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Abstract. We study the impact of evolutionary games on the flow of traffic.
Since traffic participants do not always conform to the imposed rules, the
introduction of games, i.e. set of strategies defining the behavioural pattern of
agents on the road, appears justified. With this motivation, and the fact that
individuals can change their strategy in the course of time, the evolutionary
prisoner’s dilemma game is introduced between neighbouring agents, enabling
them to choose between cooperation and defection. Mutual cooperation enables
forwarding to both agents for one step, while the defector is able to advance
two steps when facing a cooperator, whereby the latter is forced to go one step
backwards. Two defectors end up in a halt until the next iteration. Irrespective
of their strategy, however, agents can move only if the road ahead is free. Jumps
are never allowed. We show that this simple and plausible supplementation of
the discrete cellular automaton Biham–Middleton–Levine (BML) model induces
a traffic flow seizure by a substantially lower initial density of cars as in the
absence of evolutionary games. The phenomenon is explained by studying the
one-dimensional variant of the BML model with different advancement steps on
the circular ring. In view of the proposed explanation, findings are generalized
also to other types of games, such is the snowdrift game, and some statistical
properties of gridlock formation in the presence of evolutionary rules are outlined.
Our findings suggest that ‘bending the law’ results in a premature occurrence of
traffic jams and thus unnecessarily burdens the transportation system.
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1. Introduction

The study of traffic flow within the framework of physics has a rich and fruitful history [1]–[8].
One of the most commonly used traffic flow models employed in this context is the discrete
cellular automaton Biham–Middleton–Levine (BML) model [9] describing a two-dimensional
(2D) traffic flow. Originally, the BML model consists of eastbound and northbound agents that
are able to advance for one step at each even and odd iteration, respectively, provided the target
destination is not occupied. Despite its simplicity, the model exhibits complex behaviour such
as phase transitions and self-organization in dependence on the initial density of uniformly
distributed agents on the spatial grid. The phase transition describes the passing from the state
where all agents can move uninterruptedly to the state of complete gridlock. For low and
intermediate initial densities of agents on the spatial grid the system exhibits various stable
self-organized patterns, ranging from a free flowing state that is characterized by alternating
stripes of eastbound and northbound bound agents to a global jam state with a characteristic jam
length that is determined by the size of the spatial grid. By high initial densities of agents the
system has no time to self-organize, which results in a collection of small random jams scattered
across the spatial grid. Figure 1 captures all three described scenarios in the original BML model.

Importantly, the original BML model is, except for the initial distribution of agents on
the spatial grid, fully deterministic. Although all real-life traffic systems are subject to a set of
deterministic rules participants have to obey, a deterministic traffic flow is still more a desire
rather than fact. In particular, variations in traffic flow emerge as a consequence of varying
crowdedness of the roads, as appropriately described also by the original BML model in figure
1, but also due to the innate drive that is routed in many individuals forcing them to advance to
their destination as quickly as possible, thus maximizing their efficiency and output. In particular,
it is nearly an everyday experience for each individual actively participating in traffic that its
advantage, given by the traffic rules, is taken away from him/her by an overly eager individual
trying to reach a destination quicker by somewhat ‘bending the rules’. More often than not
such instances provoke the desire for revenge in the betrayed individual, thus inducing a general
tendency towards such a defecting behaviour. Similar scenarios are well known in the framework
of game theory [10], where the choice of an optimal playing (or in our case driving) strategy
plays a central role in assuring success. By acknowledging the fact that individuals might also
opt to change their strategies in the course of time, either on the basis of past experience or
comparisons with neighbours, the scenario is more precisely described by evolutionary game
theory [11]–[13], where the problem of cooperation and defection has been introduced as a
particular example of frequency-dependent interactions. Often, egoistic individuals compete to
accumulate as much resources as possible in order to prosper, thereby not paying any attention
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Figure 1. Characteristic snapshots of traffic flow for the original BML model
by different initial densities of agents on the 256 × 256 spatial grid. Eastbound
agents are black, while northbound agents are depicted grey. Yellow areas denote
vacant sites. The left-hand side panel features a free-flowing state where all agents
are able to advance uninterruptedly. The density of agents on the spatial grid is
0.28. The middle panel features a complete gridlock where none of the agents
can ever move again. Note that the gridlock is a consequence of a single global
jam that has a characteristic length equalling

√
2n, n being the system size in

one direction. The density of agents on the spatial grid in this case is 0.40. The
left and middle panel feature typical examples of self-organization in the BML
traffic model. The right-hand side panel also features a complete gridlock, which
unlike in the middle panel is formed by several smaller jams. By high densities
of agents, equalling 0.70 in the right-hand side panel, the system has no time to
self-organize, which results in randomly scattered jams across the spatial grid.

to the harm inflicted on others or the society in general. In particular, the problem is well described
by the prisoner’s dilemma game [14]. In its original form the game consists of two agents who
have to decide simultaneously whether they want to cooperate or defect. The dilemma is given
by the fact that although mutual cooperation yields the highest collective income a defector will
do better if the opponent cooperates. Since agents are aware of this fact they both decide to defect
whereby none of them gets a profit. In view of above-outlined facts there appears to exist a good
motivation to merge traffic flow modelling with evolutionary game theory.

