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Abstract
Network segregation—a critical problem in real-life networks—can reveal the emergence of
conflicts or signal an impending collapse of the whole system. However, the strong heterogeneity
of such networks and the various definitions for key nodes continue to pose challenges that limit
our ability to foresee segregation and to determine the main drivers behind it. In this paper, we
show that a multi-agent leader–follower consensus system can be utilized to define a new index,
named leadership, to identify key leaders in real-life networks. And then, this paper explores the
emergence of network segregation that is driven by these leaders based on the removal or the
rewiring of the relations between different nodes in agreement with their contribution distance.
We finally show that the observed leaders-driven segregation dynamics reveals the dynamics of
heterogeneous attributes that critically influence network structure and its segregation. Thus, this
paper provides a theoretical method to study complex social interactions and their roles in
network segregation, which ultimately leads to a closed-form explanation for the emergence of
imbalanced network structure from an evolutionary perspective.

1. Introduction

Cooperation and conflict are essential characteristics of contemporary social relations, significantly

influencing international relations and interpersonal relationships. The typical social relations mainly reflect

that people with similar characteristics are more closely connected than people without similar

characteristics. These network characteristics have been shown in a variety of situations [1–3], such as high

school friendship network segregation by race and gender factors [4], as well as environmental policy

network segregation by values and faith [5]. Network segregation is defined as ‘the degree to which two or

more groups live separately from one other’ [6]. In many real systems, cooperation and conflict are the core

features that cause network segregation in many policy issues, such as public administration, climate policy,

and economic regulation and control [7, 8]. Thus, exploring the dynamics of network segregation becomes

an important and attractive topic now [9, 10].

Generally speaking, real social networks are highly heterogeneous and sophisticate [11]. It is unrealistic

to assume that individual contribution is uniformly distributed in many practical problems. Especially

residential segregation [12, 13], which is driven by inconsistent variables such as race or social relations

[14, 15]. Heterogeneous individuals have different contribution values. Motivated by the famous Karate

network [16], this paper originally introduces the role of ‘key leaders’ to drive network segregation. The key

leader is an organization member or a decision-maker who can promote consensus among members.
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Figure 1. The segregation dynamics in networks driven by key leaders. (a)–(c) The network representation of (a) a complete
mixing network with a size of N = 70, (b) a mixing network after removing and rewiring, and (c) a complete segregated
network. (d)–(f) Are corresponding matrix representations of (a)–(c), respectively. The black lines represent boundaries of
different groups. (g) The Li, εi and γ i, of each node i of the network during an iteration. Here, Li = ϕφi(H,v,1)

mii
φi(H, v,β),

Reaction Distance εi = minj: |Lj |>|Li |(dij), and leadership γ i = Liεi for i.

Therefore, their decision is responded to by other followers. However, previous studies have ignored the
heterogeneous characteristic in real networks.

In addition, the existing researches consider network segregation through identifying the local structures
such as community structure or motif [17–19]. The emergence of community or motif is the result of
network segregation, which is caused by complex social relations, public policies, or economic inequality
[20]. They only focus on how to identify key leaders [21] and how different characteristics of participants
interact with each other [22, 23], respectively. However, community detection or motif finding only focus
on a local structure, not revealing the hidden dynamical behaviours of the collective response system.

To explore how key leaders drive network segregation, we utilize a leader–follower consensus system
[24] to simulate social patterns. The segregation dynamics are shown in figure 1. Firstly, we show that the
leader–follower consensus system has a higher contribution value increment than distributed linear
consensus system. The evolution of individual behaviour is explored in social networks. Secondly, we
propose a new index to characterize key leaders, denoted as leadership, which can be extended to many
famous centrality indexes, such as degree centrality (DC), closeness centrality (CC), Katz centrality, etc.
Thirdly, we design a dynamic process to explain the emergence of network segregation and further reveal
the responsiveness of collective dynamics after the key leaders are identified. The state at nodes and
segregated processes is predicted by dynamical process. Finally, we perform multi-type numerical
experiments on real and artificial networks to validate the effectiveness of our method.
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2. Methods

