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Abstract The electrical activity of neurons depends
on the physiological conditions in the nervous system.
Anelectromagnetic field, for example, can significantly
affect the dynamics of individual neural cells, and it
also affects their collective dynamics. It is therefore of
interest to study the neuronal dynamics under such an
influence in various setups. We thus study the firing
patterns in two coupled neurons by considering three
different types of synapses, namely electrical, chemi-
cal, and electrochemical. We use the Hindmarsh–Rose
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mathematical model as the basis of neuronal dynamics,
and we also introduce an electromagnetic field effect.
Weconduct extensive calculations of thefiringpatterns,
andwe determine the bifurcation diagrams for constant
and periodic external currents. The results show that
the different synaptic connections evoke different firing
patterns and that in general electrochemical synapses
can show richer variety of dynamical behavior than
electrical or chemical synapses.

Keywords Hindmarsh–Rose model · Coupling ·
Electromagnetic field · Electrical coupling · Chemical
coupling · Mixed coupling

1 Introduction

Brain structure and its functions have been studied
extensively for many years. The nervous system con-
tains billions of various neurons which play differ-
ent roles [1]. Biomedical researchers and neurologists
have established that the neurons are elementary units
for processing the information, mainly through burst
behaviors [2,3]. However, there are rare types of neu-
rons that are non-spiking [4]. Neurons communicate
with each other through the small gap between the axon
of the sender and dendrites of the receiver [5]. This gap
is called the synapse, the sender neuron is called presy-
naptic, and the receiver is called postsynaptic [5].

There are different types of synapses [6,7]. The
most typical synapse of the vertebrate is the chem-
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ical synapse [8]. In the chemical synapse, when the
spikes reach the terminal land (through the axon of
the presynaptic neuron), the voltage-sensitive calcium
channels are opened near the end of the neuron. Then,
the calcium flows into the neuron that leads the vesi-
cles of neurotransmitters to release from the presynap-
tic neuron in the synapse. By spreading the neurotrans-
mitters over the synaptic cleft (in the scale of 20nm),
ligand-gated ion channels are activated [8]. Depending
on the involved ions and neurotransmitters, the post-
synaptic neuron is excited or inhibited [9]. In an elec-
trical synapse, the neighboring neurons are connected
with channels that create directed paths. These chan-
nels transform the ions and small molecules through
the gap junction [10,11]. Researches have shown that
the electrochemical synapses or “mixed” synapses also
exist in the central nervous system of mammalians or
even rodents [12–14]. By modeling the neurons, an
insight into terminals is achieved, and the connections
are investigated.

In the modeling of the neurons, a mathematical
structure is selected in the first step. Then, based on
the desired aspects of a neuron dynamic, the model
is evolved [15]. A basic neural model is Hodgkin–
Huxley (HH), which describes the time evolution of
the membrane potential [16]. Since the HH model is
very complicated, its equations have been modified by
other researchers to obtain simpler models. FitzHugh–
Nagumo, Izhikevich, andHindmarsh–Rose are some of
suchmodels [17–20]. The Hindmarsh–Rose model can
represent many types of neuron’s dynamics [21,22]. A
modification of this model has been proposed to con-
sider the influence of the electromagnetic field [23].
The electromagnetic field effect has been added to the
model with the extension of the ODE system. In the
neural cells, during variations of the flow of ions in
the cell, the inner distribution density of ions becomes
time-varying to trigger electric andmagnetic fields. The
field distribution is enhanced when more neurons are
involved in the space. The magnetic flux can be sim-
ulated by memristive memory conductance [24]. The
effect of adaption current on membrane potential with
a time delay has been studied in [25].

To better understand the neuronal behavior and the
transmission of information, the study of the neuronal
coupling is essential [26]. Researches have shown that
the brain contains, on average, 86.1 ± 8.1 billion neu-
rons, and each neuron has many connections [27]. By
some estimates, over 100 trillion synapses exist [28].