Importantly, this study is certainly not the first to intimately link evolutionary game theory
with topics of physics. Nearly a decade ago Szabó and Töke [15] discovered that critical
phase transitions belonging to the directed percolation universality class can be observed in
a simple two-strategy evolutionary spatial prisoner’s dilemma game on a square lattice. Related
observations have been reported later on also for spatial public goods games [16]. More recently,
the addition of stochasticity and other unpredictable factors to evolutionary games and population
dynamics has emerged as being a very fruitful avenue of research [17]–[20]. In particular, reports
of phenomena such as coherence resonance [21], previously reported mainly in the study of
dynamical systems [22, 23], reveal fascinating new correlations between evolutionary game
theory and topics of physics. An excellent introductory review on the interrelation between
game theory and physics is given in [24].

Of particular importance for the present study are also previous works where traffic flow
simulations and concepts similar to evolutionary game theory have been considered earlier.
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In particular, [25] features an immensely interesting and generally applicable study where
systems of driven entities, such is the presently studied BML model, tend to reach an optimal
state associated with minimal interaction and dissipation based on principles of non-equilibrium
thermodynamics and game theoretical ideas. In particular, cooperative trail formation in a 2D
traffic dynamics based on interaction, imitation, and payoff matrix-like formulation has been
investigated. Importantly, cooperative trail formation and coherent moving states have also
been studied independently in [26] and [27], respectively. Utility-based decision models for
achieving traffic optimization have been employed in [28], while the fact that individuals often
react differently to the same situation in traffic, thus leading to the development of characteristic
response patterns or roles, has been studied in [29]. The latter development of roles or individual
strategies is directly linked to selfish routing [30, 31], which however fails to ensure shortest
overall travel times. Instead, individuals end up in an equilibrium characterized with equal travel
times irrespective of the chosen route leading from the origin to the goal. Very recently, the role
of networks underlying the traffic flow has also been studied thoroughly within the framework
of physics [32]–[34]. Finally, we would like to mention the study by Helbing et al [35], where
perhaps the most similar concept to the one presented here has been employed. In particular, the
authors of [35] study the emergence of cooperation and fair behaviour in a route choice game.

The present study aims at extending the apparently very fruitful combination of traffic flow
modelling and game theoretical concepts. To this purpose, we supplement the BML traffic flow
model, arguably representing the physicist’s approach to modelling traffic, with the evolutionary
prisoner’s dilemma game. In particular, each agent on the spatial grid is able to play the prisoner’s
dilemma game with one neighbour that has the opposite direction of movement. If both decide
to cooperate the classical BML model is regained, thus allowing each individual to proceed
one step east (north) at each even (odd) iteration, respectively, provided the target destination
is not occupied. If, on the other hand, one agent decides to defect, the cooperator is forced to
go one step backwards, while the defector is allowed to advance two steps ahead. Note that as
before, the actual moves take place only if the road is free. In this sense the necessary ‘free road
condition’, introduced in the original BML model, is superior to the outcome of the game. If
the road ahead is not free, agents stay on their initial sites irrespective of the outcome of the
game. Finally, if both agents decide to defect they must stay put irrespective of whether the road
ahead is free or not. Note that the classical payoff scheme of the prisoner’s dilemma game is
replaced by the number of steps each agent is allowed to make in the next relevant iteration.
The payoff ranking of the prisoner’s dilemma game is obeyed since the temptation to defect
T = 2, corresponding to two forward steps if a defector is faced with a cooperator, is larger
than the reward R = 1 of two cooperators, which is again larger than the punishment P = 0 of
two defectors, which is finally larger than the sucker’s payoff S = −1 corresponding to the one
backwards step a cooperator has to make if facing a defector. We show that this simple and, as
argued above plausible, supplementation of the paradigmatic BML model induces a traffic flow
seizure by a substantially lower initial density of cars as in the absence of evolutionary games.
Our findings thus suggest that ‘bending the law’ results in a premature occurrence of traffic
jams and thus unnecessarily burdens the transportation system. The phenomenon is explained
by studying the 1D variant of the BML model with different advancement steps on the circular
ring. Ultimately, the premature seizure of traffic flow due to the introduction of the evolutionary
prisoner’s dilemma game is attributed to the disturbing effects of varying advancement steps
on the self-organized free-flowing state, which induce small localized jams on the spatial grid
that eventually extend to a complete global gridlock. In view of the proposed explanation, we
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generalize our findings also to other types of games, such as the snowdrift game [36], where the
punishment P and sucker’s payoff S simply exchange their value with respect to the prisoner’s
dilemma game, and reveal differences between their effects. Finally, some statistical properties
of gridlock formation in the presence of evolutionary rules are presented.

