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Abstract The brain is a complex system consisting
of a large number of interacting neurons. Recently, a
simple nonlinear biological model has been proposed
for the up and down state transitions in the network
of excitatory and inhibitory neurons. In this paper, we
study the dynamical behavior of thismodel by calculat-
ing the Lyapunov exponents and bifurcation diagrams
for various values of synaptic connections. We show
that varying the synaptic strength values has a consid-
erable effect on the bifurcations in the model. Further-
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more, we show that the model can exhibit chaotic firing
for certain values of the excitatory–excitatory synaptic
strength.

Keywords Biological neuron models · Chaos ·
Excitatory and inhibitory synapses · Bifurcation

1 Introduction

The nerve cells, which are known as the neurons, com-
municate with each other through the synapses [1]. A
neuron consists of a cell body (soma), dendrites, and a
single axon. Neurons receive signals through the den-
drites and the soma and send signals to the axons. In
most synapses, the signals are transmitted from the
axon of one neuron to the dendrites of the other one [2].
The neurons are divided into two groups: excitatory and
inhibitory neurons. Excitatory postsynaptic potential
(EPSP) creates action potential. This temporary depo-
larization of the postsynaptic membrane potential is
due to the influx of positively charged ions into the
postsynaptic cell, resulting from the opening of ligand-
gated ion channels [3]. In contrast, inhibitory postsy-
naptic potentials (IPSPs) are caused by the flow of neg-
ative ions into the cell or positive ions out of the cell [4].
Figure 1 shows the relationship between excitatory and
inhibitory neurons in a brain region.

Biological neural models aim to explain the under-
lying mechanisms of the nervous system function [5].
These models provide a mathematical explanation of
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Fig. 1 Connections of the excitatory (blue) and inhibitory (red)
neurons in the cerebral cortex. (Color figure online)

the characteristics of the nervous system that trigger the
electrical potentials of the neuronal membranes [6,7].
The important aspects in biological models are the

validation of experiments, and survey of the param-
eters variations on the system stability, and the use
of physical units to describe the parameters. Neuron
models can be divided into two categories according
to the physical units of the model interface [8]: (1) the
input–output membrane voltage models, such as the
leaky integrate and fire model [9], Hodgkin–Huxley
model [10], etc., and (2) the chemical input neuron
models, such as synaptic transmission model [9] and
the two-state Markov model [11]. Since the models of
the first type are more popular, some of them [9,10,12–
16] are summarized in Table 1. By increasing the exper-
imental knowledge about the neurons, modified neu-
ronal models were presented to indicate the effects of

Table 1 Some of the well-known biological neural models

Neuron model Equations Description References

Leaky integrate
and fire model

I (t) − Vm(t)
Rm

= Cm
dVm(t)

dt I : Current that enters the neuron; V (t):
membrane potential; Rm: membrane resis-
tance; Cm: lipid bilayer as a capacitance;
Ith: current threshold; f (I ): firing fre-
quency

[9]

f (I ) =
⎧
⎨

⎩

0, I ≤ Ith

[tref − RmCm log(1 − Vth
I Rm

)]−1, I > Ith

FitzHugh–
Nagumo model
(FHN)

v̇ = v − v3

3 − ω + Iext v: Nonlinear elevation of the membrane
voltage; ω: linear recovery variable; Iext:
applied current; τ : time constant; a, b: con-
trol parameters

[12,13]

τ ω̇ = v + a − bω

Hindmarsh–Rose
model

dx
dt = y − ax3 + bx2 − z + I x(t):Membrane potential; y(t), z(t): trans-

port of ions across the membrane through
the ion channels; I : current that enters the
neuron; a, b, c, d, r, e, f : control parame-
ters

[14]

dy
dt = c − dx2 − y
dz
dt = r(e(x + f ) − z)

r2 = x2 + y2 + z2

Hodgkin–Huxley
model

Cm
dV (t)
dt = − ∑

i Ii(t, V ) V (t): Membrane potential; Cm: lipid
bilayer as a capacitance; I (t, V ): current
that enters the neuron; g(t, V ): conduc-
tance; m(t, V ), h(t, V ): number of ions
passing through the membrane channels;
τm(V ), αm(V ), βm(V ): gate fractions

[10]

I (t, V ) = g(t, V )(V − Veq )

g(t, V ) = ḡm(t, V )ph(t, V )q

dm(t,V )
dt = m∞(V )−m(t,V )

