(c)). It
is worth noting that despite the global player’s cooperative behavior is dominant, group cooperation is not
the best situation when the network is full of global players, but rather the network reaches its highest level
of cooperation when the proportion of global players is around 0.65 (figure 5(a)).

Pairwise interactions of strategies at steady state are analyzed. The results show that when u is smaller
than 0.4, overall pairwise interactions are not significantly different from each other (figure 6(a)), while
pairwise interactions starting with global players gradually increase (figure 6(b)) and those starting with
local players gradually decrease (figure 6(c)). As the proportion of global players increases further, CC
interactions explode rapidly (figure 6(a)), especially for global players (figure 6(b)). At the same time, we
are surprised to find a reversal of the decreasing trend in CC interactions for local players, achieving a brief
increase (figure 6(c)). When the proportion of global players exceeds 0.7, the CC interaction gradually
declines, but it always prevails. Therefore, when the density of global player is 0.7, group cooperation
reaches the highest level.

In order to more intuitively observe the results of strategy evolution under reinforcement learning rules,
a snapshot of the distribution of strategies in steady state is given for different u (figure 7). When the
proportion of local players is large, the cooperation strategies hardly form clusters and they are distributed
in scattered dots or bands (figure 7(a)). When the number of global players gradually increases, cooperative
clusters are formed in the network, especially when u = 0.7 (figure 7(c)). However, in the case of all global
players, the cooperation strategy does not form larger cooperative clusters as expected, but instead shows a
maze distribution (figure 7(d)).
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Figure 7. The mixed groups of two species of players are conducive to form cooperative clusters. Snapshots of the distribution of
strategies in steady state for different density of global players, in panels (a)–(d), u is equal to 0, 0.5, 0.7, and 1.0, respectively.
Dark cyan indicates cooperation, and light cyan indicates defection. All results are obtained for A = 0.5, β = 1.4, b = 1.2.

Figure 8. Panel (A) the basic structure of the individual neighborhood. Dark cyan indicates cooperation, and light cyan
indicates defection. Panel (B) the distribution of strategies of focal players under the number of cooperators in the neighborhood
for different density of global players. Here we take A = 0.5, β = 1.4, b = 1.2.

Then we analyzed the distribution of the basic structures of the two players forming the clusters
(figure 8). It shows that when there are all local players, the neighborhoods where players are located are
mainly c, d, h, i basic structures, so that there are hardly any cooperative clusters of large size. With the
introduction of global players, the proportion of basic structures a, b increases significantly, especially the
proportion of local players with basic structure a is as high as 43.8%, which provides the necessary
conditions for the network to form larger cooperative clusters. However, when u = 1, the basic structure a,
b significantly decreases, and the basic structure c, g, h increases, resulting in a maze distribution of
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Figure 9. Introducing global players into a network can stimulate the conditional cooperation (CC) and moody conditional
cooperation (MCC) behavior. The probability of cooperation is plotted against the number of cooperators in the neighborhood
in the previous round for different the density of global players. Panels from left to right show the results not conditioned on
at−1, conditioned on at−1 = C and at−1 = D, respectively. From top to bottom, the conditional cooperation (CC) and its variants
(MCC) in three situations: the total population, among the sub-population of global players, and the sub-population of local
players are shown respectively. Here we take A = 0.5, β = 1.4, b = 1.2.

strategies. Therefore, although global players play a leading role in promoting cooperation, only
cooperation with local players can enable the group to achieve a high level of cooperation.

Previous researches have shown that reinforcement learning reflects features of direct reciprocity, so we
analyze the conditional cooperation and moody conditional cooperation [51, 56] with different proportions
of global players (figure 9). It proves that pure local players (u = 0) do not exhibit significant conditional
cooperation (figures 9(a) and (g)), but show the characteristics of moody conditional cooperation
(figures 9(b), (c), (h) and (i)). The existence of global players can trigger individual conditional cooperation
behavior (figure 9(a)). However, the conditional cooperation patterns of the two types of players show great
differences, that is, global players’ cooperative tendency increase with the number of cooperators in their
neighborhood (figure 9(d)), and local players’ cooperative tendency only rises significantly when their
neighbors are all cooperators (figure 9(g)). In addition, regardless of the mixed ratio of the two types of
players in the population, players show moody conditional cooperation, that is, individuals who chose to
cooperate in the previous round are more likely to cooperate, and vice versa. The more global players in the
population, the more obvious the tendency for emotional conditional cooperation (figures 9(b) and (c)).
Furthermore, results once again confirmed the leading role of global players, that is, the trend of conditional
cooperation and moody conditional cooperation of global players determines the trend of the group.