The paper is structured as follows. Section 2 is devoted to the accurate description of the
BML traffic model that is supplemented by the evolutionary prisoner’s dilemma and snowdrift
game. Main findings are presented in section 3, while in the last section, we summarize the
results and outline some possibilities for future research in the framework of merged traffic flow
simulations and evolutionary game theory.

2. Traffic flow model with evolutionary rules

The original BML model consists of two types of agents that differ in the prescribed direction
of movement, which is not allowed to change during the simulation. Some agents can advance
only towards north, while others move only towards east. Initially, eastbound and northbound
agents are uniformly distributed on the n × n spatial grid with periodic boundary conditions.
The crucial parameter, determining the evolution of traffic flow in the BML model, is the initial
density χ of agents on the spatial grid, whereby eastbound and northbound agents participate
with equal probability. The discrete simulation of the traffic flow has two phases, given by the
even and odd iteration steps, respectively. All eastbound agents move one step to the east every
even iteration step, while all northbound agents move one step to the north every odd iteration
step. Importantly eastbound agents are allowed to move only if the eastward site is empty, while
northbound agents advance only if the northward site is empty. The BML model is, except for
the initial distributions of agents on the spatial grid, fully deterministic. Figure 1 above captures
possible scenarios in dependence on χ. By introducing the average velocity νi, for each agent i,
as the number of all successful moves divided by the number of all attempted moves in a given
amount of time, a rather sharp phase transition can be identified in the system [9], separating
the free-flowing state, characterized by � = 1 (left-hand side panel of figure 1), from the fully
jammed state, characterized by � = 0 (middle and right-hand side panel of figure 1), where �

is simply the average velocity of all agents in the system obtained by averaging νi over all i.

Importantly, however, a recent very interesting study by D’Souza [37] reveals that sharp phase
transitions in dependence on χ are attainable only for fairly small system sizes of up to n = 64
in 1D, while in larger lattices jams and freely flowing traffic can coexist, forming intermediate
stable phases that blur the transition from � = 1 to � = 0 as χ is increased. Additionally, [37]
features a derivation of simple geometric constraints for which such intermediate phases can be
observed. Other relevant studies, previously analysing the BML model either through numerical
simulation or analytical approaches, are given in [38]–[48].

As already outlined in the introduction, we supplement the above-described original BML
traffic model with the evolutionary prisoner’s dilemma game. In particular, we allow neighbouring
agents to decide whether to cooperate or defect, thus determining their fate with respect to further
advancements on the spatial grid in dependence on the outcome of the game. Initially, all agents
are designated either as cooperators or defectors, whereby the direction of movement on the
spatial grid has no relevance by the initial assignment of strategies. We introduce a parameter κ,
determining the initial density of cooperators among all agents. When iterating the BML model,
every even iteration step the agents play the game with those nearest neighbours who are

New Journal of Physics 9 (2007) 3 (http://www.njp.org/)

http://www.njp.org/


6 Institute of Physics �DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

prohibiting them in making one step forward. This is done in an alternate fashion for eastbound
and northbound agents, meaning that by the first even iteration all eastbound agents play
with the neighbour in their way, while by the next even iteration all northbound agents
play with their disturbing neighbour. Such an alternate scheme is necessary since the outcome
of each game determines forwarding of both agents participating in the game, which can be
eastbound and northbound agents with equal probability, and thus the game can be played only
every two iteration steps (every even or odd step) so that the imposed future steps, determined by
the prisoner’s dilemma game, can take effect on both, eastbound and northbound, types of agents.
Importantly, if an agent does not have a neighbour blocking its way, it simply advances one step
irrespective of its strategy. On the other hand, if the game takes place possible outcomes are the
following. If both agents cooperate the classical BML model is regained, thus allowing each
individual to advance one step east (north) at the following even (odd) iteration, respectively.
If, on the other hand, one agent defects the cooperator is forced to go one step backwards, while
the defector is allowed to advance two steps ahead. Finally, if both agents defect they must stay
put. These evolutionary rules can be summarized succinctly by the so-called payoff matrix