It is essential to investigate the dynamical behavior of
coupled neurons, beside analysis of a single neuron.
To this aim, the simplest structure is two coupled neu-
rons. Studying the coupling of neurons under the elec-
tromagnetic field is of interest [29]. By increasing the
coupling intensity, synchronization rhythm can be seen
[30]. The effect of chemical and electrical synapses
in the synchronization rhythm was discussed in [31].
Spiral waves of a square array network of Hindmarsh–
Rose neurons with nearest-neighbor connections and
under magnetic fields were studied [32]. The effect of
the distribution of the electromagnetic field in a chain
network has been investigated and showed that cou-
pling in the field could affect signal communication
[33]. Reference [34] has shown that in the coupling of
two neuronswithmagnetic flux coupling, perfect phase
synchronization can be induced. It has shown that in a
larger current force, the phase synchronization thresh-
old is increased.

In this paper, the impact of three electrical, chem-
ical, and electrochemical couplings is studied on the
two coupled Hindmarsh–Rose neurons under magnetic
field effects. Such study is essential because firstly, in
real world the neurons are working together. So it is
crucial to investigate the dynamics of coupled neurons.
Secondly, the neurons are in connection via magnetic
fields besides chemical and electrical connections. In
Sect. 2 of the paper, the Hindmarsh–Rose model and
its modification under the magnetic field are studied.
Dynamical properties of this model are discussed in
this section. Electrical, chemical, and electrochemical
couplings of the two coupled neurons are investigated
in Sect. 3. Finally, the paper is concluded in Sect. 4.

2 The neural model under magnetic flow

In 1982,Hindmarsh andRose proposed a neuronmodel
which can represent a variety of rich dynamical solu-
tions [35]. At first, this model was described as a two-
dimensional ordinary differential equation that could
not represent burst or chaotic dynamics [20]. So, a third
equation was added to the Hindmarsh–Rose (HR) sys-
tem [24]. This variable shows a slowdynamic in a linear
form, referring to the hyperpolarization current. The
latest set of equations is given by

ẋ = y − ax3 + bx2 − z + Iext
ẏ = c − dx2 − y
ż = r [s(x − x0) − z]

(1)
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where x ,y, and z aremembranepotential, recovery vari-
able (or spiking variable), and bursting variable, respec-
tively. Iext represents the external current or clamping
current. Four parameters, a, b, c, and d, are positive
constants, usually set to a = 1, b = 3, c = 1, and
d = 5 [24]. The third equation was added to show the
neural dynamics better. In this equation, x0 is the rest-
ing potential of the neuron and the parameters r and
s are positive constants with r � 1 [36]. Also, z was
added to the first equation to show the effect of the slow
current on the membrane potential [22].

To investigate the effect of the electromagnetic radi-
ation, an improved version of the HR neuron was pro-
posed [37]. Using the structure of HR model (Eq. 1),
a four-dimensional model was proposed to represent
the electromagnetic induction effect [38]. The modi-
fied model is as follows:

dx/dt = y − ax3 + bx2 − z + Iext − k1ρ(ϕ)x
dy/dt = c − dx2 − y
dz/dt = r [s(x − x0) − z]
dϕ/dt = kx − k2ϕ

(2)

where the new variable ϕ is magnetic flux across the
membrane of the neuron. Its derivation is computed by
the difference of the membrane potential and leakage
of magnetic flux [23,39]. The rate of change of elec-
tric charge to the magnetic flux (dq(ϕ)/dϕ) is defined
by ρ(ϕ), that is, a memristive memory conductance
(memductance). ρ(ϕ) is an ideal memristor obtained
by ρ(ϕ) = α + 3βϕ2, where α, β are constant param-
eters as α = 0.1, β = 0.02 [40]. Justification of the
last term of x in Eq. 2 can be described by the third
Maxwell’s equation (Faraday’s law), a changing mag-
netic field causes an electrical field, while the direction
is given by the Lenz’s law [41]. Also, inner propaga-
tion and changing charged ions in channels can induce
magnetic and electric fields [42]. Figure 1 shows the
magnetic field around a neuron. The generated current
intensity can be computed by the rate of changes in
electrical charges over time. Using derived chain rule,
dq/dt can be obtained by multiplication of dq(ϕ)/dϕ
by dϕ/dt . dq(ϕ)/dϕ and dϕ/dt are ρ(ϕ) and electro-
motive force, respectively. The electromotive force is
defined as a proportion of voltage variable x . k1ρ(ϕ)x
is the feedback term that should be subtracted [43]. Sys-
tem parameters are constant as x0 = −1.6, r = 0.006,
k = 1, s = 4. As mentioned above, k1 and k2 denote
the interaction between magnetic flux and membrane
potential, which can be used as bifurcation parameters.