Finally, in repeated prisoner’s dilemma game, considering players may implement wrong decisions
during the interactions [57], we give the impact of noise (errors), ε, on the outcome of the interactions
(figure 10). Thus, the actual probability to cooperate at round t + 1 is measured by
˜pt+1 ≡ pt+1(1 − ε) + (1 − pt+1)ε. Results show that noise influences cooperative behavior. In the case of

high noise, the tendency of conditional cooperation changes (figures 10(a) and (d)), but both types of
players still present stable moody conditional cooperation (figures 10(b), (c), (e) and (f)).
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Figure 10. Both types of players show properties of ‘moody cooperators’, despite noise interference with cooperative behavior.
The probability of cooperation is plotted against the number of cooperators in the neighborhood in the previous round for
different error rates, ε. Panels from left to right show the results not conditioned on at−1, conditioned on at−1 = C and at−1 = D,
respectively. The conditional cooperation (CC) and its variants (MCC) for global players (top) and local players (bottom) are
shown respectively. Here we take A = 0.5, β = 1.4, b = 1.2, u = 0.7.

4. Conclusion

Under the BM model of reinforcement learning, we classified players into two types, global players and local
players, depending on the source of stimulus they perceive. By changing the mixed ratio of the two types of
players in the group to study how players with different stimulus affect individual cooperative behavior.
How players with different stimulus influence individual cooperative behavior was investigated by varying
the mixing ratio of the two types of players in the group. Research shows that global players play a
dominant role in facilitating cooperation, and their behavior largely determines the trend of the entire
group. But it does not mean that the network can achieve a high level of cooperation when all players are
global players. The fact is that network reaches high cooperation when there is a low density of local players
in the population. This is due to the significant differences in the reciprocity patterns of the two types of
players.

Looking at the group as a whole, our results reconfirm previous research [51, 56] that conditional
cooperation and moody conditional cooperation reveal behavior patterns that individuals generally follow
in repeated dilemma games. Most importantly, we also find differences in direct reciprocity among
individuals with different sources of stimulus. The probability of global player cooperation increases with
the number of cooperators in the neighborhood, exhibiting conditional cooperation. In contrast, no
conditional cooperation features are observed when the population is full of local players. The introduction
of global players can stimulate individual conditional cooperation behavior, and the situation where
neighbors are all collaborators can significantly increase the probability of local player cooperation. All
individuals show the characteristics of moody conditional cooperation even in the presence of noise. In
particular, global players are sensitive to the number of cooperators in the neighbors in the previous round,
while local players seem to be more cautious or strict, as significant increases in the probability of
cooperation of local players occurred when more than half of the neighbors are cooperators.

In addition, the distributions of the individual cooperation probabilities of the two types of players in
the steady state show large differences, with the global player’s cooperation probability showing a two-level
distribution (close to 0 or close to 1), while the local player’s cooperation probability approximately follows
a normal distribution.

Our model is a simple variant of the BM model of reinforcement learning, but it has obtained
interesting results, and provides new insights for readers to understand cooperative behavior in repeated
dilemma games.

Adaptive behavior about adjusting strategies is considered to be highly cognitive and complex, and it is
not difficult to understand the high costs involved in implementing learning strategies. Currently, cognitive
costs have been analyzed in exploring the effects of trust-based strategies [58], intention recognition [59],
evolutionary cycles in finite populations [60], finite automata [61], etc on the evolution of cooperation in
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repeated prisoner’s dilemma games. In future work we will focus on the impact of cognitive costs on the
evolution of cooperation in the framework of reinforcement learning.
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[10] Szolnoki A, Szabó G and Perc M 2011 Phase diagrams for the spatial public goods game with pool punishment Phys. Rev. E 83
036101

[11] Lee S, Holme P and Wu Z X 2011 Emergent Hierarchical structures in multiadaptive games Phys. Rev. Lett. 106 028702
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