i/j C D
C 1/1 2/−1
D −1/2 0/0

(1)

where i and j mark any of the two involved agents, while C and D stand for cooperation and
defection, respectively. Numbers for possible combinations of strategy pairs determine
advancements on the spatial grid. The payoff ranking, payoffs being the permission to
advance for a given amount of steps on the spatial grid, of the prisoner’s dilemma game is obeyed
since the temptation to defect T = 2 is larger than the reward R = 1, which is again larger than
the punishment P = 0, which is finally larger than the sucker’s payoff S = −1. Importantly, as in
the original BML model, the actual moves, as determined by the prisoner’s dilemma game, take
place only if the road is free. In this sense the necessary ‘free road condition’, introduced in the
original BML model, is superior to the outcome of the game. If the road ahead is not free agents
stay on their initial sites irrespective of the outcome of the game. Finally, the evolution of the
two strategies on the spatial grid takes place by allowing changes of strategies always after both,
eastbound and northbound, agents have made their moves (e.g. every even iteration step), by
comparing their average velocities νi (replacing the number of successful moves with the sum of
appropriate payoffs) with their nearest neighbours. In particular, the central agent always adopts
the strategy of those nearest neighbour who has the largest average velocity up until that time.
If the central agent itself has the largest average velocity, it simply retains its strategy, whereas
if an agent does not have a nearest neighbour in any of the four directions its strategy is also
preserved. This is the so-called best-takes-over strategy adoption rule that is well-known in the
framework of evolutionary game theory [13]. Note that the average velocity νi of each particular
agent i is taken as the ultimate measure of success of a given strategy, which is reasonable since
it uniquely determines how fast the agent moves through traffic.

Towards the end of the next section, we also consider the evolutionary BML model
supplemented by the snowdrift game [36] in order to generalize our findings, whereby the
description of the model is identical to the one presented above, only that the punishment P = 0
and the sucker’s payoff S = −1 exchange their value. More precisely, if both agents cooperate
again the classical BML model is regained, thus allowing each individual to advance one step
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Figure 2. Phase transitions from the free flowing (� = 1) to the fully jammed
(� = 0) state in dependence on χ in the original (black) and evolutionary
prisoner’s dilemma (red) BML traffic model. Symbols show results of individual
runs at any given χ, while lines depict averages over 104 realization with different
initial conditions. The initial fraction of cooperators among all agents on the
64 × 64 spatial grid in the evolutionary case equals κ = 0.50.

east (north) at the following even (odd) iteration, respectively. If, on the other hand, one agent
defects the cooperator is forced to stay put in the next iteration, while the defector is allowed to
advance two steps ahead. Finally, if both agents defect they must both go one step backwards.

Both the original as well as the evolutionary BML model are simulated until one convergent
state, given either by � = 1 or � = 0, is reached, or up to 107 iteration steps for non-convergent
states. Findings are presented separately for characteristic individual runs, obtained via a single
simulation by a given initial density of agents χ and fraction of cooperators κ, and averaged
runs, obtained via averaging the results over several thousand realizations with different initial
conditions by a given χ and κ. We find that in this way results reveal interesting features that
remain hidden if only individual or average results are considered.

3. Results

We start by studying � in dependence on χ for the original and evolutionary BML model of size
n = 64 in 1D of the spatial grid. Note that � = 1 characterizes the free flowing state where all
agents are always able to move when they intend to do so, while � = 0 characterises the fully
jammed state where no agent can move ever again. For the original BML model, the critical
initial density of agents where the traffic flow seizes completely equals χ = 0.375 on average,
as indicated by the black line in figure 2, whereby individual gridlocks can occur already by
somewhat smaller χ (≈0.368), as indicated by the black circles showing results for a single
realization at any given χ. Characteristic spatial portraits in figure 1 capture possible scenarios
on both sides of the transition. Remarkably, the BML model supplemented by the evolutionary
prisoner’s dilemma game, with cooperators and defectors initially uniformly distributed on the
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Figure 3. Premature seizures of traffic flow by decreasing the initial fraction of
cooperators κ, participating in the evolutionary prisoner’s dilemma game on the
spatial grid. The colour profile encodes different values of � in a linear fashion,
whereby blue corresponds to � = 0 (fully jammed state) and red to � = 1 (free
flowing state). Both panels feature results for the 64 × 64 spatial grid, whereby
the left-hand side panel shows results obtained by individual runs for a given
combination of χ and κ, while the right-hand side panel features averages over
104 realization with different initial conditions.

