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Abstract. We study effects of additive spatiotemporal random variations,
introduced to the payoffs of a spatial prisoner’s dilemma game, on the evolution
of cooperation. In the absence of explicit payoff variations the system exhibits a
phase transition from a mixed state of cooperators and defectors to a homogenous
state of defectors belonging to the directed percolation universality class. By
introducing nonzero random variations to the payoffs, this phase transition can
be reverted in a resonance-like manner depending on the variance of noise, thus
marking coherence resonance in the system. We argue that explicit random payoff
variations present a viable mechanism that promotes cooperation for defection
temptation values substantially exceeding the one marking the transition point to
homogeneity by deterministic payoffs.
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1. Introduction

The prisoner’s dilemma game and its variations [1]–[4] present the workhorse for studying the
evolution of altruistic behaviour among selfish individuals in human and animal societies. In
its original form [5], the prisoner’s dilemma game consists of two players who have to decide
simultaneously whether they want to cooperate or defect. The dilemma is given by the fact that
although mutual cooperation yields the highest collective payoff, which is equally shared among
the two players, individual defectors will do better if the opponent decides to cooperate. Since
selfish players are aware of this fact they both decide to defect, whereby none of them gets a profit.
Thus, instead of equally sharing the rewarding collective payoff received by mutual cooperation,
they end up empty-handed. This unfavourable result is in classical game theory known as the
Nash equilibrium [6]. Although standing firm on mathematical proofs, the Nash equilibrium is
in real life more of an exception rather than a fixed principle. Accordingly, several mechanisms
have been proposed to explain the emergence of cooperation in various types of games. Among
the more prominent are spatial extensions [7]–[16], direct and indirect reciprocity [2], [17]–[20]
and voluntary participation [21]–[24].

Besides mechanisms that facilitate cooperation, stochastic processes are also acknowledged
to play a vital part in evolutionary dynamics, affecting both the overall population gain [25] and
equilibrium selection [26]–[28], or even the nature of phase transition from one equilibrium
towards the other [9, 13]. In particular, Traulsen et al [25] have shown that additive noise
introduced to the classical replicator dynamics [4], supplemented by adaptive learning rates, can
enhance the average payoff of the population in a coherence-resonance-like manner. Moreover,
noise introduced in the strategy adoption process of spatially distributed players [13] can induce
phase transitions that fall under the directed percolation universality class [29]–[31], as well
as maintain cooperation at the highest possible level with respect to other game parameters, as
is for example the temptation to defect [28]. While the study of Traulsen et al [25] uses the
replicator equations and thus assumes infinite populations, authors in [9, 13, 28] utilize finite
size two-dimensional lattices of various connectivity structures.

The aim of the present study is to report a new noise-induced phenomenon in finite size
populations on square two-dimensional lattices with a fixed number of neighbours. In particular,
we study effects of temporally and spatially white additive Gaussian noise introduced in the
payoff matrix of the spatially extended prisoner’s dilemma game. We show that appropriate
levels of noise can revert the extinction of cooperators in a resonant manner. Since no additional
deterministic inputs are introduced to the system the reported phenomenon is thus conceptually
identical to coherence resonance reported previously e.g. for excitable dynamical systems in time
[32] and space [33], provided that the facilitation and maintenance of cooperation is considered
a constructive effect. We explain the phenomenon via analogies with dynamical systems close to
bifurcation points, where it is well known that noise can anticipate the behaviour of the system
beyond the bifurcation. Moreover, since uncertainties are a part of everyday life, we argue that
explicit random payoff variations present a viable mechanism that promotes cooperation in
various environments, ranging from social and animal societies to economic cycles.

The paper is structured as follows. Section 2 is devoted to the description of the evolutionary
spatial prisoner’s dilemma game. In section 3 evidence for the coherence resonance is presented,
while in the last section we summarize the results and outline possible real-life implications of
our findings.
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2. Spatial prisoner’s dilemma game

For the following analyses, we consider an evolutionary prisoner’s dilemma game with players
located on vertices of a regular two-dimensional square lattice of size n × n with periodic
boundary conditions. Moreover, we assume that each individual interacts, i.e. plays the game,
only with its four nearest neighbours located to the north, south, east and west, whereby self-
interactions are excluded. Each player can decide either to cooperate (C) or to defect (D).
Depending on the choice of their strategies, each two players (Pi, Pj) can, at every interaction,
receive payoffs summarized succinctly by the so-called payoff matrix [8]