2.1. Distributed linear consensus system
In this paper, to reveal the hidden dynamical behaviours of heterogeneous systems, we apply the distributed
linear consensus system [25] in the social network, and each node of the network represents an agent,
denoted by i. The linear consensus system represents a rich phenomenon that the contribution values of
agents rely on the time scale. Especially, the system describes the dynamic process of information exchange
between each agent and its neighbours. Let us consider the case in which a group of N agents with a
particular distributed consensus protocol and the scalar contribution value xi(t) measures the state of i at
time t. The system’s dynamics is defined by the state vector X(t) = (xi(t))N×1 for i = 1, . . . , N and the
adjacency matrix A = (aij)N×N for i, j = 1, . . . , N where the value of aij = 1 if agent i is connected to j and
zero otherwise. Given a network, the system evolves according to the following model:

dxi

dt
= βi +

ω0

ki

N∑
j=1

aij

(
xj(t) − xi(t)

)
= βi +

N∑
j=1

wijxj(t), (1)

where the natural response frequency is ω0, the degree of agent i is ki =
∑N

j=1aij. And then

wij = ω0

(
aij/ki − δij

)
. For all i, j = 1, . . . , N, using the Kronecker symbol δij.

The equation (1) can be rewritten in matrix on the frequency domain as

X(ω) = (iωI − W)−1β, (2)

where I is an identity matrix for the size of N × N, the N × N state matrix between the agent is denoted by
W, and β is a weight vector, representing the ability in certain cases. Simplified as: δ = ωi. We define the
index Φ(W, δ,β) = (δI − W)−1β as the weighted Katz centrality with parameter 1

δ and weight vector β. We

find that equation (2) equivalent to solve ∂ui
∂xi

= 0 for all agents i on the frequency domain, where

ui = βixi −
1

2
(δ − ω0)x2

i +

N∑
j=1

wijxixj. (3)

2.2. Leader–follower consensus system
To model the system’s response driven by key leaders, we consider a leader–follower consensus system,
which has two stages. In the first stage, the key leaders move first. In the second stage, by observing the
contribution of key leaders, other agents consider following them. The key leaders are generally regarded as
thought leaders or decision-makers in this leader–follower consensus system. The agents are divided into
two groups, i.e., the leader node set L and the follower node set F. We consider the leader–follower
consensus system with |L| leaders and |F| followers. These agents do not satisfy the dynamics of
equation (1), but instead follow contribution values xi = xL

i (∀i ∈ L) and xi = xF
i (∀i ∈ F).

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dxL
i

dt
= βL

i +

⎛
⎝∑

j∈L
wijx

L
j +

∑
j∈F

wijx
F
j

⎞
⎠ ∀i ∈ L

dxF
i

dt
= βF

i +

⎛
⎝∑

j∈L
wijx

L
j +

∑
j∈F

wijx
F
i

⎞
⎠ ∀i ∈ F.

(4)

We denote XL = (xL
i )|L|×1 (∀i ∈ L) and XF = (xF

i )|F|×1 (∀i ∈ F) as the contribution values of leader and
follower node vector, respectively. The contribution of followers XF in matrix on the frequency domain as

XF(ω) = (iωI − WFF)−1(βF + WFLXL), (5)

where I is an identity matrix for the size of N × N. |F| and |L| are the number of leaders and followers. WFF

is a |F| × |F| state matrix between the followers. WFL is a |F| × |L| state matrix between the leaders and the
followers. βF is a weight vector of followers, representing the ability in certain cases. XL can be mapped to
XF by a linear transformation.
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Since the contribution’s difference between distributed linear consensus system and leader–follower
consensus system is difficult to be calculated by a single matrix form directly, it can be equivalently
converted into ∂ui

∂xi
= 0, where

ui =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

βL
i xL

i −
1

2
(δ − ω0)(xL

i )2 + xL
i

⎛
⎝∑

j∈L
wijx

L
j +

∑
j∈F

wijx
F
j

⎞
⎠ ∀i ∈ L

βF
i xF

i −
1

2
(δ − ω0)(xF

i )2 + xF
i

⎛
⎝∑

j∈L
wijx

L
j +

∑
j∈F

wijx
F
j

⎞
⎠ ∀i ∈ F.