spatial grid with equal probability (κ = 0.5), exhibits the phase transition already at χ = 0.249
on average, as indicated by the red line in figure 2, whereby as before individual gridlocks can
occur already by quite substantially smaller χ (≈0.198), as indicated by the red crosses showing
results for a single realization at any given χ. The fairly large dissipation of χ for which � = 1
or � = 0 in the evolutionary BML model, indicated by the red crosses in figure 2, is the reason
why the phase transition in that case is less sharp than in the classical BML model. Below, we
will argue that this difference in the phase transition emerges because the mechanism of global
gridlock formation in the evolutionary BML model differs substantially from the classical self-
organizing scenario that leads to a single global jam, as shown in the middle panel of figure 1.
In sum, results presented in figure 2 clearly show that the supplementation of the original BML
model by evolutionary rules induces a premature seizure of traffic flow by a substantially lower
initial density of agents on the spatial grid.

To study the effect of defectors on the traffic flow more precisely, we calculate � for various
χ and κ. Note that by κ = 1, corresponding to the fully cooperative state of all agents, the original
BML model is regained, despite the prisoner’s dilemma game. Results in figure 3 clearly show
that already a small initial fraction of defectors substantially hinders smooth traffic flow on the
spatial grid. Moreover, the effect is of saturating nature as κ decreases further below 1. The
small isolated islands of traffic flow seizures in the left panel of figure 3 are a consequence
of chance related to the initial distributions of agents and their strategies on the spatial grid.
These isolated islands, however, vanish and transform into smooth transitions if averages over
realizations with different initial conditions are considered, as shown in the right-hand side panel
of figure 3. Interestingly, the width of the coloured stripe (rainbow) in the right-hand side panel,
indicating the sharpness of transition from � = 1 (red) to � = 0 (blue) at any given κ increases
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Figure 4. Dependence of equilibrium fractions of cooperators κeq for various χ

and initial fractions of cooperators κ, participating in the evolutionary prisoner’s
dilemma game on the 64 × 64 spatial grid. In the left-hand side panel, the colour
profile encodes different values of κeq in a linear fashion, whereby red corresponds
to κeq = 0 (all defectors) and blue to κeq = 1 (all cooperators). If κeq is averaged
over all χ it becomes evident that 〈κeq〉χ ≈ κ (red dots in the right-hand side panel),
which suggests that defectors advance through traffic with virtually identical
average velocities as cooperators (see text for details).

rapidly as κ drops below 1. This trend was pointed out already by figure 2, and similarly as the
premature traffic flow seizure, is of saturating nature as κ decreases. Below, we will argue that
this is intimately related with the mechanism of global gridlock formation as evolutionary rules
take effect. The main trend, being that global gridlocks occur by substantially smaller χ if κ

decreases, however, is evident and robust irrespective of the presentation of results.
It is interesting to see how the equilibrium fraction of cooperators κeq, obtained by averaging

the fraction of cooperators at each particular iteration over a long time span after the initial
transients have been discarded, depends on their initial fraction κ. Results in figure 4 show
that, remarkably, the initial fraction is largely preserved in spite of the imposed deterministic
best-takes-over strategy adoption rule, allowing agents to change their strategy in accordance
with the performance, i.e. average velocity νi, of their neighbours. This fact leads to the
interesting conclusion that defectors do not pass through traffic quicker than cooperators. If they
would, cooperators would adopt the defecting strategy until there were none left. The fact that
cooperators and defectors have, on average, virtually identical νi suggests that rude and selfish
behaviour on the road not only induces premature traffic jams, but also does nothing good for
the defectors either. This is a result that can be very well corroborated by intuitive experience. In
particular, although defectors might temporarily gain an advantage over cooperators by escaping
a potential slow passage, the self-organizing nature of the traffic flow prevents them from gaining
a substantial advantage since they quickly join the tail of the next jam. In everyday terms, one can
drive over a red light in one crossing only to join the tail of the bulk at the next. Then, however,
the defecting strategy is pointless since the road ahead is not free, which ultimately hinders the
success of intent. Importantly though, result in figure 4 should not be understood as if strategies
of agents on the spatial grid do not change at all. In fact, strategy adoptions occur frequently
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Figure 5. � of agents in the 1D BML model in dependence on χ and various
advancement steps. Black circles and the solid line feature numerical results and
the analytical prediction, respectively, for the original case where each agent
attempts to move one step at every iteration. Red crosses show numerical results
for the case where all agents attempt to advance two steps at every iteration. Blue
stars depict results for the case where half of the agents on the circular ring attempt
to advance one step ahead, while the other half attempts to advance two at every
iteration. Results were obtained by employing a circular ring of size n = 104.

throughout the simulation, thus warranting an evolutionary process, but indeed the cooperative
strategy is adopted just as frequently as the defecting strategy.

