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Abstract Time irreversibility is one of the fundamen-
tal properties of nonequilibrium complex brain activi-
ties and is relevant to various neurological conditions,
e.g., epilepsy.However, the estimation of the joint prob-
ability distribution for quantitative time irreversibility
(qTIR) is not trivial, and the application of qTIR in
characterizing epileptic brain signals has received little
attention. In this paper, we employ equal-value permu-
tations instead of raw vectors to simplify qTIR, and
we apply subtraction-based parameters to measure the
probabilistic differences in order patterns for qTIR con-
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sidering the forbidden permutations. We demonstrate
that our simplified method, validated by chaotic and
reversible model series and their surrogates, is equiva-
lent to methods measuring the probabilistic difference
between forward–backward vectors and the probabilis-
tic difference between symmetric vectors. In charac-
terizing epileptic brain electric activities, seizure elec-
troencephalograms (EEGs) have the strongest qTIR
due to the development of synchronous neuronal firing,
and the qTIR of seizure-free EEGs lies between that of
the healthy control and ictal EEGs.Overall, we conduct
a comprehensive analysis of permutation-based qTIR
for nonlinearity detection, and our findings regarding
qTIR in epileptic EEGs improve our understanding of
nonequilibrium epileptic brain electrical activity and
might even contribute to predicting epileptic seizures.

Keywords Time irreversibility · Permutation ·
Epilepsy · Seizure-free interval · EEG

1 Introduction

The brain, a collection of vast numbers of neurons
and glial cells, is a typical complex system [1] and
is affected by various physiological and pathological
conditions, e.g., life-threatening epilepsy. As one of
the most common severe neurological diseases charac-
terized by recurrent seizures, epilepsy can also cause
social isolation, stigmatization and disability, and the
stigma of epilepsy has additional negative effects on
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the families of individuals with the disorder [2]. Impor-
tant theoretical and experimental advances [3], includ-
ing nonlinear methods, have been applied to character-
ize brain electrical and magnetic activities to under-
stand and elucidate the pathophysiological mecha-
nisms underlying the neurological condition. Among
nonlinear approaches [4], low-dimensional nonlineari-
ties have long been evaluated for the feature extraction
of epileptic signals [5–9], and causality coupling (e.g.,
transfer entropy [10] and phase synchronization [11])
has also been used to reveal epileptic brain connec-
tions [12]. Network science currently presents a wel-
come opportunity to facilitate the networked models
and features of the epileptic process [13–15]. Due to
the inherent complexity of the brain [4,16], nonlinear
measures have been gaining popularity for exploring
the dynamic behaviors of epileptic brain activity.

Another fundamental property of nonequilibrium
complex processes is time irreversibility (TIR), which
has attracted substantial attention in recent research for
characterizing complex dynamical systems. The TIR
and temporal asymmetry (TAS) of heartbeats have been
widely proved to be linked to cardiac autonomic reg-
ulation [17,18], and broken asymmetry in aging and
diseased heart rates has been demonstrated in several
reports [19–21]. TIR has also been used to reveal the
nonequilibrium behavioral variability in active living
microorganisms [22]. In addition to physiological and
biological areas, TIR is advantageous for nonlinear
detection in other complex signals, such as economic
data [23,24], turbulent flows [25] andphysical phenom-
ena [26]. However, as a manifestation of complex brain
signals, TIR has not been widely applied to explore the
nonequilibrium characteristics of epileptic brain activi-
ties for reasons including the challenges of quantitative
time irreversibility (qTIR).

Time reversibility describes the invariant statistical
properties of processes under a reversal timescale [27,
28]; however, qTIR is involved in measuring the prob-
abilistic differences between symmetric or between
forward-backward joint distributions, which is not triv-
ial. The traditional linear entropy estimators or ker-
nel methods are not designed for the symmetric or
forward–backward vectors of qTIR; therefore, several
alternative approaches that simplify the time series
of nonequilibrium processes have been proposed for
qTIR. Guzik [17], Porta et al. [18,29] and Costa et al.
[19,20] transformed time series into ups and downs.
Lacasa et al. [23,30] mapped the process onto a hor-

izontal visibility graph and measured the in–out dif-
ference for qTIR. Yao et al. [21], Zanin et al. [31],
Martínez et al. [32] and Li et al. [33] applied per-
mutations as alternatives to raw vectors. Symbolic
approaches [34–37] that transform time series into
symbolic sequences have also been employed for their
simplicity, robustness, speed, insensitivity to noise, etc.
In these approaches, some detailed information is lost
or some symbolic templates are lacking, but the effects
of these issues on qTIR have not received adequate
attention. Moreover, the concepts of TIR and TAS are
arguably equivalent in characterizing nonequilibrium
processes; however, the implicit associations between
them have not been investigated.