The bifurcation diagram of the neuron of Eq. 2 con-
cerning the external current force is shown in Fig. 2.
There are two methods to plot the bifurcation diagram:
inter-spike intervals (ISIs) and peak detection. ISIs of
the membrane potential convey the information of the
encoding of the time series [44]. Figure 2a shows the
ISIs of the neuron in different external currents, and
Fig. 2b represents the peaks of the membrane poten-
tial.

In Fig. 2a, by increasing the external current, a
lower branch of ISIs is produced, and these two dif-
ferent branches of ISIs are converged together in larger
parameters. A higher branch of ISIs without any lower
branch shows spike behavior for Iext in the interval
[2, 2.4]. The creation of the lower branch after Iext =
2.4 illustrates a typical bursting dynamic. After that,
the chaotic dynamics emerge. Finally in higher values
of parameter, fast-spiking is observed. Similarly, the
chaotic regime exists in Fig. 2b.By increasing the exter-
nal current, the peak values are increased. In parameter,
approximately equal to 3.8 consecutive spikeswith uni-
formly decreasing peak values can be seen. In Fig. 3,
the dynamics of neurons in four different external cur-
rents are plotted. In smaller values of the external cur-
rent force, an initial burst can be observed (Fig. 3a). By
increasing the current force, spikes with longer time
intervals are formed (Fig. 3b). Afterward, the chaotic
burst dynamics are created (Fig. 3c). In Fig. 3d, fast-
spiking dynamics are seen.

In the neural cells, during variations of the flow of
ions in the cell, the inner distribution density of ions
becomes time-varying to trigger electric and magnetic
fields. In fact, outside of each cell, electric andmagnetic
fields exist similar to the inside. The field distribution
is enhanced when more neurons are involved in the
space. This model emphasizes the contribution of the
inner magnetic field, and the effect of the electric field
is left out. Also, when external forcing is applied, the
excitability is changed. Thus, the inner field distribu-
tion is also changed; even the external current force can
induce a magnetic field by itself. However, the effect
of external forcing on the magnetic field can be consid-
ered in the adjustment of the coefficients for the current
force. The magnetic field is induced by the flow of ions
in the cell, while membrane potential is adjusted in the
same [42]. In this model, the magnetic field is consid-
ered an inner field of the cell. This kind of magnetic
field seldom shows periodicity because of its complex-
ity in the flow of charged ions.
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Fig. 1 Neuron under an
electromagnetic field

Fig. 2 Bifurcation diagram of the modified HR neuron (Eq. 2)
by using constant initial conditions (0.2, 0.5, 0.1, 0.1). a ISIs
with respect to external current force (Iext); b peak values

with respect to external current force (Iext); the parameters are
a = 1, b = 3, c = 1, d = 5, k = 1, r = 0.006, s = 4, k1 =
1, k2 = 0.5, α = 0.1, β = 0.02

3 Coupling of two neurons

In this section, the dynamics of two coupled neurons are
considered. In the following, three main types of con-
nections are studied: electrical, chemical, and electro-
chemical couplings. In each subsection, a short physi-
ological review is presented, and the neural dynamics
are investigated.