τm(V )
= αm(V )(1 − m) − βm(V )m

Morris–Lecar
model

C dV
dt = −Iion(V, ω) + I V : Membrane potential; ω: recovery vari-

able the probability that the K+ channel
is conducting; I : applied current; C : mem-
brane capacitance; ḡca ḡK, ḡL: leak,Ca++,
and K+ conductance’s throughmembranes
channel; VL, Vca, VK: equilibrium poten-
tial of relevant ion channels; ϕ: reference
frequency

[15]

dω
dt = ϕ ω∞−ω

τω

Iion(V, ω) = ḡcam∞(V − Vca) + ḡKω(V − VK)

+ ḡL(V − VL)

Exponential
integrate and
fire model

dV
dt = 1

τm
[Em − V + �T exp(

V−VT
�T

)] V : Membrane potential; �T: membrane
potential threshold; τm: membrane time
constant; Em: resting potential; VT: sharp-
ness of action potential initiation

[16]
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different factors on the neuronal behaviors. For exam-
ple, in some researches, the effect of the electromag-
netic induction on the behavior of the neuron has been
considered [17–21]. In 2016, Lv and Ma [22] intro-
duced a new neuron model capable of describing the
effects of the electromagnetic field. Very recently, Wu
et al. [23] used charge-controlled and flux-controlled
memristors in a neuron model for characterizing the
time-varying electromagnetic field, which is the result
of the continuous ionic flux. Xu et al. [24] modified
the Hodgkin–Huxley model by considering the effect
of the temperature on the neuron’s membrane voltage.
They also applied the memristor for the ion channels
and investigated different behaviors of the new model
by applying an external stimulus. In addition to the
complex dynamics of the neuron models, the collec-
tive behaviors of the network of coupled neural models
have been investigated extensively [25–29].

Analyzing the dynamics of the neural models is of
great importance. Some of the previous studies were
devoted to the investigation of the dynamics of the
neuron models, specifically chaotic firings. For exam-
ple, Vaidyanathan [30] examined the qualitative fea-
tures of the chaotic FitzHugh–Nagumo (FHN) neuron
model and also found the results for its output regu-
lation via the adaptive control method. Lakshmanan
et al. [31] analyzed the chaotic firing of the HR neu-
ron with state-dependent time delays via time series,
bifurcation diagram, and Lyapunov exponents. Panahi
et al. [32] extracted the dynamical properties of the
magnetic neuron model and also presented an imple-
mentation of the electronic circuit. The robustness of
the neural models against noise has also been stud-
ied [33–35].

In 2012, Ghorbani et al. [7] developed a simple
nonlinear dynamic model for the up and down state
neuronal cortex oscillations based on dendritic spike
frequency adaptation. In fact, they presented a three-
dimensional model for a set of coupled inhibitory
and excitatory neurons and called it uniform network
model. It is notable that this model is different from
general neuronal networks which are obtained by cou-
pling a number of neuron’s models. Their model is
consistent with the following features: (i) In the limit
cycle mode, the neocortical neurons rarely fire at a rate
of 1Hz, (ii) in the down state of oscillatory activity,
the membrane potential of different types of neurons is
hyperpolarized, (iii) the up-state activity is regulated by
inhibitory neurons, (iv) up- and down-state oscillations

are synchronized across the large sections of the cor-
tex. The up–down state (UDS) oscillations refer to the
cycle between up and down state potentials [36]. This is
used to examine the relationship between connectivity
and the dynamics of cerebral and neural circuits. These
oscillations can be explained by the variability of neu-
ral responses to stimuli. The researches have shown
that during UDS the neocortex and the hippocampus
develop long-term memory [37–40]. Slow wave sleep
(SWS), often referred as deep sleep, is related to the
UDS oscillations and comprises the third and fourth
stages of the four sleep stages. Subsequent studies
showed that during UDS in the sleep, the excitatory
and inhibitory neurons change simultaneously. There-
fore, UDS can be described by the firing rate of a set
of neurons [41–43]. It has been shown that in these
neuronal behaviors, the range of biological parameters
can be extracted from the chaotic parts [44,45]. Some
studies have revealed that the chaotic dynamics occur
in sleep [46]. In [47], the chaotic behavior of neurons
was examined by computing the entropy and it was
shown that the entropy is greater during deep sleep.
In another research [48], the level of chaos in the deep
sleep of mice and its relation with the age were studied,
and it was found that the chaos level increases with age.
Overall, these fluctuations in the brain can lead tomoti-
vational forgetfulness, memory stabilization, and brain
activity increment [49,50]. In this study, we consider
the model presented in [7] and investigate the dynam-
ical properties of these equations. The bifurcation dia-
grams and the Lyapunov exponents of the model are
presented and different periodic, and chaotic behaviors
are demonstrated.