(6)

In order to obtain the increment of the contribution values from distributed linear consensus system to
leader–follower consensus system, we firstly calculate the agent’s contribution values based on equation (6).
To simplify the representation of the vector X, the contribution values of nodes in L and F are denoted as
vector XL and XF, and X can be rewritten as a block vector: X = (XL, XF)T. Let H = W − WD and
v = δ + ω0. And the matrix H can be rewritten as a block matrix:

H =

(
HLL HLF

HFL HFF

)
. (7)

By applying the backward induction method, when v is big enough, we obtain the agent’s contribution
values of the leader–follower consensus system by

(
XL

XF

)
= S

(
βL

βF

)
, (8)

with

S =

(
[vI − (T + TD)]−1 [vI − (T + TD)]−1HLFU

UHFL[vI − (T + TD)]−1 U + UHFL[vI − (T + TD)]−1HLFU

)
, (9)

where T = HLL + HLFUHFL, TD is the diagonal matrix of T whose main diagonal components
TD

ii = tii, i = 1, . . . , n and off diagonal components TD
ij = 0, ∀ i �= j, U = [vI − HFF]−1, and β = (βL,βF)T

is a weight vector of leaders and followers, respectively. In addition, if H is matrix symmetric, S is
symmetric as well. The derivation is presented in supplementary materials (https://stacks.iop.org/NJP/24/
053007/mmedia).

Interestingly, one can find that these contribution values can be comprehend in two aspects. Firstly, the
contribution values increase linearly with each component of β, where S indicates the sensitivities. This
implies that each agent’s contribution can be influenced positively and directly by other agents’ increased
intrinsic value. Moreover, matrix S summarizes the influence extent in a nutshell. Secondly, the
sub-sequential responses of followers in the set F are anticipated.

2.3. The index of leadership
The solution to the problem is XN = [vI − H]−1β for a directed linear consensus system. By applying the
block matrix inversion formula, the matrix of sensitivities of intrinsic value M can be rewritten as below:

M = [vI − H]−1 =

(
[vI − (T + 0)]−1 [vI − (T + 0)]−1HLFU

UHFL[vI − (T+0)]−1 U + UHFL[vI − (T + 0)]−1HLFU

)
. (10)

It is confirmable that S � M. To obtain more quantitative conclusions about the difference between
distributed linear consensus and leader–follower consensus system, supposing v is big enough, the
increment of contribution values between distributed linear consensus system and leader–follower
consensus system. We have

(
XL

XF

)
−
(

XN
L

XN
F

)
=

1

v2

(
(HLFHFL)D 0

0 0

)(
βL

βF

)
+ O

(
1

v3

)
, (11)

where (XL, XF)T is the contribution vector of leader–follower consensus system, and (XN
L , XN

F )T is the
contribution vector of distributed linear consensus system. And the parameter v = δ + ω0.

The proof of equation (11) is presented in supplementary materials. Equation (11) implies that the
leader–follower consensus system makes use of the positive feedback productively. Especially, the agent’s
contribution is higher (lower if βL is negative) than the distributed linear consensus system, without respect
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to the potential network structure. Equation (11) expresses the incremental benefit of the leader–follower
consensus system concisely. In equation (11), the first significant term shows a common linear term

between these two contribution vectors. The square term
(
(HLFHFL)D, 0

)T
is only up to βL, but is not

influenced by βF.
To recognize the key leaders, we consider a leader–follower consensus system and use the criterion of

aggregate contribution. Intuitively, we measure the influence extent for the whole network when the leader
becomes a regular follower. Specifically, if we change a leader to a follower and it has little difference for
other nodes, we ignore this node’s influence, and it is more suitable as a follower. Otherwise, this node is
critical and is more suitable as a leader. In the first stage of the leader–follower consensus system, a specific
leader i moves first, and the other agents (followers) move in the second stage. For a leader i, we get the
contribution:

xL
i =

βi + 〈υi, (vI − H−i)−1β−i〉
1 − 2〈υi, (vI − H−i)−1β−i〉

=
φi(H, v,β)

2 − mii
, (12)

where mij = ((vI − H)−1)ij, φi(H, v,β) =
∑n

j=1mijβj, and H can be rewritten as below:

H =

(
0 υ′

i

υi H−i

)
. (13)

Moreover, for a agent i, the contribution in distributed linear consensus system is given by:

xN
i =

βi + 〈υi, (vI − H−i)−1β−i〉
1 − 〈υi, (vI − H−i)−1β−i〉

= φi(H, v,β). (14)