To address these issues, we use equal-value per-
mutations to simplify qTIR and detect nonequilibrium
features in epileptic electroencephalograms (EEGs).
Our research verifies the effects of the simplified time
series on qTIR and bridges the TIR and TAS theoret-
ically and experimentally by connecting the forward–
backward process and symmetric vectors. The appli-
cation of qTIR in epileptic EEGs improves our under-
standing of the nonequilibrium characteristics and par-
ticularly the abnormally high TIR of epileptic brain
electrical signals.

2 Quantitative time irreversibility

2.1 Basic definitions of time reversibility

Time reversibility describes the invariant probabilis-
tic properties of a process with respect to time rever-
sal. Here, we present two statistical definitions for time
reversibility.

Definition 1 In the definition of Weiss [27], a station-
aryprocess X (t) is time reversible if {X (t1), X (t2), . . . ,
X (tm)} and {X (−t1), (−t2), . . . , X (−tm)} have the
same joint probability distributions for every t1, t2, . . . ,
tm and m.

Definition 2 An alternative definition due to Kelly
[38] suggests that if X (t) is reversible, {X (t1), X (t2),
. . . , X (tm)} and {X (−t1 + n), X (−t2 + n), . . . ,

X (−tm+n)} have the same joint probability distribu-
tion for every n andm, under which {X (t1), X (t2), . . . ,
X (tm)} have the same probability distribution with its
symmetric vector {X (tm), . . . , X (t2), X (t1)} if n =
t1 + tm .
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Fig. 1 Exemplary illustration of the vector and its symmet-
ric form and the corresponding vector in reverse time series.
a For (x1, x2, x3, x4, x5) in time series X (t), the symmetric

vector (x5, x4, x3, x2, x1) is the same as the corresponding vec-
tor (x−1, x−2, x−3, x−4, x−5) in time reversal X (−t). b Corre-
sponding multidimensional vectors in X (t) and X (−t)

We should note that although Definition 2 does
not impose the condition of stationarity, it shows that
time reversibility implies stationarity. The two def-
initions of time reversibility both require the time
reversible process to be stationary, suggesting that time
reversible processes are a subset of stationary ones [38],
i.e., time reversibility implies stationary, but not vice
versa.

Time irreversibility can be quantified from two per-
spectives, namely the probabilistic difference between
the forward and its backward processes, i.e., TIR,
and the probabilistic differences between the symmet-
ric joint distributions of a process, i.e., TAS. From
the visual perspective illustrated in Fig. 1, for the
vector (x1, x2, . . . , xt ) in time series X (t), its sym-
metric vector (xt , . . . , x2, x1) and corresponding vec-
tor (x−1, x−2, . . . , x−t ) in the reversible time series
X (−t) are in fact the same.

2.2 Simplified alternative: order patterns

Due to the difficult calculation of the probabilistic dif-
ferences in joint distributions, simplified quantifica-
tions ofTIR arewidely adopted in the relevant literature
[17–23,29–37].Among these simplifications, amethod
based on permutation, originally introduced by Bandt
and Pompe for the permutation entropy (PEn) [39],
comes naturally from the time series and shares math-
ematical similarity with the multidimensional vector,
which is particularly relevant in qTIR.

Let us briefly introduce the permutationmethod.We
first construct m-dimensional vectors as follows:

X τ
m = {x (t) , x (t + τ) , . . . , x (t + (m − 1)τ )} (1)

for dimension m and time delay τ . Then, we organize
the elements according to their relative values, e.g., in
ascending order x ( j1) < x ( j2) < · · · < x ( ji ) or in
descending order x ( j1) > x ( j2) > · · · > x ( ji ), and
obtain the order pattern, πi = { j1, j2, . . . , ji }, i.e., the
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Fig. 2 Order patterns when
m is 2 and 3. Taking equal
values out of consideration,
the upper bound of the
amount of permutation is
m!, e.g., the 2 (2!)
symmetric order patterns,
namely up (‘12’) and down
(‘21’) in top left two figures,
when m = 2, and the 6 (3!)
permutations when m = 3.
Vectors are illustrated as 4
pairs of symmetric forms

Fig. 3 Equal-value order
patterns when m is 2 and 3.
a Four underlined
permutations of
self-symmetric vectors,
including 2 all-equal vectors
(‘11’ and ‘111’) and 2
three-value vectors whose
permutations are ‘112’ and
‘211.’ b Two pairs of
symmetric vectors with
double-equal values when
m = 3. Equal values in each
vector are in red color.
(Color figure online)

vector of indexes. Figure 2 illustrates the 2 and 6 order
patterns when m = 2 and 3, respectively.