2 Model description

Thebindingof one excitatory neuron andone inhibitory
neuron is shown in Fig. 2. The strengths of the synapses
are denoted by J , such that Jee > 0 is the synaptic
strength of the excitatory neuron to excitatory neuron,
Jei > 0 is the synaptic strength of the excitatory neuron
to inhibitory neuron, Jie < 0 is the synaptic strength of
the inhibitory neuron to excitatory neuron, and Jii <

0 is the synaptic strength of the inhibitory neuron to
inhibitory neuron. These 4 parameters determine the
firing rate of the neurons.

Themodel presented byGhorbani et al. [7] considers
that the coupled excitatory and inhibitory neurons are

123



2702 A. Foroutannia et al.

Fig. 2 Two coupled excitatory and inhibitory neurons. The rela-
tionship between excitatory and inhibitory neurons is bidirec-
tional

evoked by the potential of the neurons’ membranes and
the adaptation parameter. The equations describing the
firing of the excitatory and inhibitory neurons are as
follows:

dve
dt

= − 1

τe
ve + Ne Jee(c)r(ve) + Ni Jeir(vi)

dvi
dt

= − 1

τi
vi + Ni Jiir(vi) + Ne Jier(ve)

dc

dt
= − 1

τc
c + Ne�cr(ve) (1)

where ve ,vi are the membrane potential of excitatory
and inhibitory neurons, and c is the adaptability param-
eterwhich is used in a description similar to Fuhrman et
al. [51]. τe and τi represent the time constants of relax-
ation of the excitatory and inhibitory neuronmembrane
potential, and τc denotes the time of recovery of adapta-
tion between neurons, assuming that the resting poten-
tial is constant for all different neuron types. The Ne and
Ni represent the number of excitatory and inhibitory
neurons in the network. The authors in Ref. [7] have
assumed that the maximum number of connected neu-
rons is N = 10,000, from which 0.2 × 10,000 are the
inhibitory neurons and 0.8× 10,000 are the excitatory
neurons. Finally, the number of neurons is multiplied
by 0.2 to indicate the likelihood of neurons connecting.
Jee(c) is dependent on the adaptation parameter such
that if the adaptation parameter c exceeds a threshold,
the synaptic strength decreases rapidly, defined by the

Table 2 The model parameters are defined within the table

Parameter Unit Value Define

τe s 0.02 Temporal constant of excitatory neuron membrane

τi s 0.01 Temporal constant of inhibitory neuron membrane

τc s 0.5 Time constant recovery adaptive

Ne – (0.8 × 10,000) × 0.2 The number of excitatory neurons in the network

Ni – (0.2 × 10,000) × 0.2 The number of inhibitory neurons in the network

Jee(0) mV 0.74 Synaptic strength of the excitatory neuron to excita-
tory neuron

Jei mV 1.75 Synaptic strength of the excitatory neurons to
inhibitory neurons

Jii mV 0.35 Synaptic strength of the inhibitory neuron to
inhibitory neuron

Jie mV 0.8 Synaptic strength of inhibitory neurons to excitatory
neurons

�c mV 0.015 Average adaptive parameter

c∗ mV 10 Average adaptive threshold

v∗ mV 30 Potential of excitation threshold

gc mV 3 Inverse slope of average compatibility

gi mV 2 Inverse gradient dependence of inhibitory neuron
excitation rate on membrane potential

ge mV 5 Inverse gradient dependence of excitatory neuron
excitation rate on membrane potential

rm Hz 70 Maximum excitement cadence
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Fig. 3 a The time series of the model of Eq. 1 by setting the parameters at the values given in Table 2. b The corresponding attractor
of the model. By setting these values the model exhibits a periodic behavior
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Fig. 4 a The Lyapunov exponents of the model with respect
to Jee, in the interval [0, 5]. By changing the value of Jee, the
model is capable of showing different dynamical behavior. b The
attractor and the time series of themodel for Jee = 1.25, at which

the model exhibits chaotic behavior. c The attractor and the time
series of the model for Jee = 2.95, at which the behavior is
periodic
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Fig. 5 The bifurcation diagrams (local maximum of the time
series) with respect to Jee in the interval [0, 5]. The model shows
chaotic behavior in a wide region of Jee. a Excitatory membrane
potential ve, b inhibitory membrane potential vi, and c adaptive
parameter c

following sigmoidal relation:

Jee(c) = Jee(0)

1 + exp
[
c−c∗
gc

] (2)

The parameter gc is the inverse of the adaptation
slope, and c∗ indicates the adaptation threshold. The
dependence of the firing rate of a neuron on the mem-
brane potential is defined by:

r(ve,i) = rm

1 + exp
[
− ve,i−v∗

gc,i

] (3)

Here, rm(∼ 70Hz) is the maximum firing rate at
full depolarization, and v∗ is the threshold of firing
potential. ge,i is the dependence of the firing rate on
the membrane potential for excitatory/inhibitory neu-
ron. The parameters used in this paper are presented in

Table 2. The time series and the attractor of the uniform
network are plotted in Fig. 3.

3 Dynamical analysis

In this section, the dynamical behavior of the model of
Eqs. 1–3 is analyzed by extracting Lyapunov exponents
andbifurcation diagrams.TheLyapunov exponents of a
system determine the degree of separation of infinitely
close trajectories [52]. These values are calculated by
the following equation:

Ẏ = JY (4)

where matrix Y explains that small changes in initial
conditions are propagated to the end point. The matrix
J is the Jacobian matrix of the model Eq. 1, calculated
at [0, 0, 0] as follows:

J = d fi(x)

dxi
|x(t) =

⎡

⎣
a11 a12 a13
a21 a22 a23
a31 a32 a33

⎤

⎦ (5)

With

a11 =
Ne Jeerm exp

[
− ve−v∗

ge

]

ge
(
exp

[
c−c∗
ge

]
+ 1

)
(exp

[
− ve−v∗

ge

]
+ 1)2

− 1

τe

a12 = −
Ni Jeirm exp

[
− vi−v∗

gi

]

gi
(
exp

[
− vi−v∗

gi

]
+ 1

)2

a13 =
Ne Jeerm exp

[
c−c∗
gc

]

gc
(
exp

[
c−c∗
gc

]
+ 1

)2 (
exp

[
− ve−v∗

ge

]
+ 1

)

a21 =
Ne Jierm exp

[
− ve−v∗

ge

]

ge
(
exp

[
− ve−v∗

ge

]
+ 1

)2

a22 = − 1

τi
−

Ni Jiirm exp
[
− vi−v∗

gi

]

gi
(
exp

[
− vi−v∗

gi

]
+ 1

)2

a23 = 0

a31 =
Ne�crm exp

[
− ve−v∗

ge

]

ge
(
exp

[
− ve−v∗

ge

]
+ 1

)2

a32 = 0
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Table 3 The transitions between different dynamics of the model by Jee variation in the range of [0, 5] (LE1, LE2, and LE3 denote the
three Lyapunov exponents)