To determine the key leader, we compare the difference to each node between distributed linear consensus
system and the leader–follower consensus system. Thus, if a node i is selected as a leader, the difference of
aggregate contribution values between distributed linear consensus system and leader–follower consensus
system is

Li =

⎧⎨
⎩xL

i +
∑
j�=i

x∗j (xL
i )

⎫⎬
⎭−

⎧⎨
⎩xN

i +
∑
j�=i

x∗j (xN
i )

⎫⎬
⎭

=

⎛
⎝1 +

∑
j�=i

mij

mii

⎞
⎠ (xL

i − xN
i )

= ϕ
φi(H, v, 1)

mii
φi(H, v,β), (15)

where ϕ = (mii−1)
(2−mii)

, x∗j (·) is an affine function of xi.
We find that Li is inversely proportional to mii, which means the leaders’ influence should be extended

to other agents instead of returning towards itself. In addition, the variable φi(H, v,β) is called weighted
Katz–Bonacich centrality [26] of parameter v and weight vector β. Li is proportional to φi(H, v, 1), which
means the influence of key leaders spread easily. Furthermore, it is proportional to φi(H, v,β), which means
the leaders should maintain well contact with other agents in their groups. In short, index Li is a general
measure with rich information, which matches many famous centrality indexes, such as DC, betweenness
centrality (BC), CC, Katz centrality, etc.

Intuitively, the key leaders should be the innermost nodes in the network, while the other nodes should
be distributed around the key leaders [27, 28]. The β must be provided in equation (15), which is critical
for selecting the key leaders. Here, βi = (±)ki is set, where ki is the degree of node i. Then a bigger
φi(H, v,β) indicates that the leader should be well tied to large degree nodes (from within its group) and
have the shortest path with the large degree nodes (from within its group). β can segregate different levels.
The ability to specify different levels can indicate multiple groups and a hierarchical structure.

It is worth notice that the famous density peak theory [29], the locations of leaders should be
disassortative, which means the leader should have a large distance to other leaders (i.e., the node with a
higher index value Li). In contrast, the leaders should have a relatively short distance with their neighbours
(i.e., the node with a lower index value Li). Based on this motivation, the notion of reaction distance (RD)
ε is proposed to identify key leaders. Specifically, the RD of node i, εi, is defined as the minimal distance of
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Figure 2. A schematic diagram of segregation dynamics driven by key leaders. (a) Is shown that an initial network. (b)–(d) We
select one edge uv and make a choice to keep (as shown is (b)) or delete the connection (as shown is (c) and (d)) ground on their
attribute distance and p1 firstly. Concretely, when the edge uv is removed, one node y is randomly selected. Lastly, adding either
uy (as shown is (c)) or vy (as shown is (d)) with probability p2 and p3, respectively.

shortest paths from node i to other nodes that have a higher leading index Li,

εi = min
j:|Lj|>|Li|

(dij). (16)

Here, dij is the shortest path between node i and node j. If the node i has a higher RD, the close neighbours
of node i will have a relatively lower absolute value of leading index Li compared with i. If we find a node
with higher RD than node i, a farther network distance must be searched, implying that it is more likely to
be a leader.

For a agent i, the leadership is defined as
γi = Liεi, (17)

where Li is represented as local connectivity and εi is RD.

3. Segregation dynamics driven by leaders

Based on their evolved attributes, we establish a network segregation model (named as
leader–follower consensus method, which is abbreviated with LFC) by leaders’ influences. The network can
be segregated into two or more groups. Define the contribution distance between u and v by the function
d(xu, xv) as attribute distance [30], which indicates whether two agents are in the same state. When the
agents are fixed in attribute space, the big and small attributes are referred to as the long edges and short
edges, respectively. It is consistent between attribute distance and social relations: relations between agents
with closely connected are short, while long relations between agents with large social distances.

