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Abstract Recently, a photosensitive model has been
proposed that takes into account nonlinear encoding
and responses of photosensitive neurons that are sub-
ject to optical signals. In the model, a photocell term
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has been added to the well-known FitzHugh—Nagumo
neuron, which results in a time-varying voltage source.
The modified model exhibits most of the main charac-
teristics of biological neurons, like spiking, bursting,
and chaotic responses, but is also amenable to study
the effect of optical signals. In this paper, we consider
a small-world network of photosensitive neurons and
study their collective behavior in dependence on inter-
action strength. We show that the network exhibits syn-
chronization in a specific range of coupling strengths
before transcending into a chimera state. We use the
master stability function, a local-order parameter, as
well as recurrence plots to verify the reported results.

Keywords Photosensitive neuron - Synchronization -
Chimera - Master stability function - Recurrence plot

1 Introduction

Excitability, which is defined as the brain’s ability to
produce stimulus, is one of the most important fea-
tures of nerve systems [1]. It has been investigated
from both biological and computational point of view
[2]. Various types of computational model of excitable
neurons have been investigated in computational neu-
roscience [3]. One of the most well-known voltage-
based neuron models is the Hodgkin—Huxley (HH)
model, which has been inspired by the ionic neu-
ral system process in the squid axon [4]. This model
is based on Kirchhoff’s law, in which an excitable
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neuron is considered as an electrical circuit. To get
rid of the curse of dimensionality and difficulty in
computation, the low-dimensional neuron model has
been proposed, such as Hindmarsh—Rose (HR) [5] and
Fitzhugh—Nagumo (FHN) [6]. The excitability of these
neuron models has been investigated through different
stimuli [7]. For instance, Valenti et al. [8] have inves-
tigated the excitability of the FHN exposed to colored
noise. They have found that the efficiency of the neu-
ronal response may be enhanced in the strongly corre-
lated noise. Moreover, the excitability of FHN neuron
dynamics can be affected when a neuron is subjected
to an electrical field [9,10] and magnetic flow effect
[11,12]. The results confirmed that neural dynamical
behavior is very sensitive to both amplitude and fre-
quency of the external field. Uzuntarla et al. [13] have
reported that both excitability and input regime of the
HH neuron model can be considered as a controller
to the destructive influence of synaptic unreliability.
Another important feature that can affect the photosen-
sitive neurons is optical signals. Recently, Liu et al. [14]
proposed a dynamical neuron model with a photorecep-
tor, a suitable model of photosensitive neurons. The
collective behavior of the ensemble of photosensitive
neurons in the form of small-world network has not
been explored before, from the best of our knowledge.

After analyzing a single neuron’s dynamical behav-
ior, most of the attention has been gained to the complex
patterns of the neural networks [15]. It has been shown
that there might be a meaningful correlation between
the collective behavior of the neural network and some
functional activities of the brain. For instance, Rein-
hart and Nguyen reported that the brain circuits’ syn-
chronization can be the cause of the working memory
[16]. Babiloni et al. [17] have claimed that Alzheimer’s
disease can be caused by abnormal cortical neural syn-
chronization. Interactions circulated through the cou-
pled neurons can result in various collective behavior
such as global or local synchronization, chimera states,
and spiral waves [18, 19]. Global synchronization refers
to the same dynamical behavior of all network agents
at the same time. There can be found many related
types of research in the literature which have covered
both analytical and simulation perspective of network
synchronization [20,21]. For instance, the master sta-
bility function (MSF) [22] and the mixed graph sta-
bility method [23] are two well-known methods that
are proposed to investigate the synchronizability of the
dynamical network from an analytical point of view.

@ Springer

The local-order parameter is another index that mea-
sures the synchrony among the coupled oscillators in
the network [24]. Sun et al. [25] have investigated the
burst transition in the neural network from the simula-
tion point of view. Plotnikov et al. [26] have considered
a heterogeneous FHN neural network with different
topologies and have reached the synchronization state
by designing a proper controller. Masoliver et al. [27]
have reported the effect of time-delay on synchronizing
the network consisting of the FHN neuron model. The
synchronization of fractional-order FHN neural net-
work has been investigated by Yong et al.‘[28]. More-
over, Ma et al. [29] have reported the impact of field
and electromagnetic induction on synchronization and
wave propagation in neural network.