The above finding, indicating that the average payoff of cooperators and defectors in
the long run is the same, can be nicely supported by acknowledging the fact that this is a
necessary condition for fixed points (equilibria) in replicator dynamics [12, 13], which usually
describes well-mixed populations. Since presently agents move around and thus essentially
interact randomly with one another on the spatial grid one can argue that the system setting
actually corresponds to the well-mixed case, similarly as argued in [49]. Thus, the presently
reported equilibration at equal fitness can be interpreted also as a necessary condition for the
equilibrium rather than a surprising fact.

To gain an understanding of the premature traffic flow seizure due to the introduction of
the prisoner’s dilemma game, we study the 1D BML model in some detail. The 1D model is a
complete analogue of its spatial counterpart, only that agents move along a closed ring in a single
(e.g. clockwise) direction. The original BML model, where each agent can advance one step at
each iteration, can be solved analytically by considering the vacant sites as anti-clockwise moving
agents, with an exchange dynamics such that the number of clockwise and anti-clockwise agents
moving at each iteration are the same [9, 50]. In particular, the analytical result predicts that � = 1
if χ < 1/2, while for χ � 1/2 � decreases to zero according to � = (1 − χ)/χ. The black line in
figure 5 shows that this result is in excellent agreement with numerical calculations.Analogously,

New Journal of Physics 9 (2007) 3 (http://www.njp.org/)

http://www.njp.org/


11 Institute of Physics �DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

we consider the case where all agents attempt to advance for two steps at every iteration. It is
straightforward to reckon that � = 1 (representing only the success rate of attempted moves)
if χ < 1/3, while for χ � 1/3 � decreases to zero continuously, similar to the former case. In
particular, the critical initial density of agents on the circular ring χ = 1/3 is obtained simply by
acknowledging the fact that two forward steps of all agents on the circular ring require 2/3 of
the ring to be free in order for � = 1. If less than 2/3 of the ring are free some agents will not
have a free path, while trying to advance. Thus, if χ � 1/3 � starts to decrease as denoted by the
red crosses in figure 5. Finally, we consider the case where half of the agents on the circular ring
attempt to advance one step ahead, while the other half attempts to advance two at every iteration.
The two types of agents are uniformly distributed along the circular ring. Via the same reasoning
as outlined above, we find the critical initial density of agents on the circular ring, where � starts to
decrease continuously, to equal χ = 5/12 (one half of agents require 1/2 and the second 1/3 of the
circular ring to be free). However, numerical results, denoted by the blue stars in figure 5, reveal
an interesting and unexpected phenomenon. Namely, � < 1 even for χ < 5/12. This suggests
that as soon as some agents try to move faster than others a new mechanism emerges, preventing
the system to settle onto the self-oganized free flowing state. The mechanism can be explained
precisely by considering only two agents on the circular ring, whereby one always attempts to
move one step and the other two steps ahead. Even in this simple case � will be smaller than one
since the faster advancing agent will sooner or later bump into the slower advancing agent due to
the periodic boundary condition. From that point on, the individual advancing two steps will be
able to advance only every two iteration steps, thus splitting its success of attempted moves in
half. � of the two agents combined will thus equal 0.75, which is exactly the plateau displayed by
the blue stars in figure 5 for all χ < 5/12. Only in the special case where a single agent occupies
the circular ring the described mechanism, obviously, does not take effect.

By extending the above-outlined reasoning to the 2D BML model with evolutionary rules,
we argue that the premature seizure of traffic flow emerges due to the disturbing effects of varying
advancement steps on the self-organized free-flowing state, as similarly explained for the 1D
model. Importantly, as the heterogeneity in advancement steps appears crucial for the occurrence
of premature jamming, it seems straightforward to generalize above findings also to other types
of evolutionary games, as they all introduce diversity in how individuals advance on the spatial
grid. In particular, the snowdrift game [36] differs from the prisoner’s dilemma game only in
that the punishment P = 0 and the sucker’s payoff S = −1 exchange their value (see section 2).
Results in figure 6 feature � for various χ and κ. Note that by κ = 1, corresponding to the
fully cooperative state of all agents, the original BML model is again regained, despite of
the introduction of the snowdrift game. Results in figure 6 clearly show that already a fairly
small initial fraction of defectors substantially hinders smooth traffic flow on the spatial grid.
As by the introduction of the prisoner’s dilemma game the small isolated islands of traffic flow
seizures in the left panel of figure 6 are a consequence of chance related to the initial distributions
of agents and their strategies on the spatial grid. These isolated islands vanish and transform into
smooth transitions if averages over realizations with different initial conditions are considered,
as shown in the right-hand side panel of figure 6. As in figure 3, the width of the coloured stripe
(rainbow) in the right panel, indicating the sharpness of transition from � = 1 (red) to � = 0
(blue), increases rapidly as κ drops below 1.