3.1 Electrical coupling

Most of the studies focusing on the coupling of neurons
have beenperformedbasedon the coupling between the
membrane voltages [45–50]. The effect of each neuron
on the others can be modeled by a simple feedback
term, representing its voltage. In other words, mem-
brane voltages are connected directly like a wire [49].
The electrical coupling is one type of transmissions
which causes the ions to transmit directly from a gap
junction [51]. In these couplings, the voltage spreads to
the other cells [45]. To show these effects, a proportion
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Fig. 3 Dynamics of the membrane potential of single neuron
(Eq. 2) for a Iext = 1.0, b Iext = 2.2, c Iext = 3.4 and d
Iext = 4.5, in parameters a = 1, b = 3, c = 1d = 5, k = 1, r =

0.006, s = 4, k1 = 1, k2 = 0.5, α = 0.1, β = 0.02 and initial
conditions (0.2, 0.5, 0.1, 0.1)

of the feedback is added to the ẋ , which presents the
variations of voltage.

To design a voltage coupling, the following equa-
tions are presented:

neuron 1 :

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ẋ1 = y1 − ax31 + bx21 − z1 + Iext − k1ρ(ϕ1)x1
−(ε + η(t))(x1 − x2)

ẏ1 = c − dx21 − y1
ż1 = r [s(x1 − x0) − z1]
ϕ̇1 = kx1 − k2ϕ1

neuron 2 :

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ẋ2 = y2 − ax32 + bx22 − z2 + Iext − k1ρ(ϕ2)x2
−(ε + η(t))(x2 − x1)

ẏ2 = c − dx22 − y2
ż2 = r [s(x2 − x0) − z2]
ϕ̇2 = kx2 − k2ϕ2

(3)

Indexes 1 and 2 are related to the first and second
neurons. The effect of two neurons on each other can be
changed by varying the coupling parameter. Parameter
ε indicates the diffusive coupling strength between two
neurons. Also, the effect of the neurons on each other
can be different. η(t) denotes any random noise in the
model, which is ignored here. It is assumed that the
information from the presynaptic neuron is transmitted
to the postsynaptic one. The value xi−x j (i, j ∈ {1, 2})
is taken to represent the voltage synaptic effect to the
membrane potential [26].

To see the dynamics of the interactive neurons, we
compare the state of the coupled neurons in param-
eters k1 = 1, k2 = 05, α = 0.1, and β = 0.02.
Similar to the single neuron study (Fig. 3), in Fig. 4,
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Fig. 4 Dynamics of membrane potential of two electrically cou-
pled neurons (Eq. 3) (the pink is the response of the first neuron,
and the black is the response of the second neuron) with initial
conditions (0.2, 0.5, 0.1, 0.1) and (0.3, 0.8, 0.2, 0.0), in four dif-

ferent current forces: a, e, i Iext = 1.0, b, f, j Iext = 2.2; c, g,
k Iext = 3.4; d, h, l Iext = 4.5; and by changing the coupling
parameters; (the first row: ε = 0.15; the second row: ε = 0.5;
and the third row: ε = 0.75). (Color figure online)

four different values of current force are studied as
Iext = 1.0, Iext = 2.2, Iext = 3.4, and Iext = 4.5.
The coupling strength is an important parameter. So,
three different values of the strength are assumed as
ε = 0.15, ε = 0.5, and ε = 0.75. All stimulations
are done with initial conditions (0.2, 0.5, 0.1, 0.1) and
(0.3, 0.8, 0.2, 0.0), for the first and second neurons;
however, the dynamics of coupled neurons are not sen-
sitive to initial conditions. In Fig. 4, pink patterns are
related to the first neuron, and the black ones are related
to the second neuron. Figure 4 shows that for lower
coupling strengths, the possibility of exhibiting differ-
ent dynamics is more than the cases with higher cou-
pling values. The cases with higher coupling strength
are more like the single-cell mode. To see the variety of
dynamics of membrane potential in the coupled neu-
rons with increasing external current, some bifurcation
diagrams with ε = 0.15 are plotted in Fig. 5. Accord-
ing to this figure, by increasing the current force, the
dynamic of steady-state changes from burst to inter-

mittent or chaotic bursting state and then turns back to
fast-spiking. The dynamics of the two neurons are the
same.