In permutation-based TIR analysis, equal values
not only change the generation and distributions of
order types but also lead to self-symmetric permuta-
tion (i.e., the permutation whose symmetric pattern is
itself) [21,40]; therefore, we employ the equal-value
ordinal scheme proposed by Bian et al. [41] for reli-
able qTIR. To construct equal-value permutations, we
must organize the equal values in adjacent continu-
ous orders according to the order of their occurrence,
e.g., the double-equal x ( jm) = x( jn) and triple-equal
x ( jx ) = x

(
jy

) = x ( jz), and then modify the indexes
of equal values to the smallest ones in each individual
group of adjacent continuous orders, i.e., the { jm, jm}
and { jx , jx , jx }. In the equal-value ordinal scheme,

there are more order patterns, and more importantly,
there are self-symmetric forms, e.g., the all-equal per-
mutations ‘1111...’ and other symmetric ones such as
‘112’ and ‘211,’ as shown in Fig. 3.

2.3 Subtraction-based parameters for probabilistic
difference

Given the existence of forbidden permutations, there
might be order patterns that do not simultaneously exist
in the forward and backward series or do not have cor-
responding symmetric vector forms [21,42]. Division-
based parameters, e.g., the Kullback–Leibler or Cher-
noff distance, for the probabilistic difference between
existing and forbidden permutations are zero or infinity,
unsuitable for the quantification of time irreversibility.
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For the subtraction-based parameters for qTIR, there
are Ys [21,42], the Chi-square statistics χ2 [34–36] and
the Euclidean norm, illustrated in Eqs. 2, 3 and 4. Of
the Ys , p(π i ) should not be smaller than p(π s).

Ys〈p (πi ) , p (πs)〉 =
∑

i
p (πi )

p (πi ) − p (πs)

p (πi ) + p (πs)

(2)

χ2〈p (πi ) , p (πs)〉 =
∑

i

[p (πi ) − p (πs)]2

p (πi ) + p (πs)
(3)

T 〈p (πi ) , p (πs)〉 =
√∑

(p (πi ) − p (πs)
2 (4)

The subtraction-based parameters should have the
following basic characteristics: (1)when p(π i ) is equal
to p(π s), their difference is 0; (2) if p(π s) is zero,
the results should be accountable that the three param-
eters share the result of p(π i ); (3) when the abso-
lute differences between different pairs of p(π i ) and
p(π s) are the same, there is an additional parameter to
adjust the difference as k ∗[p(π i )− p(π s)], where k is
p(π i )/[p(π i )+ p(π s)] and [p(π i )− p(π s)]/[p(π i )+
p(π s)] in Ys and χ2, while the Euclidean distance T
does not satisfy this condition. Therefore, to reliably
measure the probabilistic difference of order patterns
for qTIR, we employ Ys and χ2 in our paper.

To measure the rates of a single permutation that
does not have its counterpart of the symmetric vector,
we employ the parameter Ru = N (πμ)/N (π) [42],
where N (πμ) is the number of single order patterns
and N (π) is the number of existing permutations.

qTIR could be simplified by measuring the proba-
bilistic difference between the permutations of sym-
metric vectors (PSVs) or between the permutations of
forward–backward vectors (PFBs).

3 Simplified qTIR in model processes

In this section, we generate irreversible chaotic and
reversible Gaussian model series and construct their
surrogate data by the improved amplitude adjusted
Fourier transform (iAAFT) [43,44] to test the
permutation-based qTIR. Of the chaotic models, the
logistic equation [45],mathematicallywritten as xt+1 =
r · xt (1 − xt ), is simple and deterministic, but can
exhibit chaotic behavior. The Henon map [46], given
by the coupled equations, xt+1 = yt + 1 − αx2t and
yt+1 = βxt , presents a two-dimensional invertible iter-
ated map with quadratic nonlinearity. The Lorenz sys-

tem [47], generated by the three coupled differential
equations, dx/dt = σ(y−x), dy/dt = x (r − z) y and
dz/dt = xy − bz, is a simplified model originally con-
structed to represent forced dissipative hydrodynamic
flow. The Ys and χ2 of the probabilistic differences
among PSVs, PFBs and Ru of the three chaotic model
series and Gaussian process are shown in Fig. 4.