For a network G with the node set V = 1, 2, . . . , N and the edge set E ⊆ V× V. The evolution
dynamics initiate at t = 0, and the network G = G0. For every time step t, an edge uv ∈ E is randomly
selected to model the process. And then, the attribute distance d(xu, xv) is calculated with u and v.
Depending on the distance, they can decide whether to remove or rewire their connection. Specifically, the
dynamical process of conversion from Gt−1 to Gt at the time step t is detailed below. Firstly, we find key
leaders with maximal value of leadership γ i (equation (17)). For each node i, the contribution value xL

i as a
leader and the contribution value xN

i as a follower should be calculated by the equations (12) and (14),
respectively. Secondly, the distance of two nodes are defined by the difference of their attribute distance, i.e.,
d(xu, xv) = |xu − xv|, the probability deleting the edge between u and v is d(xu, xv) · p1, where p1 is a tuned
parameter. When the edge uv is removed, it is then rewired according to the following rules: (1) choosing a

node y ∈ V uniformly at random; (2) adding either edge uy with a probability p2 =
d(xv ,xy)
d(xu ,xy) · q and adding

either edge vy with a probability p3 = 1 − d(xv ,xy)
d(xu ,xy) · q, where q is a tuned parameter. Figure 2 shows a

schematic diagram. We always keep the total number of edges in the network constant during the process.
This assumption allows the degree distribution to change. We just believe that the density of the network
stays unchanged in the whole dynamical process.

6
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Figure 3. The segregation process driven by key leaders in an ER random network. (a) The initial ER random network with 100
nodes and 300 edges. (b) After 200 time steps, around 95% of the edges have been rewired at least once. (c) The network after
400-time steps.

Here, the single parameter p1 is called aversion bias [31], which denotes the tendency to cut connections
between dissimilar agents. A higher p1 value means that the agent maintains stronger connections to
dissimilar agents.

4. Experiments

This section applies extensive experiments on various datasets to demonstrate the proposed method’s
dynamical performance and effectiveness. We use Python to do our experiments on a 2.9 GHz CPU and
16 G RAM computer. We first consider the segregation process on an ER random network [32], as specified
in figure 3. Then, to explain the process of segregation in a real social network, our method is applied to the
well-known Karate network as shown in figure 4. Furthermore, we develop network models for typical
parameter values. Some indexes are used to quantify dynamical segregation, as shown in figure 5. We
evaluate the quality and efficiency of network segregation using LFC and five different conventional
methods on the BA network [33]. Figure 6 depicts our method’s improved performance. We conducted 20
times for each experiment and averaged the experimental results to reduce errors.

Firstly, we apply the segregation process on an ER random network with 100 nodes and 300 edges and
nodes partitioned into two groups with equal probability initially (i.e., the βi equals ki or −ki with 50%
probability). The nodes with positive values of attributes are represented as purple, whereas others with
negative values are represented as orange. The size of the node represents the degree. In the process of
network evolution, when the edge length distribution reaches for the stationary distribution, the long edges
with different attributes become short eventually. In the ultimate condition, as shown in figure 3(c), where
the great majority of edges are short, which represents agents with tiny attribute distances.

Secondly, we apply segregation process to this famous Karate network, which is shown in figure 4. There
are two key leaders, i.e., node 1 and node 34 are highlighted in figure 4. We do not fix key leaders in this
segregation process and choose them by maximizing the leadership index. Interestingly, during the entire

7
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Figure 4. The segregation process driven by key leaders in Karate network. (a) The initial Karate network. (b) After 50 time
steps, nearly 65% of the edges in the Karate network had been rewired at least once. (c) The Karate network after 150 time
steps.

segregation process, nodes 1 and 34 are consistently recognized as leaders. It can be assumed that these
leaders should not be conformists in the evolutionary process and their states are stable to a large extent.
Our method can well explain the evolution process of Karate club gradually segregated into two groups
under two leaders. Moreover, we can obtain that the state and attribute distribution of each node in the
iterative procedure.

Then, to quantify this evolutionary process, we utilize a set of classical indexes to measure segregation
[34] in complex networks. We exploit participation coefficient P and modularity Q to judge the extent of
dynamical segregation. In addition, we apply global efficiency E to evaluate the extent of dynamical
integration. We apply these quality indexes to an ER random network (where N = 1000, m = 3000), with
different δ. The changes of these quantities show a monotonically increasing behaviour of P (figure 5(a)), Q
(figure 5(b)), E (figure 5(c)) and r (figure 5(d)) with segregation. While a monotonically decreasing trend of
P (figure 5(a)) and E (figure 5(c)) up to balanced when the whole network is completely segregated. As a
result, the dynamical segregation or integration evaluated as the product of P, Q, E, and r indicate the
presence of topological heterogeneity. As demonstrated in figures 5(e) and (f), we find that there exists an
obvious opposite trend of P × E and Q × E.