To investigate the dynamics of the coupled neurons
comprehensively, the time series of the two neurons
are studied by considering periodic external force. It is
assumed that Iext = Acos(ωt). The numerical results
of changing the amplitude and frequency of the cur-
rent force show various dynamics of spike and burst
(see Figs. 6 and 7). In Fig. 6b, after initial burst, a pha-
sic spiking is observed, which means that the neuron
has a single spike and enters into a state of inactivity
despite stimulation. The trend of changing the dynam-
ics in the case of the periodic current force is the same as
applying the constant current force, but its dynamics are
slower. By increasing the coupling strength, membrane
potentials of two neurons become closer. Changing the
amplitude of the external current in Fig. 7 shows that
by increasing the frequency of external force, spikes
arise in the top of sinusoidal external current.
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Fig. 5 Bifurcation diagram of the electrically coupled neu-
rons (Eq. 3) with respect to the external current force Iext
by using constant initial conditions (0.2, 0.5, 0.1, 0.1) and
(0.3, 0.8, 0.2, 0.0). a ISIs of the first neuron; b ISIs of the second

neuron; c peak values of the first neuron; and d peak values of
the second neuron; the parameters are a = 1, b = 3, c = 1, d =
5, k = 1, r = 0.006, s = 4, k1 = 1, k2 = 0.5, α = 0.1, β =
0.02, ε = 0.15

3.2 Chemical synaptic coupling

Chemical synapses are more frequent than electrical
ones in the gap junction. To better model chemical
synaptic currents, the transition’s dynamic of neuro-
transmitters is added to the equations. The modeling
methods of references [49,52] have considered the
chemical coupling bidirectional. We add the induction
of the electromagnetic field into them and investigate
their dynamics. To investigate this coupling, a model
based on physiological properties should be described
in the first step. There are many methods to model such
interaction [26,49,52,53].

The following equations are presented based on
Abarbanel et al. model [49] by adding the effect of
the magnetic field.

neuron 1 :

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ẋ1 = y1 − ax31 + bx21 − z1 + Iext − k1ρ(ϕ1)x1
−(ε + η(t))(x1(t) + Vc)θ(x2(t − τc) − X)

ẏ1 = c − dx21 − y1
ż1 = r [s(x1 − x0) − z1]
ϕ̇1 = kx1 − k2ϕ1

neuron 2 :

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ẋ2 = y2 − ax32 + bx22 − z2 + Iext − k1ρ(ϕ2)x2
−(ε + η(t))(x2(t) + Vc)θ(x1(t − τc) − X)

ẏ2 = c − dx22 − y2
ż2 = r [s(x2 − x0) − z2]
ϕ̇2 = kx2 − k2ϕ2

(4)
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Fig. 6 Dynamics of membrane potential of the electrically cou-
pled neurons (Eq. 3) (the pink is the response of the first neu-
ron, and the black is the response of the second neuron) with
initial conditions (0.2, 0.5, 0.1, 0.1) and (0.3, 0.8, 0.2, 0.0) in

four different intensities of periodic force (Iext = Acos(ωt)
and ω = 0.001) a, e A = 1.0; b, f A = 2.2; c, g A = 3.4;
d, h A = 4.5 by changing coupling parameters; the first row:
ε = 0.15 and the second row: ε = 0.5. (Color figure online)

Fig. 7 Dynamics of membrane potential of the electrically cou-
pled neurons (Eq. 3) (the pink is the response of the first neu-
ron, and the black is the response of the second neuron) with
initial conditions (0.2, 0.5, 0.1, 0.1) and (0.3, 0.8, 0.2, 0.0) in

four different intensities of periodic force (Iext = Acos(ωt) and
ε = 0.75 ) and by changing the current parameters, a, e A = 1.0;
b, f A = 2.2; c, g A = 3.4;d,h A = 4.5; the first row:ω = 0.001
and the second row: ω = 0.01. (Color figure online)