As shown in Fig. 4, theYs andχ2 of the three chaotic
model series are all larger than the 97.5th percentile of
the surrogate data. Of the reversible Gaussian process,
the Ys and χ2 are between the 2.5th and 97.5th per-
centiles of its surrogate data sets. According to surro-
gate theory [44,48], the null hypothesis that the logistic,
Henon andLorenz series are linear is rejected,while the
hypothesis that the Gaussian process is linear should be
accepted, validating the effectiveness of Ys and χ2 for
the quantification of time irreversibility.

In Sect. 2.1,weprove and illustrate that TIRandTAS
are equivalent for the measurement of nonequilibrium,
which is further verified by measurement of the same
qTIR by Ys and χ2 of the probabilistic difference in the
upper and lower 4 subplots, i.e., between the PSVs and
between the PFBs, in Fig. 4. Conceptually speaking,
we need to obtain the whole series and reverse it to
calculate the TIR, which is not reliable for some real-
time situations; therefore, the probabilistic difference
between symmetric vectors (i.e., the TAS) is preferable
for qTIR due to its computational simplicity and real-
time characteristics.

The rate of single permutations has a close rela-
tionship with the time irreversibility of the four model
series. Ru exhibits consistent changes with the Ys and
χ2 for the chaotic processes particular for the logistic
series. For the logistic series, whenm is 5 or greater, the
Ru , Ys and χ2 of the logistic series are all 1, i.e., there
are no coexisting permutations for symmetric vectors
and forward–backward vectors, and the Ru values for
the linear Gaussian series are almost all zero. The close
association between theRu and qTIR suggests Ru may
contain nonlinear structural features of dynamical com-
plex systems, which will be discussed in the following
section.

The chaotic and Gaussian processes have different
nonlinearities due to their structural and dynamical dif-
ferences, but they share the conclusion that it is equiv-
alent to quantifying TIR and TAS by measuring the
probabilistic differences between PSVs and between
PFBs.
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Fig. 4 Ys and χ2 of the chaotic series, reversible process and
surrogate data. a, b, c and d Probabilistic differences between
permutations of symmetric vectors titled with, e.g., the ‘Sym
logistic,’ and e, f , g and h Probabilistic differences of permu-
tations in forward and backward sequences titled with, e.g., the
‘F–B logistic.’ The 97.5th and 2.5th percentiles of the Ys and
χ2 of the surrogate data are denoted ‘Ys -97.5%S,’ ‘Ys -2.5%S,’

‘χ2-97.5%S’ and ’χ2-2.5%S.’ The x-components of the logistic
(r = 4, x1 = 0.01), Henon (α = 1.4, β = 0.3, and x1 = 0.01,
y1 = 0.01) and Lorenz (x1 = 0, y1 = 0 and z1 = 1 × 10−10,
σ = 10, b = 8/3 and r = 28) equations are used to generate
nonlinear series, and linear reversible Gaussian white noise is
constructed.We set the upper bound ofm to 7 and the data length
to 10* (7! )=50400 to achieve reliable nonlinearity detection

4 qTIR in epileptic brain electrical activities

The brain is a typical complex system with nonequilib-
rium features that are affected by the pathological con-
dition of epilepsy. In this section, we detect the qTIR of
brain electric data and analyze the effects of epilepsy
on nonlinear EEGs.

4.1 Epileptic EEGs and the rate of single permutation

We selected two groups of EEGs, namely public Bonn
epileptic data and induced epileptic recordings from
Sprague–Dawley (SD) rats, to analyze qTIR under dif-
ferent conditions.

Of the Bonn data, there are 5 sets (denoted A–E)
of EEG data, of which sets A (eyes open) and B (eyes
closed) were recorded from healthy volunteers by sur-
face electrodes. Sets D and C (both seizure-free) were
collected, respectively, from within the epileptogenic
zone and from the hippocampal formation of the oppo-
site hemisphere was obtained through intracranial elec-

trodes, and setEwas taken fromall the intracranial elec-
trodes and only contained seizure activity [8]. Each data
set contains 100 single-channel EEG recordings with a
173.61 sampling rate over a duration of 23.6 s.