We also conduct experiments on a BA network, and the trends are similar to the ER network. However,
a shorter iteration time is required to achieve complete segregation on the BA network. This is because
highly dependent relations will lead to the connections of new edges in the process of segregation dynamics.
And the two nodes with weak dependent relations have fewer edges. Thus, a highly heterogeneous network
is easier to control segregation.

Finally, in order to prove that it is more advantageous to segregate network by selecting key leaders
through LFC, we compare to different centrality measures [35], i.e., DC, CC, page rank (PR), k-shell (KS),
BC in a BA network (where N = 1000, 〈km〉 = 10). We find that LFC can segregate the network with the
higher modularity Q. Figure 6(a) shows the modularity Q by different methods in a BA network (because
the properties of the BA network are similar to the real network). DC and CC are second only to our
method. This is because leadership can integrate multiple centrality indexes to contain rich topological
information. Figure 6(b) shows the global efficiency E of the integration network by different methods. The
flow of information in the network becomes more difficult as the iterative number increases. LFC improves
network segregation efficiency as compared to other methods.
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Figure 5. The changes of participation coefficient P (a), modularity Q (b), global efficiency E (c), associativity coefficient r (d),
the production P × E (e) and Q × E (f) with different δ in ER network (where N = 1000, m = 3000).

Table 1 shows some statistical properties of BA networks (N = 1000). As is shown in tables 2 and 3,
modularity Q and global efficiency E of network segregation as a function of the mean degree 〈km〉 in the
BA networks (N = 1000) by distinct approaches. The lower value of 〈km〉 represents sparser linkages. Thus,
for small 〈km〉 values, modularity Q is small. All methods cannot segregate the network perfectly because it
improperly identifies leader nodes and segregates with the sparse link. In other words, it generates extreme
segregation. In addition, due to the increase of connection density between groups, the excessive segregation
of groups decreases as 〈km〉 rises with the iteration of time. The larger value of 〈km〉, the more difficult it to
find the key leaders and segregate the network correctly. With the increase of 〈km〉 and the network becomes
denser, making it easier for information to flow in the network even in the process of network segregation.
Thus, the global efficiency of network segregation decreases. Overall, our method can identify the key
leaders more accurately and segregate the network more efficiently.

9
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Figure 6. Modularity Q and global efficiency E of network segregation by different methods, as the iteration increasing, in the
BA network (N = 1000, 〈km〉 = 10). (a) Modularity Q. (b) Global efficiency E.

Table 1. Statistics properties of BA networks (N = 1000). N: the number of nodes; 〈km〉: the average degree; M: the number of edges; c:
the average clustering coefficient; 〈l〉: the average short path length.

N 〈km〉 M c 〈l〉

1000 6 2991 0.032 3.483
1000 10 4975 0.041 2.972
1000 14 6951 0.049 2.743
1000 18 8919 0.056 2.611
1000 22 10 879 0.066 2.502

Table 2. Modularity Q of network segregation by different methods, including: LFC, DC, CC, PR, KS, BC, as a function of the mean
degree 〈km〉, in the BA network (N = 1000).

〈km〉 LFC DC CC PR KS BC

6 0.5647 0.5639 0.5633 0.5658 0.5492 0.5545
10 0.5699 0.5641 0.5597 0.5543 0.5569 0.5438
14 0.5113 0.5093 0.5056 0.5082 0.5069 0.5046
18 0.4496 0.4389 0.4442 0.4482 0.4334 0.4273
22 0.2289 0.1939 0.2054 0.2143 0.1734 0.1685

Table 3. Global efficiency E of network segregation by different methods, including: LFC, DC, CC, PR, KS, BC, as a function of the
mean degree 〈km〉, in the BA network (N = 1000).