In this model, θ(t) is the activation function. This
function is considered to be Heaviside, which is a dis-
continuous function. In the chemical coupling, impulse
transmission occurs through neurotransmitters with a
short time delay τc [54]. By adding the term xi (t − τc),
the degree of freedom in this model goes to infinity,
since the dimension of delayed differential equations is
infinite. Parameter X is the threshold value. The mem-
brane potential of the second neuron must reach this

value to activate the coupling. If the voltages do not
reach the threshold, then the coupling termgoes to zero.
Vc is the reverse potential, which shows the magnitude
of response in the interaction. The threshold of potential
is considered X = 0.85. Vc > 1 is a reverse potential.
By choosing Vc > 1, inhibitory coupling happens [49].
Figure 8 shows the dynamics of neurons by using Vc =
1.4 (inhibitory coupling). By increasing the strength
of coupling in a specific and limited domain, related
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Fig. 8 Dynamics of the membrane potential of the chemically
coupled neurons (Eq. 4) (the pink is the response of the first neu-
ron, and the black is the response of the second neuron) with
initial conditions (0.2, 0.5, 0.1, 0.1) and (0.3, 0.8, 0.2, 0.0) in
four different currents and by changing coupling parameters.

The first row: ε = 0.15; the second row: ε = 0.5; and the
third row: ε = 0.75. a, e, i Iext = 1.0; b, f, j Iext = 2.2;
c, g, k Iext = 3.4; d, h, l) Iext = 4.5; the parameters are
r = 0.0021, τc = 4, X = 0.85, Vc = 1.4. (Color figure online)

Fig. 9 Bifurcation diagram of chemically coupled neurons
(Eq. 4) using constant initial conditions (0.2, 0.5, 0.1, 0.1) and
(0.3, 0.8, 0.2, 0.0) with respect to changing external force Iext .

a ISIs of the second neuron; and b peak values of the second
neuron, at τc = 4, X = 0.85, Vc = 1.4, ε = 0.15
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Fig. 10 Dynamics ofmembrane potential of the chemically cou-
pled neurons (Eq. 4) (the pink is the response of the first neuron,
and the black is the response of the second neuron) with ini-
tial conditions (0.2, 0.5, 0.1, 0.1) and (0.3, 0.8, 0.2, 0.0) in four

different intensities of periodic current (Iext = Acos(ωt) and
ω = 0.01), in coupling parameter ε = 0.15, a A = 0.4; b
A = 0.58; c A = 0.75; and d A = 2. (Color figure online)

Fig. 11 Dynamics of membrane potential of two chemically
coupled neurons (Eq. 5) (the pink is the response of the first neu-
ron, and the black is the response of the second neuron) with
initial conditions (0.2, 0.5, 0.1, 0.1) and (0.3, 0.8, 0.2, 0.0) in
four different currents and by changing coupling parameters.

The first row: ε = 0.05; the second row: ε = 0.15; and the
third row: ε = 0.5. a, e, i Iext = 1.0; b, f, j Iext = 2.2;
c, g, k Iext = 3.4; d, h, l Iext = 4.5; the parameters are
r = 0.0021, X = 0.85, Vc = 1.4, σ = 0.01. (Color figure
online)

to the external current force, neurons oscillate out-of-
phase (anti-phasic synchronization). By increasing the
current, one neuron lags from the other one. In parts
(c) and (g) of Fig. 8, asynchronization occurs.