Parameter range Lyapunov exponents value Dynamical behavior
ve vi c

0 ≤ Jee < 0.43 At Jee = 0.215 Fixed point Fixed point Fixed point

LE1 = −99.96,LE2 = −35.40,LE3 = −2.07

0.43 ≤ Jee < 0.63 At Jee = 0.530 Period 3 Period 3 Period 1

LE1 = −78.19,LE2 = −5.82,LE3 ≈ 0

0.63 ≤ Jee < 0.9 At Jee = 0.740 Period 4 Period 4 Period 2

LE1 = −67.40,LE2 = −2.10,LE3 ≈ 0

0.9 ≤ Jee < 1.1 At Jee = 1.000 Chaos Chaos Chaos

LE1 = −61.68,LE2 ≈ 0,LE3 = 2.04

1.1 ≤ Jee < 1.14 At Jee = 1.120 Period 8 Period 8 Period 6

LE1 = −54.84,LE2 = −2.09,LE3 ≈ 0

1.14 ≤ Jee < 1.36 At Jee = 1.250 Chaos Chaos Chaos

LE1 = −55.95,LE2 ≈ 0,LE3 = 1.30

1.36 ≤ Jee < 1.68 At Jee = 1.520 Period 1 Period 1 Period 1

LE1 = −51.15,LE2 = −0.91,LE3 ≈ 0

1.68 ≤ Jee < 1.94 At Jee = 1.810 Chaos Chaos Chaos

LE1 = −80.60,LE2 ≈ 0,LE3 = 2.63

1.94 ≤ Jee < 2.07 At Jee = 2.005 Period 4 Period 4 Period 4

LE1 = −79.64,LE2 = −0.21,LE3 ≈ 0

2.07 ≤ Jee < 2.58 At Jee = 2.325 Chaos Chaos Chaos

LE1 = −84.69,LE2 ≈ 0,LE3 = 2.09

2.58 ≤ Jee < 3.28 At Jee = 2.930 Period 5 Period 5 Period 6

LE1 = −84.69,LE2 = −0.39,LE3 ≈ 0

3.28 ≤ Jee < 5 At Jee = 4.140 Chaos Chaos Chaos

LE1 = −91.04,LE2 ≈ 0,LE3 = 1.31

a33 = − 1

τc

Bifurcation analysis is the study of the qualitative
changes of a system [53]. Here, we present the bifur-
cation analysis by plotting the local-maximum values
of the time series of the model in five cases, according
to the variations of the synaptic strength between exci-
tatory and inhibitory neurons (Jee, Jei, Jie, Jii), and the
adaptation parameter (�c).

4 Result

The importance of interactions betweenneurons,which
depends on the strength of the synapse, is undeniable.
We show that the proposed neuronal model is capable
of exhibiting chaotic behavior by changing the synap-

tic strengths. The Lyapunov exponents of the model
by changing the excitatory–excitatory synaptic strength
(Jee) are demonstrated in Fig. 4. According to this fig-
ure, by increasing this synaptic strength, the largest
Lyapunov exponent becomes positive at some Jee val-
ues. The bifurcation diagrams of themodelwith respect
to Jee are represented in Fig. 5. As this figure shows,
the model’s behavior changes to chaotic behavior in
a wide region. Furthermore, there are some periodic
windows within the chaotic region. Figure 4b shows
an example of the chaotic behavior of the model at
Jee = 1.25, and Fig. 4c illustrates a periodic firing for
Jee = 2.95. Table 3 presents the transitions between
different dynamics of the model for Jee ∈ [0, 5] in
detail.

Figures 6 and 7 illustrate theLyapunov spectrumand
the bifurcation diagrams of the model with respect to
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Fig. 6 a The Lyapunov exponents of the model with respect to Jei, in the interval [0, 5]. The Lyapunov exponents are all negative by
varying the value of Jei. b The attractor and time series of the model for Jei = 4, exhibiting a periodic behavior

the excitatory–inhibitory synaptic strength in the inter-
val [0, 5]. According to the Lyapunov spectrum shown
in Fig. 6a, the Lyapunov exponents are negative for all
Jei values, and thus, the model can only exhibit peri-
odic behavior. Figure 6b shows the periodic firing of the
system for Jei = 4. The bifurcation diagrams in Fig. 7
demonstrate that by increasing this synaptic strength,
the period of the firing of the neuron’smembrane poten-
tial is firstly increased from period-1 to period-4 and
then is turned back to period-1. The transitions between
different periodic firings, by varying Jei ∈ [0, 5], are
presented in Table 4.

The Lyapunov exponents and bifurcation diagrams
of the model with respect to inhibitory–inhibitory
synaptic strength are shown in Fig. 8 and 9, respec-
tively. Figure 8 depicts that by varying the inhibitory–
inhibitory synaptic strength, the model is only capable
of showing periodic behavior, and the chaotic firing
is not obtained. The bifurcation diagram demonstrates
that for very small Jii values, the neuron has period-
1 firing. By increasing Jii, the neuron bifurcates to
a period-4 oscillation. Further increasing Jii leads to
the decrement of the period of the firing. Finally, at
Jii = 2.07 the membrane potential returns to period-1
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Fig. 7 The bifurcation diagrams (local maximum of the time
series) with respect to Jei in the interval [0, 5]. By increasing the
Jei value, the period of oscillations changes but the behavior is
always periodic.aExcitatorymembranepotentialve,b inhibitory
membrane potential vi, and c adaptive parameter

Fig. 8 The Lyapunov exponents of the model with respect to
Jii, in the interval [0, 5]. By varying the value of Jii, all of the
Lyapunov exponents are negative

oscillation. Table 5 shows the details of the behaviors of
the neuronmodel by changing the inhibitory–inhibitory
synaptic strength in the interval [0, 5].