For comparison, we applied the animal epilepsy
pilocarpine model to 8male SD rats in accordance with
the Animal Care Guide for the Care and Use of Experi-
mental Animals at the University of Electronic Science
and Technology of China. Briefly, these pilocarpine-
induced epileptic data were from our previous experi-
mental study, and detailed information can be found in
[49]. We selected 4 stages, namely the baseline (BL)
stage, the pre-ictal (PreI) stage, the ictal stage and the
post-ictal (PosI) stage, for our analysis. The BL stage
refers to the period before drug injection, and the PreI
stage is between the pilocarpine injection and the onset
of status epilepticus (SE) discharge. The ictal stage is
the period with continuous SE discharges following
the PreI stage, and the PosI stage is approximately two
hours after the onset of SE discharge and before the
diazepam injection. Pilocarpine and diazepam injec-
tions were used to induce and stop seizures, respec-
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Permutation-based time irreversibility 913

Fig. 5 Ru (mean ±std) of the Bonn in a and SD rat epileptic
EEGs in b. Ru ofm = 2 and 3 are all zeros that all of the existent
permutations of vectors in Figs. 2 and 3 have their corresponding
forms, and Ru of m = 4 for some sets of Bonn and SD rat EEGs
are also zeros. The highest Ru values of EEGs during seizures,

set E from the Bonn data and Ictal data from SD rats, are marked
in red. *Represents the Ru of the set of EEGs is significantly
different (p < 0.0001) from that of each other data set. Indepen-
dent sample t test for Bonn EEGs and paired sample t test for
SD rat EEGs is employed. (Color figure online)

tively. All rats had 10 implanted electrodes, consist-
ing of 5 cortical electrodes, 4 depth electrodes and a
reference electrode. Of all 8 rats under the 4 stages,
we selected 4 segments with a duration of 9 s (9000
samples). Recordings with a sampling frequency of
1000Hz were filtered by a band-pass filter of 0.16Hz
and 100Hz.

Due to the difference between sets of Bonn EEGs
in methods (i.e., from scalp or intracranial electrodes)
and positions (i.e., within the epileptogenic zone and
from the hippocampal formation of the opposite hemi-
sphere), we employed the independent sample t test.
And because the methods and positions of the SD rat
EEGs under 4 stages are the same, we employed paired
sample t test for the quantifiers of EEGs under each two
different conditions.

Ru of the Bonn and SD rat EEGs are shown in Fig. 5.
Considering the requirement for data length, we set the
upper bound of m to 5 for the two sets of EEGs.

For the Bonn EEG, the Ru values of the healthy
EEGs (sets A and B) were lower than those of the
seizure EEG (set E), but larger than those of the seizure-
free data (sets C and D). As in the Bonn EEGs, the
seizure ictal data of the SD rats had the highest rates
of single permutation, and the PreI data had higher Ru

values than the BL data, while the PosI data had the
lowest Ru . These observations suggest that there are
extensive forbidden permutations in real-world phys-
iological activity, resulting in some order patterns of

vectors without corresponding forms. Moreover, the
rates of single permutation are associated with features
of the Bonn and SD EEGs: The Ru of the seizure EEGs
was the highest, in line with the abnormal high nonlin-
ear and firing brain activities.

The rate of single permutations derived from for-
bidden order patterns is associated with the features of
complex systems, which might contribute to the non-
linear analysis of dynamical processes. Moreover, for-
bidden permutations in real-world EEGs further prove
that division-based parameters are unsuitable for mea-
suring probabilistic differences.

4.2 qTIR of the two groups of epileptic EEGs

We now explore the detection of the qTIR in the Bonn
and SD rat epileptic EEGs. The Ys and χ2 of the prob-
abilistic difference between PSVs of the Bonn and SD
rat EEGs are shown in Figs. 6 and 7.