Local synchronization or emerging chimera state in
the dynamical network is the other highlighted col-
lective behavior. In the chimera case, the network is
divided into some subgroups with both synchronous
and asynchronous behaviors. Various researches in
the literature have reported the chimera state in a
different field [30]. For instance, Awal et al. [31]
reported the smallest chimera state in a pair of cou-
pled chemical oscillators. In [32], the emergence of the
chimera state has been explored in coupled pendulums.
Bohm et al. [33] explored the chimera states in glob-
ally coupled laser networks. Kundu et al. [34] studied
the chimera states in an ecological multiplex network.
Chimera state is widely investigated in computational
biology, especially in neuroscience [35]. For exam-
ple, experimental results have shown that chimera-like
states can be found in a cat’s neural network model
[36]. A nonstationary [37], imperfect traveling [38] and
alternating [39] chimera patterns have been reported
in a neural network consist of HR neuron model.
Khaleghi et al. [40] have checked the emergence of
the chimera state in a map-based neural network. Also,
the effect of different features such as time delay [41],
fractional-order [42], multilayer [43] has been investi-
gated on emerging chimera states on neural networks.

In this paper, a small-world network of FHN neu-
ronal models with photocell (i.e., photosensitive neu-
rons) is considered. In the first step, the dynamical prop-
erties of a single photosensitive neuron are reviewed.
Then, by changing the coupling strength, two types of
collective states, namely synchronization and chimera
states are investigated. For synchronization state, we
use the master stability function approach and also ver-
ify the result using numerical simulations. The emer-
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gence of the chimera state is also explored and veri-
fied using the local-order parameter. Finally, the syn-
chronization and chimera states are also explored using
recurrence plot analysis.

2 Photosensitive neuron model

Recently, Liu et al. [14] proposed a new photosensitive
neuron model that contains a phototube as an excitable
voltage source to an FHN neuron model:

i=x(1—&) =% —y+ Acos(wr) "
y=c(x+a—by)

where A and w represent the amplitude and frequency
of the phototube, respectively. Now, we study the
dynamical behavior of this single system. Figure 1
shows the dynamical behavior of Eq. 1 in terms of the
time series and phase space plots when the parameters
aresetto& =0.175,a =0.7,b=0.8,c=0.1,w =1
and two different amplitudes A = 1 and 1.2.

The results of Fig. 1 show that the model is sensi-
tive to the parameters of the phototube. For instance,
changing the amplitude of the excitable voltage source
inthe Eq. 1 can alter the model’s dynamics from chaotic
to periodic. Accordingly, the phototube’s amplitude A
and frequency w of the model is explored with the help
of bifurcation analysis. Figure 2 shows the bifurcation
and their corresponding Lyapunov exponent diagrams
of the Eq. 1 by changing the parameters, amplitude A
and frequency w.

Figure 2 shows the different complex behavior of
the single model by small changes in the value of the
amplitude and frequency of the phototube or the volt-
age source of Eq. 1. According to Fig. 2a, increasing the
phototube amplitude influences the membrane voltage
directly and increases the amplitude of the membrane
potential. While the general trend of Fig. 2c shows
that increasing the phototube’s frequency ends with
lower membrane potential. Lyapunov exponent’s dia-
grams confirm that Eq. 1 can lead to complex dynam-
ics such as periodic or chaotic behaviors. For instance,
the largest Lyapunov exponent of the neuron model
of Eq. 1 in Fig. 2b is positive for 0.82 < A < 1.01,
which affirms that the system is chaotic in this range of
parameter. Also, for 0.88 < w < 1.02 in Fig. 2d, the
largest Lyapunov exponent’s of the neuron model of
Eq. 1 is positive too, and the system is in chaotic state.
Further increases in the frequency lead the system to
the periodic dynamics.

3 Network model: collective behaviors

To investigate the collective dynamical properties of the
photosensitive neuron network, a network with small-
world topology, consisting of N coupled neurons, is
considered as follows:

X,’:F(Xi)-FUZ;-V:lLinj, i=12,....,.N (2)

where x; shows the vector of the system’s variables
(x and y), F(.) shows the dynamical function of each
photosensitive neurons, o is the coupling coefficient
and L = [l;j]nxn is the Laplacian matrix of the net-
work topology. The coupling between each node of the
network is connected through the first variable of the
dynamical system. The local dynamics of each node
is represented by Eq. 1. The system parameters are
fixed for which the individual system is in a chaotic
state (cf. Fig. 1¢). The next target is to explore the col-
lective dynamical behaviors by changing the coupling
strength o for N = 50 number of nodes. Figure 3 repre-
sents the time series, spatiotemporal, and the snapshot
of each node in the network for three different coupling
strengths.