Aside from obvious similarities between results in figures 3 and 6, there also exist some
rather subtle differences that emerge due to the exchanged payoffs S and P . In particular, as
κ decreases below 1 (e.g. κ = 0.8) premature jamming occurs by somewhat larger values of χ
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Figure 6. Premature seizures of traffic flow by decreasing the initial fraction of
cooperators κ, participating in the evolutionary snowdrift game on the spatial grid.
The colour profile encodes different values of � in a linear fashion, whereby blue
corresponds to � = 0 (fully jammed state) and red to � = 1 (free flowing state).
Both panels feature results for the 64 × 64 spatial grid, whereby the left-hand
side panel shows results obtained by individual runs for a given combination of χ

and κ, while the right-hand side panel features averages over 104 realization with
different initial conditions.

as by the introduction of the prisoner’s dilemma game (compare figures 3 and 6). This is simply
due to the fact that a cooperator–defector pair in the snowdrift game has a smaller absolute
difference in the desired advancement steps (T − S = 2) than a cooperator–defector pair in
the prisoner’s dilemma game (T − S = 3). Thus, a small fraction of defectors in the BML
model supplemented by the evolutionary prisoner’s dilemma game has a more disturbing effect
on the free flowing state than in the snowdrift case. On the other hand, as κ approaches 0
(defectors are the dominant strategy) the snowdrift game appears to induce jamming earlier,
i.e. by smaller χ, than the prisoner’s dilemma game. Again, this is due to the fact that two
defectors, receiving the punishment P = −1 by the snowdrift game, evoke a larger heterogeneity
in the advancement steps than two defectors engaging in a prisoner’s dilemma game where P = 0
(to see the difference in heterogeneity P should be compared to the one step ahead if a defector is
isolated). Finally, we mention that in the BML model supplemented by the evolutionary snowdrift
game defectors also do not advance faster than cooperators, and thus initial fractions of the two
strategies on the spatial grid are preserved, implying 〈κeq〉χ ≈ κ, identical as presented in the
right-hand side panel of figure 4 for the BML model supplemented by the evolutionary prisoner’s
dilemma game.

Finally, it remains of interest to study the formation of gridlocks in the two studied
evolutionary BML models more precisely in order to shed light on the features outlined by
interpreting results presented in figures 3 and 6. In particular, we want to clarify why already a
fairly small initial fraction of defectors substantially hinders smooth traffic flow on the spatial
grid, and why the transition from � = 1 to � = 0 loses sharpness as soon as κ drops below 1. We
will constrain the following treatment only to the BML model supplemented by the prisoner’s

New Journal of Physics 9 (2007) 3 (http://www.njp.org/)

http://www.njp.org/


13 Institute of Physics �DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

Figure 7. Premature development of a gridlock due to the introduction of
evolutionary rules. Traffic portraits feature characteristic snapshots of the spatial
grid at various times advancing from the top left towards the bottom right panel.
The density of agents on the spatial grid is equal as in the left-hand side panel of
figure 1, as is the colour coding. The initial fraction of cooperators participating
in the evolutionary prisoner’s dilemma game on the 256 × 256 spatial grid
equals κ = 0.50

dilemma game since the presented findings equally apply also to other games, as the mechanism
of premature jamming is always related to the introduced heterogeneity in advancement steps of
agents on the spatial grid.

We argue that the premature seizure of traffic flow emerges due to the disturbing effects of
varying advancement steps on the self-organized free-flowing state, which induce small localized
jams on the spatial grid that eventually extend to a complete global gridlock as nicely presented in
the panels of figure 7. In particular, note how the system fails to self-organize into a free-flowing
state due to the emergence of small localized jams that emerge already at an early stage of the
simulation, as presented in the top left-hand side panel of figure 7. These localized jams do not
dissolve but grow, eventually leading to a premature traffic jam at a global scale, as depicted in
the bottom right-hand side panel of figure 7. It is crucial to note that the global gridlock presented
in the bottom right-hand side panel of figure 7 is structurally very different than the one presented
in the middle panel of figure 1. The difference emerges due to the lack of self-organization in the
evolutionary BML model. Therefore, instead of a single global jam with nearly constant width,
there emerges a branched jamming pattern that apparently lacks any particular order or structure.