〈km〉 LFC DC CC PR KS BC

6 0.1411 0.2135 0.2642 0.2735 0.2843 0.2735
10 0.4599 0.4711 0.4753 0.4788 0.4839 0.4941
14 0.5435 0.5534 0.5674 0.5872 0.5659 0.5712
18 0.5811 0.6107 0.6059 0.6173 0.6122 0.5013
22 0.6281 0.6139 0.6348 0.6173 0.6394 0.6395

5. Conclusions

This paper explored how key leaders promote the segregation process based on a multi-agent consensus
system. It contributed to the transition from real networks to evolutionary models in these complex
structures. The node’s classification can simulate heterogeneous characteristics and aid to segregate
networks. We proposed an index leadership to characterize the key leaders, and it could be extended to
many notable centrality indexes, like DC, BC, CC, Katz centrality, KS, etc.

After identifying the key leaders, we evolved the network and decided whether to remove or rewire the
edge depending on their attribute distance. The segregation dynamics on real and artificial networks
showed that the dynamical model reveals the hidden dynamics of the collective system behaviours and
predicts nodes’ heterogeneous attributes. Furthermore, we will concentrate on empirical tests of models,

10



New J. Phys. 24 (2022) 053007 W Wang et al

focussing on assessing essential theoretical variables. Moreover, we will consider the network segregation of
higher-order networks, such as signed networks and hyper-graphs.
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[35] Lü L, Chen D, Ren X-L, Zhang Q-M, Zhang Y-C and Zhou T 2016 Phys. Rep. 650 1–63