The seizure brain electric activities, set E from the
Bonn data and ictal stage from the SD rat data, have the
highest qTIR, as shown in Figs. 6 and 7. The discrim-
ination between Bonn seizure EEG data and healthy
data, namely A–E (Ys , p < 5.0E–16; χ2, p < 10E–8)
and B–E (Ys , p < 1.0E–14; χ2, p < 5.0E–8), and that
between seizure and seizure-free EEG data, namely C–
E (Ys , p < 5.0E–15; χ2, p < 1.0E–8) and D–E (Ys ,
p < 1.0E–11; χ2, p < 5.0E–7), are statistically sig-
nificant. For the SD rat EEGs, the ictal brain data also
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Fig. 6 Ys and χ2 (mean ±
std) of the Bonn epileptic
EEG data. a, b and c Ys for
the qTIR of the Bonn
epileptic data when τ = 1–3
and m = 2–5. d, e and f χ2

for the qTIR of the Bonn
epileptic data when τ = 1–3
and m = 2–5. The highest
qTIR values of the seizure
EEGs are in red. (Color
figure online)

Fig. 7 Ys and χ2 (mean±std) of the SD rat epileptic EEG. a,
b and c Ys for the qTIR of the SD epileptic data when τ = 1–5
and m = 2–4. d, e and f χ2 for the qTIR of the Bonn epileptic
data when τ = 1–5 and m = 2–4. The highest qTIR values of

the ictal seizure EEGs are in red. *Represents qTIR of the set of
EEGs is significantly different (p < 0.0001) from that of each
other data set. (Color figure online)

exhibited a significantly higher qTIR than the other
3 groups of EEGs, i.e., the BL-ictal (Ys , p < 1.0E–
53; χ2, p < 1.0E–27), PreI-ictal (Ys , p < 1.0E-38;
χ2, p < 1.0E–21) and PosI-ictal (Ys , p < 1.0E–45;

χ2, p < 1.0E–25) discriminations were all statistically
acceptable. The qTIR in the two groups of EEGs sug-
gests that Ys is preferable to χ2 for the measurement
of the probability difference. The pathological features
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Permutation-based time irreversibility 915

Fig. 8 PEn (mean± std) of
m = 5 and t = 1–4 of the
Bonn and SD rat epileptic
EEGs. a Line chart of the
PEn of the Bonn EEGs and
b bar graph of the PEn of
the SD rat EEGs. The lowest
PEn values of seizure EEGs
of both the Bonn and SD rat
data sets are in red color.
*Indicates a significant
difference (p < 0.0001)
between PEn of the EEGs
and those of others

of epilepsy should account for the highest nonlinear-
ity of the seizure EEG data. Epileptic seizures develop
abruptly and last a few seconds, and the clinical onset of
synchronous neuronal firing in the cerebral cortex can
be recorded by intracranial or surface EEGs [16,49].
During seizures, the hallmark of epilepsy (i.e., recur-
rent seizures) leads to severely abnormal brain activ-
ities and dynamical disorders recorded by invasive or
noninvasive EEGs with abnormally high nonlinearity.
Our findings verify the significantly higher nonlinear-
ity of brain activity in patients during seizures than in
healthy control subjects and seizure-free patients.

Moreover, the Bonn and SD rat brain data also share
the characteristic that the seizure-free EEGs had clearly
higher qTIR than the control EEGs.Of theBonn epilep-
tic data, the Ys-qTIR of the A–C (p < 0.009), A–D
(p < 0.0001), B–C (p < 0.05) and B–D (p < 0.005)
differences were acceptable, and of the SD rat EEGs,
the Ys-qTIR of the BL-PreI (p < 5.0E–10) and BL-
PosI (p < 1.0E–11) comparisons were also signifi-
cantly different. In the original publication of the Bonn
EEGs [8], the nonlinear prediction error and correla-
tion dimension of the seizure-free sets were reported to
be between the values of the healthy (the lowest) and
the seizure (the strongest) sets, which was confirmed
by other papers involving the Bonn data sets [50,51].
After seizure onset, partial seizures may also remain
localized and cause abnormal brain nonlinear activi-
ties [16], and before the onset of SE discharges, the
human and rat brains might have some induced abnor-
mal electric activity that increases the nonequilibrium
features. Our findings, particularly those in the SD rat
EEGs about the higher qTIR in the PreI stage, might
contribute to epilepsy prediction.

To compare with qTIR, we employ the closely
related statistical parameter, Shannon entropy, i.e., the
permutation entropy (PEn), also based on equal-value
ordinal scheme, in an analysis of the two groups of
EEGs, and show the results in Fig. 8.