In Fig. 9, the bifurcation diagramof the coupled neu-
rons in small strength of coupling (ε = 0.15) is plotted.
Since the dynamics of the two neurons are the same,
just the bifurcation diagram of the second neuron is

sketched. By increasing the current force, the dynam-
ics of steady state are changed. There are various types
of bursting [54,55]. According to Fig. 9, the output of
membrane potential is burst when the current force is
larger than 2. In the interval Iext ∈ [3.4, 4.15], the pat-
tern of membrane potential changes to tonic bursting
or chattering (like square wave bursting; Fig. 8c). By
increasing the current to larger values than 4.15, the
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Fig. 12 Bifurcation diagram of chemically coupled neurons
(Eq. 5) with constant initial conditions (0.2, 0.5, 0.1, 0.1) and
(0.3, 0.8, 0.2, 0.0) with respect to the external current Iext . a
Logarithm of ISIs for the first neuron; b logarithm of ISIs for

the second neuron; c maximum peaks for the first neuron; and
d maximum peaks for the second neuron in r = 0.0021, X =
0.85, Vc = 1.4, ε = 0.15, σ = 0.01

only regular fast-spiking pattern is observed. In com-
parison with the dynamics of electrically coupled neu-
rons, the variations are the same, but in the chemical
coupling, the two neurons are not synchronized in any
cases.

To investigate the periodic external force, the sinu-
soidal current injection is assumed, and the numerical
results are presented in Fig. 10. It can be seen that in
this current injection, two neurons are forced to syn-
chronize, and even in smaller currents, burst dynamics
are observed. It can be concluded that sinusoidal stim-
ulation has a more significant effect on the chemical
coupling.

In the chemical coupling, the activation function can
be sigmoid [56]. In reality, a complex behavior such
as activation of a neuron by reaching the threshold is
not a step function. In the improvement in the model,
1/(1+exp((Vi−X)/σ ))mimics the activation function
[53]. The chemical coupling by the sigmoid activation
function is proposed in Eq. 5:
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Fig. 13 Dynamics of the membrane potential of the mixed-
coupled neurons (Eq. 6) (the pink is the response of the first
neuron, and the black is the response of the second neuron) with
initial conditions (0.2, 0.5, 0.1, 0.1) and (0.3, 0.8, 0.2, 0.0) in

four different currents and with changing coupling parameters.
The first row: εi = 0.05 and εe = 0.1, and the second row:
εi = 0.02 and εe = 0.15. a, e Iext = 1.0; b, f Iext = 2.2; c, g
Iext = 3.4; d, h Iext = 4.5. (Color figure online)

neuron 1 :

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = y1 − ax31 + bx21 − z1 + Iext − k1ρ(ϕ1)x1
−(ε + η(t))( x1+Vc

1+exp(
x2−X

σ
)
)

ẏ1 = c − dx21 − y1
ż1 = r [s(x1 − x0) − z1]
ϕ̇1 = kx1 − k2ϕ1

neuron 2 :

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ẋ2 = y2 − ax32 + bx22 − z2 + Iext − k1ρ(ϕ2)x2
−(ε + η(t))( x2+Vc

1+exp(
x1−X

σ
)
)

ẏ2 = c − dx22 − y2
ż2 = r [s(x2 − x0) − z2]
ϕ̇2 = kx2 − k2ϕ2

(5)

In this model, simulations are done by neglecting
the effect of time delay and using the sigmoid function
as the activation function. In Fig. 11, it can be seen
that by using Eq. 5 the synchronizations of neurons
are more than the delayed equations. Also, there is a
lag between responses, without any delay factor in the
equations. This figure shows that spike responses dis-
appear as the strength of coupling increases. It is also
observed that in most of the parameters, the response
pattern is triangle bursting.

In this case, the bifurcation diagrams of the two neu-
rons are different. To better show the details of ISIs
bifurcation, it is plotted in logarithm scale in Fig. 12.

3.3 Electrochemical coupling

In this case, it is assumed that the two neurons (which
are chemically coupled) are also electrically depen-
dent because of their position. These dynamics exist for
many cells located in the cortex and small neuronal sys-
tems [12–14]. In this case, the coupling is considered
inhibitory. Some models study the chemical couplings
inhibitory or excitatory [49], while some others only
consider the inhibitory chemical couplings [52,53]. In
this paper, we have used both types of models (Eqs. 4
and 5). To compare these two models, we have focused
on the inhibitory coupling. Then, it is mixed with elec-
trical coupling and will generate the model of elec-
trochemical coupling. The description of mixed cou-
pling has been considered in [52,57]. In this paper, the
electrochemical coupling by considering the effect of
electromagnetic field injection is studied. The model
of the electrochemical coupling under the electromag-
netic field is shown in the following equation:
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Fig. 14 Bifurcation diagram of the mixed-coupled neurons
(Eq. 6) with respect to the external current Iext by using constant
initial conditions (0.2, 0.5, 0.1, 0.1) and (0.3, 0.8, 0.2, 0.0). a
Logarithm of ISIs for the first neuron; b logarithm of ISIs for the