In order to analyse this difference statistically in dependence on κ, we calculate the average
width of jams ψ by states of complete gridlock, whereby χ for the calculations is always set
minimal where � still equals 0 (along the blue border in the right-hand side panel of figure 3).
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Figure 8. Average width of jams ψ in dependence on the initial fraction of
cooperators participating in the evolutionary prisoner’s dilemma game on the
256 × 256 spatial grid. The final value of ψ was obtained by averaging over 50
different jam widths across the spatial grid.

In particular, ψ is obtained by averaging the typical width of jams across the spatial grid, whereby
the width at each instance is measured perpendicular to the direction of the jam. We argue that
although ψ statistically assesses only the final state of the system (being the global gridlock),
it is intimately related with the way gridlocks emerge on the spatial grid, and thus faithfully
characterizes also the jam formation itself. Results presented in figure 8 are normalized with
the width of the jam emerging in the absence of evolutionary rules (or equivalently if all agents
are cooperators) presented in the middle panel of figure 1, thus yielding ψ = 1 by κ = 1. It is
evident that there exists a sharp transition, splitting the average width of jams in half already by
κ = 0.97, thus indicating that even a minute fraction of defectors on the spatial grid has nearly
the same impact on the flow of the traffic as widespread defection. Note that ψ = 0.4 if κ = 0,
which is only a marginal drop in comparison to ψ = 0.5 that is obtained by κ = 0.97. Results in
figure 8 thus suggest that only a few defectors on the spatial grid immensely effectively hinder
self-organization of the system towards a free-flowing state. This fact effectively explains why
already a small initial fraction of defectors substantially hinders smooth traffic flow on the spatial
grid, as presented in figures 3 and 6. Also, since virtually by all κ < 1 the self-organization is
lost (indicated by the sudden drop of ψ already by κ = 0.97), and thus jams occur randomly
throughout the spatial grid, the transitions from � = 1 to � = 0 are subjected to chance by a
larger extend than in the absence of evolutionary games. Thus, phase transitions lose sharpness
as soon as κ < 1, as indicated by the instant broadening of the rainbow region between the red
and blue shades in figures 3 and 6.
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4. Summary

In sum, we show that a simple and plausible supplementation of the original BML model with
evolutionary games induces a premature seizure of traffic flow by a substantially lower initial
density of agents as in the original case. Importantly, already a minute initial fraction of defectors
among the participating agents substantially hinders smooth traffic flow on the spatial grid.
Interestingly, rude and selfish behaviour on the road not only induces premature traffic jams, but
also does nothing good for the defectors either, as they advance with virtually identical average
velocities as cooperators. Intuitively, this fact can be directly related to everyday experience,
where it is often the case that an individual can drive over a red light in one crossing only to join
the tail of the bulk at the next. In view of insights gained from the analysis of the 1D BML model
with different advancement steps, we argue that the premature seizure of percolation occurs due
to the disturbing effects of varying advancement steps on the self-organized free-flowing state,
which induce small localized jams on the spatial grid that eventually extend to a complete global
gridlock. Due to the simplicity of the underlying mechanism of premature jamming, results
presented for the prisoner’s dilemma game can be extended also to other types of games, such
as the snowdrift game, thus indicating the general validity of the presented results. In sum, we
conclude that any individual strategies of agents on the road, exploiting other participants or
trying to bend the rules, ultimately result in premature jamming and thus unnecessarily burden
the transportation systems. In other words, it seems best to simply stick with the rules of the road
and exclude individually-motivated decisions.

The present study introduces a viable approach by supplementing traffic flow simulations
with evolutionary rules. In particular, the approach seems viable since participants of traffic
are often human individuals who, unlike mindless post or e-mail packages, do not always
simply obey the rules, but every now and then succumb to their innate drive to outperform
their ‘rivals’, thus trying to reach the final destination quicker. Notably, the outlined approach
opens up several interesting questions and challenges that have yet to be addressed. Particularly,
the supplementation of a continuous traffic flow model [51] with evolutionary rules would enable
a more precise study of the effects of various defection temptation values, possibly revealing a
critical value at which the influence becomes decisive. Also, a more detailed statistical analysis
of mechanisms leading to global jams in the presence of evolutionary rules requires a separate
and more extensive study. Finally, it would be interesting to study the effect of evolutionary
games in other cellular automaton based models of traffic flow, which are often presented and
devised in the framework of physics [52]. We hope that the present study will be a source of
inspiration, spawning new studies in the apparently very fruitful and interesting combination of
traffic flow simulations and evolutionary game theory.
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