Figure 8 demonstrates that the PEn values of the
EEGs are generally contradictory to the qTIR, shar-
ing the conclusions in the previous report provided by
the present authors. Basically, the higher the qTIR of
EEGs, the lower the PEn, e.g., the epileptic EEGs of
the Bonn E data set and SD rat ictal data set have the
smallest PEn, but the largest qTIR among those of the
other data sets. The PEn of the Bonn data in Fig. 8a
is not stable, with the relative relationships changing
with the time delay, in contrast to the stable results of
qTIR. For the SD rat EEGs in Fig. 8b, we found that
the discrimination between the PEn of BL as well as
of Ictal EEGs and PEn of others, although statistically
acceptable (p < 0.0001), are not significant than those
between the Ys-based qTIR of the EEGs. Therefore,
PEn does not have an advantage in stability or feature
extraction compared to qTIR in these two groups of
epileptic EEGs.

Overall, qTIR, particularly that based on the Ys , is
a reliable statistical parameter for characterizing com-
plex brain electric activity.

5 Discussion

According to our analysis, two issues regarding
permutation-based qTIR and one regarding its appli-
cation in epileptic EEGs need further discussion.

In the symbolic ordinal scheme, forbidden permu-
tations play an important role in nonlinear dynamics

123



916 W. Yao et al.

analysis, especially time irreversibility. Forbidden per-
mutations not only impact the simplified qTIR but also
contain important structural or dynamic information
about dynamical processes [52]. Of the three chaotic
series, qTIR shows similar changes in the rate of sin-
gle permutations. The Ru values of the Gaussian pro-
cess are all 0, which are associated with reversibility.
Analysis of the Bonn and SD rat EEGs revealed that
the highest rates of single permutations were consistent
with the highest qTIR. The characteristics of forbidden
order patterns have been studied in depth due to their
close connections to dynamical complexity and struc-
tural information [42,52–56]. The single permutation
rate quantifies the forbidden permutations and suggests
a reliable connection with the properties of the model
and real-world time series. However, the seizure-free
EEGs in the Bonn data sets (particularly set C) and
those from SD rats (in the PosI stage) exhibited lower
rates of single order patterns than those in the control
sets; therefore, Ru as a nonlinear parameter needs fur-
ther investigation, although it contributes to the explo-
ration of dynamical complex systems.

Another issue regarding qTIR is the relationship
between symmetric permutations (SPs) and PSVs.
PSVs are preferable for qTIR in real-time situations
because they do not require the whole series needed by
the forward–backwardmethods; however, in some sim-
plified qTIRmodels, themisuse of SPs and PSVsmight
yield some conceptualmistakes. Some scholars [31,42]
use SPs or symmetric symbolizations to simplify the
quantification of time irreversibility. In fact, SPs are
not equivalent to the PSV (more relevant to the time
irreversibility) unless the vectors are center-based sym-
metric. These simplifications effectively characterize
the nonlinearity of complex systems; however, they are
not directly relevant to time irreversibility. Moreover,
the probability difference between SPs and between
PSVs and even the probabilistic difference of all per-
mutations (PDP) [57] are all effective in characteriz-
ing the nonlinearity of time series, and when m = 2,
they are all the same. Therefore, the probabilistic dif-
ference of permutations or symbolic templates for sim-
plifying nonlinearity detection and characterizing the
structural or dynamical features of complex systems
deserves more comprehensive investigation.

The findings for the comparative analysis of Shan-
non entropy and qTIR revealed similar conclusions to
those in our previous paper [40] with some exceptions.
Shannon entropy calculates the amount of information

for each individual probability, while qTIR targets the
difference between paired probabilities. The two statis-
tical parameters are generally different and even con-
tradictory in their characterization of complex systems,
e.g., the heartbeats from public PhysioNet [40]; how-
ever, under some extreme conditions, the two indexes
might have consistent changes, e.g., the epileptic data
in our study. PosI EEGs were shown to have both PEn
and qTIR higher than BL EEGs from SD rats, suggest-
ing that PosI brain electric activities have both non-
linear complexity and nonequilibrium higher than BL
activities. Moreover, in our previous analysis of the
epileptic EEGs from Jinling Hospital, we found that
the healthy control EEGs also had both larger time irre-
versibility [42] and Shannon entropy [58]. Therefore,
the relationship between Shannon entropy and qTIR is
more complex than simply contradictory or consistent
and requires more related comprehensive comparative
analysis of the two statistical quantifierswith larger and
more representative data sets.