The inhibitory–excitatory synaptic strength is the
last synaptic strength, whose effect on the neuron’s
dynamics is investigated. Figure 10 shows the Lya-
punov exponents of this case. This figure depicts that in
the interval [0, 5], the model behaves only periodically.
The bifurcation diagrams, which are shown in Fig. 11,
illustrate that the membrane potential firing starts with
period-1 oscillation, and then, the behavior is changed
to period-4 firing and finally is attracted to an equilib-
rium at Jie = 1.1. Table 6 presents different dynamics
of the model for Jie ∈ [0, 5].

Table 4 The transitions between different dynamics of the model by Jei variation in the range of [0, 5] (LE1, LE2, and LE3 denote the
three Lyapunov exponents)

Parameter range Lyapunov exponents value Dynamical behavior
ve vi c

0 ≤ Jei < 0.27 At Jei = 0.135 Period 1 Period 1 Period 1

LE1 = −100.93,LE2 = −34.94,LE3 ≈ 0

0.27 ≤ Jei < 0.39 At Jei = 0.330 Period 2 Period 2 Period 1

LE1 = −10.41,LE2 = −29.06,LE3 ≈ 0

0.39 ≤ Jei < 0.615 At Jei = 0.502 Period 3 Period 3 Period 1

LE1 = −97.54,LE2 = −27.18,LE3 ≈ 0

0.615 ≤ Jei < 1.25 At Jei = 0.932 Period 4 Period 4 Period 1

LE1 = −84.59,LE2 = −13.99,LE3 ≈ 0

1.25 ≤ Jei < 5 At Jei = 3.125 Period 4 Period 4 Period 2

LE1 = −65.63,LE2 = −2.73,LE3 ≈ 0
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Fig. 9 The bifurcation diagrams (local maximum of the time
series) with respect to Jii in the interval [0, 5]. Similar to the Jei,
changing Jii value does not lead to chaotic behavior. a Excitatory
membrane potential ve, b inhibitory membrane potential vi, and
c adaptive parameter

Finally, the effect of changing the adaptive param-
eter (�c) on the dynamics of the neuronal model is
investigated. Table 7 depicts different behaviors with
varying this parameter. When 0 ≤ �c < 0.026, the
model has period-1 oscillation and for �c > 0.026,
reaches a rest state. Figure 12a shows the transition of
the model from an initial state to the fixed point in the
state space. The time series of the model variables in
the rest state are illustrated in Fig. 12b.

Table 5 The transitions between different dynamics of the model by Jii variation in the range of [0, 5] (LE1, LE2, and LE3 denote the
three Lyapunov exponents)