second neuron; c maximum peaks of the first neuron; and d max-
imum peaks of the second neuron in X = 0.85, Vc = 1.4, σ =
0.01, εi = 0.02, and εe = 0.15

neuron 1 :

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = y1 − ax31 + bx21 − z1 + Iext − k1ρ(ϕ1)x1
−εi (

x1+Vc
1+exp(

x2−X
σ

)
) − εe(x1 − x2)

ẏ1 = c − dx21 − y1
ż1 = r [s(x1 − x0) − z1]
ϕ̇1 = kx1 − k2ϕ1

neuron 2 :

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ẋ2 = y2 − ax32 + bx22 − z2 + Iext − k1ρ(ϕ2)x2
−εi (

x2+Vc
1+exp(

x1−X
σ

)
) − εe(x2 − x1)

ẏ2 = c − dx22 − y2
ż2 = r [s(x2 − x0) − z2]
ϕ̇2 = kx2 − k2ϕ2

(6)

In this model (Eq. 6), εi and εe are the strength of
chemical and electrical coupling, and the sigmoid func-
tion is chosen as an activation function in chemical

coupling. Dynamical properties of the coupled neu-
rons under electrochemical coupling are investigated
in the following of this subsection. In this case, two
parameters should be studied: the strength of chem-
ical coupling and the strength of electrical coupling.
Figure 13 shows the dynamics of coupled neurons in
electrochemical coupling. A comparison of this cou-
pling with the previous ones determines that the num-
ber of spikes in electrochemical coupling is larger than
that of the previous cases in the same interval of time.
So, the dynamics of neurons in this coupling is faster.
Figure 13b, f represents that in this coupling, there are
some cases in which amixture of spike and burst exists.

Figure 14 shows the bifurcation diagram of the elec-
trochemical coupling. The dynamics of the twoneurons
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are different. To better show the details of ISIs bifurca-
tions, the logarithmic scale of the values is plotted. In
this coupling, the bifurcation diagram is richer than the
previous ones. By increasing the external force, chaotic
dynamics emerge. In some intervals, the periodic win-
dows can be seen. So, it can be concluded that the neu-
rons with the potency of coupling in both electrical
and chemical form can show various dynamics in each
stimulation.

4 Conclusion

In this paper, the effect of various types of couplings on
the dynamical behavior of the neurons was studied. For
this purpose, two Hindmarsh–Rose neurons under the
magnetic field were considered in three different cases
of electrical, chemical, and electrochemical coupling.
In thefirst case, inwhich the couplingwas electrical, the
impacts of variations of current forces and the coupling
strength were studied. Also, the effect of the sinusoidal
current force was investigated. It was shown that in
the case of the sinusoidal current force, the membrane
potential has the trend of the stimulus. In the second
case, for the chemical coupling two activation functions
of theHeaviside and sigmoidwere considered. The sig-
moid activation function was near to reality in concept,
and its results were more complicated than the Heav-
iside activation function. Moreover, the results of the
sigmoid activation function showed that the membrane
potentials of two neurons have a lag, even without any
latency term in their equations. The third studied cou-
pling was the mixture of the previous ones, which was
called electrochemical. The sigmoid activation func-
tion was used in this coupling. The results showed that
in the same time interval, the number of spikes of this
case was larger than the other coupling types. Also, its
bifurcation diagrams have presented richer dynamics.
So, it can be concluded that themixture of electrical and
chemical couplings can show richer variety of dynam-
ical behaviors.
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