According to the results shown in Fig. 3, collective
behavior can emerge in different coupling strengths.
For instance, the network can reach complete synchro-
nization state in which the entire network’s oscillators
move with the same dynamics. Accordingly, similar
time-series are obtained by plotting all the network
time-series in one diagram (Fig. 3g). Also, both syn-
chronous and asynchronous behavior can be seen in the
network simultaneously (Fig. 3e). In this case, the snap-
shot of each neuron at t = 3000 shows two different
behaviors in the networks (Fig. 3f). On the other hand,
Fig. 3b shows that each neuron in the network can have
different dynamical behavior in time for small coupling
strength.

Next, we calculate the critical value of the coupling
strength for complete synchronization using the master
stability function approach.

3.1 Global synchronization: master stability function
approach

To analytically investigate the network’s synchroniz-
ability and calculate the optimum coupling strength for
synchronization, the master stability function (MSF)
approach is used. In the first step of the MSF approach,
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Fig.1 a,d Time series of the x-variable which shows the oscilla-
tion of neuron voltage with A = 1 and 1.2, respectively, b, e time
series of the y-variable for A = 1 and 1.2, ¢, f the x — y projection
of the phase space with A = 1 and 1.2 when other parameters are

it is assumed that the network has a synchronization
manifold s(¢) in which the dynamics of all the vari-
ables of the networks are the same at all times, i.e.,
s(t) = x1(t) = x2(t) = --- = xn(t). The second step
is dedicated to calculating the largest Lyapunov expo-
nents of the perturbation equation. The corresponding
perturbation equation of the Eq. 2 can be expressed as:
yi = DF(s)yi + oAy, (3)
where D represents the Jacobian matrix and A; (i =
1,2,..., N) are the eigenvalues of the L matrix. Fig-
ure 4 shows the largest Lyapunov exponent (or the MSF
of the network) of Eq. 3 according to different values
of the coupling strength o.

Figure 4 shows the MSF of type-I of the network
consists of 50 coupled photosensitive neurons with
small-world topology. There is one zero-crossing point
in the MSF diagram, which indicates that the network
is synchronized for o > 0.589. However, to explore the
network’s dynamical behavior before synchronization,
the local- and global-order parameters are utilized.
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setto§ =0.175,a =0.7,b =0.8,c =0.1,A =09, 0 = 1
and random initial conditions. The first and second rows show
chaotic and periodic behavior for A = I and 1.2, respectively

3.2 Chimera states: characterization

Now, we characterize the above obtained chimera states
using global-order parameter and recurrence plot anal-
ysis.

3.2.1 Global order

The global-order parameter is the spatiotemporal aver-
age of the local-order parameters. The global-order
parameter is a synchronization index that numerically
measures the quantitative range of the synchronization
as follows:

N
1
R =— Zeﬁg’f ,  where
N
k=1
t—t
Op = 2w — K 4)
Tk, j+1 — Ik, j

where 0y, represent the phase of the k¢4 neuron and the
f,j is the time of jth spike of the kth neuron in the
network. Figure 5 shows the global-order parameter
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Fig.2 a, ¢ Bifurcation diagram and b, d the corresponding Lya-
punov exponents (LEs) diagrams of the Eq. 1 according to chang-
ing the phototube’s amplitude A and frequency w when the other

according to changing the coupling coefficient in the
range 0 < o < 0.6.

The increasing trend of the global order param-
eter indicates that the network’s synchronization is
increased by increasing the coupling strength, and the
network can be fully synchronized for the coupling
strength of more than 0.6. Also, the global-order param-
eter in Fig. 5 shows a local minimum of around 0.04 <
o < 0.085 in which, unlike the network’s global trend,
the degree of synchronization decreases, while the cou-
pling strength is increased. This local minimum can be
the best candidate for emerging the chimera state in the
network. This type of behavior is also observed in het-
erogeneous Kuramoto network model with attractive
and repulsive couplings [44].