Parameter range Lyapunov exponents value Dynamical behavior
ve vi c

0 ≤ Jii < 0.12 At Jii = 0.060 Period 1 Period 1 Period 1

LE1 = −75.22,LE2 = −2.24,LE3 ≈ 0

0.12 ≤ Jii < 0.25 At Jii = 0.185 Period 5 Period 5 Period 4

LE1 = −73,LE2 = −2,LE3 ≈ 0

0.25 ≤ Jii < 0.44 At Jii = 0.345 Period 4 Period 4 Period 2

LE1 = −68.12,LE2 = −1.52,LE3 ≈ 0

0.44 ≤ Jii < 0.74 At Jii = 0.590 Period 4 Period 4 Period 1

LE1 = −64.27,LE2 = −1.95,LE3 ≈ 0

0.74 ≤ Jii < 0.82 At Jii = 0.780 Period 4 Period 3 Period 1

LE1 = −64.73,LE2 = −3.11,LE3 ≈ 0

0.82 ≤ Jii < 1.345 At Jii = 1.082 Period 3 Period 3 Period 1

LE1 = −65.96,LE2 = −5.21,LE3 ≈ 0

1.345 ≤ Jii < 1.445 At Jii = 1.400 Period 3 Period 2 Period 1

LE1 = −67.36,LE2 = −7.76,LE3 ≈ 0

1.445 ≤ Jii < 1.985 At Jii = 1.715 Period 2 Period 2 Period 1

LE1 = −72.89,LE2 = −6.55,LE3 ≈ 0

1.985 ≤ Jii < 2.07 At Jii = 2.027 Period 2 Period 1 Period 1

LE1 = −77.21,LE2 = −7.67,LE3 ≈ 0

2.07 ≤ Jii < 5 At Jii = 3.535 Period 1 Period 1 Period 1

LE1 = −89.68,LE2 = −14.69,LE3 ≈ 0
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Fig. 10 a The Lyapunov exponents of the model with respect to Jie, in the interval [0, 5]. The Lyapunov exponents are all negative. b
The attractor and the time series of the model for Jie = 0.5, exhibiting a periodic behavior
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Fig. 11 The bifurcation diagrams (local maximum of the time
series) with respect to Jie in the interval [0, 5]. By changing the
value of Jie, the model is not capable of exhibiting chaos. a Exci-
tatory membrane potential ve, b inhibitory membrane potential
vi, and c adaptive parameter

5 Conclusion

Recently, a simple model has been proposed for
describing the up and down state transitions in the neo-
cortical neuronal networks composed of groups of exci-
tatory and inhibitory neurons. The up and down state
oscillations are relevant to some neuronal events such
as slow wave sleep. Some studies have shown the exis-
tence of chaotic behavior during sleep. Motivated by
this, in this paper, we investigate this model with the
aim of finding chaotic behavior. The model consists of
four synaptic strengths as excitatory–excitatory synap-
tic strength, excitatory–inhibitory synaptic strength,
inhibitory–excitatory synaptic strength, and inhibitory–
inhibitory synaptic strength. To present a complete
analysis of the behavior of this model, we studied
its dynamics with Lyapunov exponents and bifurca-
tion diagrams in various synaptic strength values. The
results showed that by altering the strength of the
synaptic connection of the excitatory neurons to exci-
tatory neurons, the chaotic behavior is observed in a
wide range. The change in the synaptic strength of the
excitatory neurons to the inhibitory neurons and also
the inhibitory neurons to inhibitory neurons, led to an
increment of the period of oscillations from period-1
to period-4. Also, varying the value of the inhibitory–
excitatory neurons caused the changing of the oscilla-
tions period. Finally, the effect of the averaged adap-
tive parameter was investigated. It was obtained that

Table 6 The transitions between different dynamics of the model by Jie variation in the range of [0, 5] (LE1, LE2, and LE3 denote the
three Lyapunov exponents)

Parameter range Lyapunov exponents value Dynamical behavior
ve vi c

0 ≤ Jie < 0.585 At Jie = 0.292 Period 1 Period 1 Period 1

LE1 = −92.77,LE2 = −21.02,LE3 ≈ 0

0.585 ≤ Jie < 0.62 At Jie = 0.600 Period 3 Period 3 Period 3

LE1 = −87.69,LE2 = −7.01,LE3 ≈ 0

0.62 ≤ Jie < 0.675 At Jie = 0.647 Period 4 Period 4 Period 4

LE1 = −86.19,LE2 = −6.34,LE3 ≈ 0

0.675 ≤ Jie < 0.71 At Jie = 0.692 Period 3 Period 3 Period 3

LE1 = −85.31,LE2 = −5.64,LE3 ≈ 0

0.71 ≤ Jie < 1.1 At Jie = 0.845 Period 4 Period 4 Period 1

LE1 = −82.18,LE2 = −3.39,LE3 ≈ 0

1.1 ≤ Jie < 5 At Jie = 2.990 Fixed point Fixed point Fixed point

LE1 = −28.95,LE2 = −28.55,LE3 = −3.68
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Table 7 The transitions between different dynamics of the model by �c variation in the range of [0, 5] (LE1, LE2, and LE3 denote the
three Lyapunov exponents)

Parameter range Lyapunov exponents value Dynamical behavior
ve vi c

0 ≤ �c < 0.026 At �c = 0.013 Period 1 Period 1 Period 1

LE1 = −55.40,LE2 = −1.20,LE3 ≈ 0

0.026 ≤ �c < 5 At �c = 2.630 Fixed point Fixed point Fixed point

LE1 = −99.20,LE2 = −50.76,LE3 = −1.92

Fig. 12 The transition of the network to the fixed point at �c = 1. a The cyan line indicates the system’s transition from an initial
condition to the fixed point in phase portrait. b The time series of three variables ve, vi, and c

this parameter should be very small for stimulating the
neurons to fire. Otherwise, the level of adaptation C(t)
is high such that the excitatory neurons cannot stim-
ulate other neurons, as a result of decreased neuronal
activity.
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