Pi/Pj C D

C 1 + ξi/1 + ξj 1 + r + ξi/−r + ξj

D −r + ξi/1 + r + ξj 0 + ξi/0 + ξj

(1)

that is currently subjected to temporally and spatially white additive Gaussian noise, satisfying
the correlation function 〈ξi(k)ξj(l)〉 = σ2δijδkl, whereby indices (i, j) mark any of the two
neighbouring players, whilst k and l index two consecutive pair interactions. Moreover, r � 0
determines the temptation to defect and σ2 is the variance of payoff variations. Starting from
uniformly distributed cooperators and defectors on the square lattice, each player can adopt its
strategy according to the performance of neighbouring players, whereby the probability that a
player Pi will adopt the strategy of one of its randomly chosen nearest neighbours Pj is determined
by the cumulative payoffs Si and Sj of both players according to

W [Pi ← Pj] = 1

1 + exp[(Si − Sj)/K]
, (2)

where K is the uncertainty related to the strategy adoption. 0 < K � 1 implies that the better
performing player is readily adopted, whilst it is not completely impossible to adopt the strategy
of a worse performing player. Importantly, although nonzero values of K can itself be considered
as noisy disturbances acting on the system [28], we presently apply K = 0.1 and the strategy
adoption rule given by equation (2) solely to get smooth phase transitions at critical points [13],
whilst otherwise qualitatively identical results as will be reported below can also be obtained by
deterministic adoption rules where strategies of better and worse performing players are always
and never adopted, respectively.

The described spatial prisoner’s dilemma game can be iterated forward in time using either
a synchronous or a random Monte Carlo update scheme [16], whereby it has been discovered
that by non-deterministic evolutionary rules obtained results differ only slightly [34]. Since
the synchronous update scheme tends to converge more quickly to the equilibrium than the
random iteration, we thus apply the latter, letting all individuals interact pairwise with all their
nearest neighbours and then simultaneously update their strategies according to equation (2).
After every such iteration cycle, we set Si = Sj = 0 for ∀i, j and repeat the game. For a large
enough number of iteration cycles (�105) and large system sizes (n � 400), the frequencies of
cooperators FC and defectors FD, satisfying FC + FD = 1 at all times, approach an equilibrium
value irrespective of the initial conditions. Presently, FC and FD are calculated by letting the
system evolve for a long transient time towards the equilibrium, and then evaluate the average
fraction of cooperators and defectors over an equally long time span following the discard time.
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Figure 1. Left panel: frequencies of cooperators (�) and defectors (◦) for various
r obtained by deterministic payoffs. The vertical line marks the transition point to
homogeneity at rtr = 0.00634(4), whereby the greyed area marks the region of
interest for σ > 0 in subsequent calculations. Right panel: FC in dependence on
the distance to the phase transition. Note that both axes have a logarithmic scale,
whereby a liner line with a slope β = 0.58(2) accurately fits to the numerically
obtained data. Results were calculated for 400 � n � 1000 and 105–106 iteration
steps, depending on the proximity to the transition point r = rtr.

Results presented in the left panel of figure 1 show the equilibrium frequencies FC and FD for
various values of r obtained by deterministic payoffs (σ = 0). It is evident that by small-enough
values of r cooperators are able to survive since the risk of cooperation is low in comparison
to the possible punishment. However, as the temptation to defect crosses a certain threshold
r = rtr cooperators die out (FC = 0), whereby the transition from the mixed to the homogenous
state pertains to the directed percolation universality class [29]–[31] since FC ∝ (rtr − r)β by
β = 0.58(2), as shown in the right panel of figure 1. These are well-known results reported
recently in [13, 22, 28], for example. In what follows, we will systematically analyse effects of
nonzero σ on FC and FD for r > rtr, with the aim of reporting noise-induced transitions to the
mixed state in a resonance-like manner depending on σ, thus evidencing coherence resonance
in the studied system.

3. Coherence resonance

We start the study by visually inspecting three characteristic spatial distributions of cooperators
and defectors obtained by various values of σ for r slightly above rtr. As evidenced in figure 1,
zero values of σ for r > rtr yield exclusive dominance of defectors given by FD = 1. On the
other hand, results presented in the panels of figure 2 clearly show that cooperation can be
revitalized by nonzero values of σ in a resonant manner. In particular, while small σ are able
to sustain only small clusters of cooperators scattered across the spatial grid, intermediate σ
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Figure 2. Characteristic equilibrium spatial distributions of cooperators (blue)
and defectors (red) obtained by σ = 0.01 (FC = 0.091, left panel), σ = 0.20
(FC = 0.619, middle panel) and σ = 0.72 (FC = 0.148, right panel) for the
defection temptation value r = 0.0065. All panels are depicted on a 400 × 400
spatial grid.

can facilitate cooperation to the point of domination, or at least equality, implied by FC � FD.