Figure 6 shows the network dynamics with different
values of the coupling strength in the range of 0.04 <
o < 0.085. Figure 6 shows five examples of the emer-
gence of chimera state in the network when the cou-
pling strength is chosen in the range 0.04 < o < 0.085.
Comparing both one-to-one correspondence plots of

w

parameters are set to & = 0.175,a = 0.7,b = 0.8,¢ = 0.1.
Period doubling route to chaos is observed in both cases. The
maximum Lyapunov exponent is positive in the chaotic regions

the first and second rows of Fig. 6 indicates the exis-
tence of both synchronous and asynchronous behavior
of the network simultaneously. According to all the
spatiotemporal plots, local order, and the snapshot at
t = 500, both coherent and incoherent behaviors exist
simultaneously, clarifying the occurrence of chimera
state in the network in this specific range of coupling
strength.

3.2.2 Recurrence plot

Also, the recurrence quantification analysis is imple-
mented to test the numerical results of Fig. 6. The recur-
rent plots are virtualization of the network’s spatiotem-
poral behavior that visits the same region of the phase
space. The recurrent analysis can be calculated as:

RP,'j:H)C,‘—XjH for i,j=1,...,N, (5)

where N is the number of nodes and ||. || is the Euclidean
distance. Figure 7 shows the recurrent plots for different
values of the coupling strength o.
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Fig. 3 a, d, g Time series, b, e, h spatiotemporal, and ¢, f, i
snapshot of the state variable x of each neuron in three different
coupling strengths o = 0.001, 0.0772, and 0.8, respectively. The
other parametersare £ = 0.175,a =0.7,b =0.8,c =0.1,0 =

The incoherent behavior of the network without
any structures is shown in Fig. 7a when the coupling
strength is set to o = 0. In Fig. 7b—e, there are struc-
tures in the recurrent plots that indicate the emergence
of the chimera states with both synchronous and asyn-
chronous network behavior simultaneously. According
to the color box, the blue regions show the synchronized
oscillators and the red regions indicate the oscillators
with asynchronous behavior. The united recurrent plot
of Fig. 7f reveals the network’s full synchronous behav-
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1, and A = 1. By changing the coupling strength o, complete
synchronization emerges in the network for higher values of the
coupling strength

ior. Relying on the accurate results of Fig. 7 which
represented the chimera states’ existence distinctly, the
recurrence plot is also used as a useful tool in the next
section.

3.2.3 Effect of the amplitude of the phototube on the
emergence of chimera state

The neuron model’s different dynamical behavior is
represented as a bifurcation diagram in Fig. 2a accord-
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Fig.4 MSF diagram of the network with respect to the coupling
coefficient o. The MSF of the network is negative for o > 0.589
when the other parameters are at £ = 0.175,a = 0.7,b =
08,c=0.1,w=1,and A =1

ing to changing the value of the phototube’s ampli-
tude. The photosensitive neuron model is chaotic for
0.82 < A < 1.01, while it is periodic for out of this
range. It can be concluded that the phototube’s ampli-
tude can affect the response of the photosensitive sin-
gle neuron. Accordingly, the influence of the photo-
tube’s amplitude is explored on the chimera states in
the 50 photosensitive coupled neurons. Figure 8 shows
the global-order diagram of the network at different
coupling strengths.

(a) (@

Spatiotemporal plot ¢ = 0.0512

Spatiotemporal plot ¢ = 0.0415

Spatiotemporal plot ¢ = 0.0635 Spatiotemporal plot ¢ = 0.772

500
e —————

Fig.5 Global-order parameter of the network for different cou-
pling coefficients for the parameters & = 0.175,a = 0.7,b =
08,¢c=01l,w=1,andA =1

According to Fig. 8, the network’s synchronization
states happen in a small value of the coupling strength
when each neuron’s dynamics are periodic (red and
blue lines). However, for each individual’s complex
behavior in the network, the synchronization happens
with more cost, i.e., with higher coupling strengths. The
chimera states emerge in the network for a larger value
of the coupling strength. Figure 9 shows the emergence
of the chimera states for different values of the photo-
tube’s amplitude A.
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Fig. 6 a.d.gj.m Spatiotemporal plots, b,e,h.k,n local order
parameter, and c,fil,0 snapshot at time ¢+ = 500 of
each neuron for five different coupling strengths o =

0.0415,0.0512, 0.0615, 0.0772, and 0.0812, respectively. The
other parameters are set to § = 0.175,a = 0.7,b = 0.8,¢ =
0.1, w=1,and A =1
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Fig. 7 Recurrence plot of the network for different coupling
strengths o. a Incoherent behavior at o = 0, b,c,d,e chimera
states with different structures at o = 0.0415, 0.0512, 0.0615,
and 0.077, respectively, and f global synchronization ato = 1.5