The manifestation of high nonlinearity in seizure
EEGs has been demonstrated by most reports; how-
ever, some sets of EEGs, e.g., from the Bonn sets A
and B, in our analysis are compatible with the Gaus-
sian linear stochastic series, sharing the findings in the
original introduction of Bonn data [8]. Andrzejak et al.
amused that the acceptance of null hypothesis for the
Bonn sets of A might originate from the large num-
bers of neurons and the complex structure of brain, and
they proposed that the reasons might reside in that the
dynamical structures in surface EEGs might be blurred
by filter processes by due to different conductivities of
the skull and other tissues [8]. The brain is arguably
a complex collection of hundreds of billions of neu-
rons and more glial cells that interact and synchro-
nize with each other, and brain behaviors are subject
to internal physiological factors and external environ-
mental influence. However, it is just the typical com-
plex brain system that the brain electronic activities
should be typical nonlinear processes [42], and certain
constraints imposed on EEGs might be the rooted rea-
sons that demask nonlinear deterministic traits of neu-
ronal dynamics [8]. Moreover, regarding the properties
of epileptic and healthy brain dynamics, spike-timing-
dependent plasticity (STDP), by which neurons mod-
ify synaptic strength to adapt neuronal activity, adds
a relevant amount of complexity to the dynamics of
a neuronal network. The key role of plasticity and, in
particular, the emergence of seizure-related nonlinear
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dynamical features in the brainmay also be attributed to
the presence of propagation delays and their interplay
with the synaptic weights in plastic neuronal networks
[59,60]. In fact, STDP may determine the dynamics
of the nonepileptic basin of attraction in multistable
epileptic neuronal networks where perturbations can
cause unstable situations resulting in epileptic seizures
[61]. This notion can shed light on the physiological
mechanisms behind seizure generation and propaga-
tion in the brain, where the regulation of emergent non-
linear dynamical features can be considered to shift the
dynamics of the epileptic brain toward healthy attractor
states.

Regarding seizure-free epileptic EEGs, there are
some reports [42,58] suggesting that the brain elec-
trical activity of seizure-free epileptic patients has
lower nonlinearity than that of healthy subjects, which
is inconsistent with our findings. From the physio-
logical and pathological perspective, the manifesta-
tion of cyclic rhythm [62,63] in human epilepsy may
affect the nonlinear detection of seizure-free EEGs.
The time between seizure-free brain recordings and
seizures plays an important role in the detection of
nonlinear dynamical features in the brain. Soon after
seizure onset, partial seizures may also remain local-
ized and cause abnormal brain nonlinear activities [16];
however, after a long period (e.g., 20 or 30days), the
patients might have lower nonlinear brain activity than
healthy individuals [42,58]. From high nonlinear activ-
ity during seizures to nonlinearity lower than that in
healthy individuals, the nonlinear dynamics of the brain
behaviors may also be related to circadian rhythms,
and the brain activity during different epileptic stages,
even in seizure-free intervals, could show totally dif-
ferent nonlinear features.Considering the circadian and
circaseptan rhythms in human epilepsy, patients in dif-
ferent stages of epilepsy might have completely dif-
ferent brain behaviors, resulting in different nonlin-
ear characteristics of two kinds of seizure-free EEGs,
even when both are collected in seizure-free intervals.
Accordingly, we hypothesize that the nonlinearity of
brain activities in human epilepsy is also character-
ized by circadian rhythms. The rates of seizures oscil-
late in cycles of days, months and years, and seizure
cycles are subject to various factors, including stress
levels, sleep quality, other innate biological drivers and
unknown reasons [62,63]. And due to the difference
among epileptic patients and the difference in the peri-
ods for data collection particular the time from the ictal

seizures, it is possible that EEGs under seizure-free
intervals have different or even contradictory nonlin-
earity. Therefore, our hypothesis about circadian non-
linearity in epileptic EEGs needs to be verified by a
large amount of data and more representative studies.

6 Conclusions

In summary, the nonlinearity of epileptic EEGs is char-
acterized by permutation-based qTIR in this paper. We
proved that the probabilistic divergence between sym-
metric vectors (i.e., TAS) is equivalent to that between
the forward and back-ward processes (i.e., TIR). We
verified the effects of forbidden permutations on the
simplified qTIR and clarified the effectiveness of PSVs,
as distinct from SPs, for simplified qTIR. The single
permutation rate is in line with the qTIR in chaotic
andGaussian series and real-world EEGs, indicating its
close association with the nonlinearity of the complex
process. The abnormally high time irreversibility of the
EEGs during seizures is in line with the fact that neu-
ronal firing leads to abnormal dynamic brain activities.
The higher qTIR in the pre-ictal stage provides valuable
information for the prediction of epilepsy seizures.
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