For larger values of σ the spatial distribution of the two strategies is again similar as by small
σ. By considering the noise-induced maintenance and facilitation of cooperation a constructive
effect, which is reasonable since widespread cooperators yield higher total population payoffs in
comparison to dominant defectors and are therefore favourable for the society, results presented
in figure 2 thus indicate a typical coherence resonance scenario [32, 33].

To quantify the ability of each particular σ to facilitate and maintain cooperation more
precisely, we calculate FC in dependence on various σ and r > rtr. Moreover, we assume that FC

uniquely determines the constructive effects of noise on the system and thus has the same meaning
as the signal-to-noise ratio [35] in classical stochastic and coherence resonance phenomena
observed in dynamical systems. Results presented in figure 3 clearly evidence that there always
exists an optimal level of additive spatiotemporal noise for which FC is maximal, thus indicating
the existence of coherence resonance in the studied spatial prisoner’s dilemma game. Importantly,
cooperation can be revitalized and maintained for defection temptation values substantially
exceeding rtr.

In order to shed light on the observed phenomenon, we draw analogies with dynamical
systems, where it is long known that noise can anticipate the behaviour of the system waiting
close to a bifurcation point in a resonant manner (see e.g. [36]). By devising a mean-field-like
or pair approximation of the spatial prisoner’s dilemma game [13, 15, 37], we easily end up
with a set of ordinary differential equations, exhibiting rich dynamical behaviour depending on
the approximation rules and the game under consideration [22, 23, 38]. We argue that the phase
transition occurring at r = rtr is conceptually identical to a bifurcation point of a dynamical
system. Thus, noise can anticipate the behaviour on the other side of the bifurcation point in a
resonant manner. This conjecture can be additionally strengthened by considering the fact that
the parameter r in the noisy regime truly acts as a bifurcation parameter since increasing values,
pushing the system further away from the transition (bifurcation) point rtr, make it increasingly
difficult for noise to anticipate the behaviour of the system beyond the bifurcation, as indicated by
the decreasing maximal values of FC for larger r in figure 3. However, since the mean-field-like
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Figure 3. Coherence resonance in the studied spatial prisoner’s dilemma game
for various values of r.

or pair approximations of the spatial prisoner’s dilemma game can be devised in numerous ways
depending on the desired accuracy with the original model and its numerical implementation, we
leave extensive explicit calculations for future studies. Finally, we note that by introducing also
other strategies to the prisoner’s dilemma game, such as for example the loners [21], bifurcation
points also from steady state towards oscillatory behaviour can be obtained [38]. We therefore
argue that the evolutionary dynamics of spatial games bears a treasure of possible noise-induced
phenomena yet to be discovered.

4. Summary and discussion

In summary, we show that spatially and temporally white additive Gaussian noise introduced
in the payoff matrix of an evolutionary spatial prisoner’s dilemma game can facilitate and
maintain cooperation in a resonant manner depending on the level of random variations. This
phenomenon can be observed for defection temptation values substantially exceeding the one
marking the transition point to homogeneity by deterministic payoffs. By interpreting cooperation
as a constructive strategy, the reported phenomenon is thus conceptually identical as coherence
resonance reported previously in temporal and spatially extended dynamical systems [32, 33],
[39]–[47], where exclusively random perturbation have been found to constructively affect the
dynamics of the system under study.

We argue that random payoff variations are common in real life, either in human and animal
societies or economic cycles. In particular, it is not difficult to imagine that a successful spreading
of a community with certain beliefs or economic interests, for example, or a reproductive success
of a species is affected by numerous unpredictable factors. It seems reasonable that the interaction
phase between two individuals, each trying to make the best out of the encounter, is the most
likely part of the evolutionary process for uncertainties to take effect. Thereby, unpredictable
disturbances can arise either from the players themselves, for example by not adhering to the
rules of the game in trying to make an illegal profit, or from the environment which can either
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favour or hinder the success of each player. Although the presently applied approach assumes
uncorrelated Gaussian distributed disturbances, future studies will be necessary to clarify the
importance of temporal and spatial correlations as well as different distributions of such random
influences.
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