Spatiotemporal pattern, local order parameter, and
recurrence plot of the network are used to explore
the network’s transient dynamical behavior for four
different phototube’s amplitude at different coupling
strengths. The results shown in Fig. 9 reveal that the
complex behavior of the phototube can affect the col-
lective patterns of the network. For the chaotic behavior
of the photosensitive neuron (A = 0.85 and 0.9), the
chimera states emerge in the network with the larger
value of the coupling strength than the periodic behav-
ior of the photosensitive neuron (A = 0.7 and 1.1). For
instance, the chimera state emerges in the network with
A = 0.9 for coupling strength o = 0.175. In compari-
son, the network with A = 0.7, the chimera state occurs
at 0 = 0.0135. The results clarified that the phototube
amplitude directly affects each neuron’s dynamics, and
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it was stated that the values of amplitude and fre-
quency of the phototube can change the dynamics of
the neuron model. The time series and state-space of
the neuron model are plotted in two different values of
the amplitude, which resulted in two different, chaotic
and periodic, behaviors. To investigate the single neu-
ron model’s sensitivity to phototube parameters, the
different complex behavior of the single model was
explored with the help of bifurcation diagrams. Accord-
ing to the bifurcation diagrams and their correspond-
ing Lyapunov exponent’s diagrams, the single neuron
model can produce different complex behaviors such as
chaotic and periodic behavior. Moreover, increasing the
phototube amplitude influenced the membrane voltage
directly and increased the amplitude of the membrane
potential. The general trend of the bifurcation diagram
of the model according to changing the frequency of
the phototube showed that increasing the phototube’s
frequency ends with lower membrane potential.

After that, a dynamical network consisting of 50
photo-sensitive neuron models was constructed. All
the phototubes in the network interacted with each
other through Watts—Strogatz small-world topology
with p = 0.09. The numerical simulations revealed
that this network is capable of emerging different col-
lective behaviors such as synchronization and chimera
states.

The master stability approach was used to investi-
gate the synchronizability of the network in different
coupling strengths. The results showed that the syn-
chronizability of this network belongs to the networks
with a type-I MSF diagram. Therefore, the network can
be fully synchronized for o > 0.589.

The local-global-order parameter and recurrence
plot analysis were implemented to investigate the emer-
gence of the chimera states in the network. Both sim-
ulation and analytical results confirm that the spe-
cific range of the coupling strength and amplitude of
the phototube can lead the network to the chimera
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Fig. 9 First row: Spatiotemporal plots, second row: local order
parameter, and third row: recurrence plot at four different pho-
totube’s amplitude A = 0.7, 0.85, 0.9 and 1.1, respectively. The

states. According to the results, the chimera states can
emerge in the network for the coupling strength range
of 0.04 < o < 0.085. Also, the phototube amplitude
can be considered an effective parameter in the emer-
gence of the chimera states. The results revealed that
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other parameters are set to £ = 0.175,a = 0.7,b = 0.8, ¢ =
0.1, and @ = 1. The respective coupling strengths for each col-
umn are o = 0.0135, 0.0145, 0.0175, and 0.009

for the chaotic behavior of the photo-sensitive neuron,
the chimera states emerge in the network with the larger
value of the coupling strength in comparison with the
periodic behavior.
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It is worthy of mentioning that the collective behav-
ior of the network of interactive coupled photo-
sensitive neurons can be investigated considering the
effect of noise, different kind of synapses such as chem-
ical, otaps, and also electromagnetic synapses, in future
researches.

5 Conclusion

Previous studies reveal that a neuron’s excitability can
be affected by different factors such as voltage, tem-
perature, sound, and optical signals. Recently, a com-
putational model of a photosensitive neuron has been
proposed. In this paper, a dynamical network consists
of 50 coupled photosensitive neurons with small-world
topology is considered. The synchrozability of the net-
work is investigated with the help of the MSF approach.
According to the type-I MSF diagram of the network,
which contains one zero-crossing point, the optimum
coupling of complete synchronization is reported. Fur-
thermore, the emergence of the chimera state is studied
considering local- and global-order parameters. The
recurrence quantification analysis is also utilized to
clarify the numerical results. The chimera state can
emerge in the network at the specific range of coupling
strength.
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