11

https://orcid.org/0000-0001-9986-1780
https://orcid.org/0000-0001-9986-1780
https://orcid.org/0000-0002-8047-6919
https://orcid.org/0000-0002-8047-6919
https://orcid.org/0000-0002-0227-1678
https://orcid.org/0000-0002-0227-1678
https://orcid.org/0000-0001-7969-548X
https://orcid.org/0000-0001-7969-548X
https://orcid.org/0000-0002-3087-541X
https://orcid.org/0000-0002-3087-541X
https://doi.org/10.1073/pnas.122653799
https://doi.org/10.1073/pnas.122653799
https://doi.org/10.1073/pnas.122653799
https://doi.org/10.1073/pnas.122653799
https://doi.org/10.1086/659100
https://doi.org/10.1086/659100
https://doi.org/10.1086/659100
https://doi.org/10.1086/659100
https://doi.org/10.1038/s41467-021-21465-0
https://doi.org/10.1038/s41467-021-21465-0
https://doi.org/10.1162/qjec.122.2.441
https://doi.org/10.1162/qjec.122.2.441
https://doi.org/10.1162/qjec.122.2.441
https://doi.org/10.1162/qjec.122.2.441
https://doi.org/10.1093/jopart/muq042
https://doi.org/10.1093/jopart/muq042
https://doi.org/10.1093/jopart/muq042
https://doi.org/10.1093/jopart/muq042
https://doi.org/10.2307/2579183
https://doi.org/10.2307/2579183
https://doi.org/10.2307/2579183
https://doi.org/10.2307/2579183
https://doi.org/10.1103/physrevlett.99.228701
https://doi.org/10.1103/physrevlett.99.228701
https://doi.org/10.1073/pnas.1608164114
https://doi.org/10.1073/pnas.1608164114
https://doi.org/10.1073/pnas.1608164114
https://doi.org/10.1073/pnas.1608164114
https://doi.org/10.1073/pnas.2022288118
https://doi.org/10.1073/pnas.2022288118
https://doi.org/10.1007/s42001-018-0018-9
https://doi.org/10.1007/s42001-018-0018-9
https://doi.org/10.1007/s42001-018-0018-9
https://doi.org/10.1007/s42001-018-0018-9
https://doi.org/10.1111/j.1540-5907.2008.00361.x
https://doi.org/10.1111/j.1540-5907.2008.00361.x
https://doi.org/10.1111/j.1540-5907.2008.00361.x
https://doi.org/10.1111/j.1540-5907.2008.00361.x
https://doi.org/10.1080/0022250x.1971.9989794
https://doi.org/10.1080/0022250x.1971.9989794
https://doi.org/10.1080/0022250x.1971.9989794
https://doi.org/10.1080/0022250x.1971.9989794
https://doi.org/10.1038/srep23633
https://doi.org/10.1038/srep23633
https://doi.org/10.1103/physreve.84.056108
https://doi.org/10.1103/physreve.84.056108
https://doi.org/10.1086/jar.33.4.3629752
https://doi.org/10.1086/jar.33.4.3629752
https://doi.org/10.1086/jar.33.4.3629752
https://doi.org/10.1086/jar.33.4.3629752
https://doi.org/10.1088/1367-2630/ab8e5e
https://doi.org/10.1088/1367-2630/ab8e5e
https://doi.org/10.1016/j.physrep.2009.11.002
https://doi.org/10.1016/j.physrep.2009.11.002
https://doi.org/10.1016/j.physrep.2009.11.002
https://doi.org/10.1016/j.physrep.2009.11.002
https://doi.org/10.1103/physreve.75.045102
https://doi.org/10.1103/physreve.75.045102
https://doi.org/10.1038/srep22916
https://doi.org/10.1038/srep22916
https://doi.org/10.1038/srep22916
https://doi.org/10.1038/srep22916
https://doi.org/10.1016/j.jet.2015.01.005
https://doi.org/10.1016/j.jet.2015.01.005
https://doi.org/10.1016/j.jet.2015.01.005
https://doi.org/10.1016/j.jet.2015.01.005
https://doi.org/10.1109/tii.2019.2960835
https://doi.org/10.1109/tii.2019.2960835
https://doi.org/10.1109/tii.2019.2960835
https://doi.org/10.1109/tii.2019.2960835
https://doi.org/10.1103/physrevlett.86.3200
https://doi.org/10.1103/physrevlett.86.3200
https://doi.org/10.1109/comst.2020.2969706
https://doi.org/10.1109/comst.2020.2969706
https://doi.org/10.1109/comst.2020.2969706
https://doi.org/10.1109/comst.2020.2969706
https://doi.org/10.1177/0142331212454046
https://doi.org/10.1177/0142331212454046
https://doi.org/10.1177/0142331212454046
https://doi.org/10.1177/0142331212454046
https://doi.org/10.1016/s0378-8733(01)00038-7
https://doi.org/10.1016/s0378-8733(01)00038-7
https://doi.org/10.1016/s0378-8733(01)00038-7
https://doi.org/10.1016/s0378-8733(01)00038-7
https://doi.org/10.1073/pnas.0701175104
https://doi.org/10.1073/pnas.0701175104
https://doi.org/10.1073/pnas.0701175104
https://doi.org/10.1073/pnas.0701175104
https://doi.org/10.1038/nphys1746
https://doi.org/10.1038/nphys1746
https://doi.org/10.1126/science.1242072
https://doi.org/10.1126/science.1242072
https://doi.org/10.1126/science.1242072
https://doi.org/10.1126/science.1242072
https://doi.org/10.1073/pnas.1014486108
https://doi.org/10.1073/pnas.1014486108
https://doi.org/10.1073/pnas.1014486108
https://doi.org/10.1073/pnas.1014486108
https://doi.org/10.1007/s11238-012-9332-5
https://doi.org/10.1007/s11238-012-9332-5
https://doi.org/10.1007/s11238-012-9332-5
https://doi.org/10.1007/s11238-012-9332-5
https://doi.org/10.1016/j.physrep.2005.10.009
https://doi.org/10.1016/j.physrep.2005.10.009
https://doi.org/10.1016/j.physrep.2005.10.009
https://doi.org/10.1016/j.physrep.2005.10.009
https://doi.org/10.1126/science.286.5439.509
https://doi.org/10.1126/science.286.5439.509
https://doi.org/10.1126/science.286.5439.509
https://doi.org/10.1126/science.286.5439.509
https://doi.org/10.1016/j.socnet.2014.04.001
https://doi.org/10.1016/j.socnet.2014.04.001
https://doi.org/10.1016/j.socnet.2014.04.001
https://doi.org/10.1016/j.socnet.2014.04.001
https://doi.org/10.1016/j.physrep.2016.06.007
https://doi.org/10.1016/j.physrep.2016.06.007
https://doi.org/10.1016/j.physrep.2016.06.007
https://doi.org/10.1016/j.physrep.2016.06.007

	Segregation dynamics driven by network leaders
	1.  Introduction
	2.  Methods
	2.1.  Distributed linear consensus system
	2.2.  Leader–follower consensus system
	2.3.  The index of leadership

	3.  Segregation dynamics driven by leaders
	4.  Experiments
	5.  Conclusions
	Acknowledgments
	Data availability statement
	ORCID iDs
	References


