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Abstract Uncertainties are ubiquitous in everyday
life, and it is thus important to explore their effects
on the evolution of cooperation. In this paper, the
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prisoner’s dilemma game with reinforcement learning
subject to Lévy noise is studied. Specifically, diverse
fluctuations mimicked by Lévy distributed noise are
reflected in the payoff matrix of each player. At the
same time, the self-regarding Q-learning algorithm
is considered as the strategy update rule to learn the
behavior that achieves the highest payoff. The results
show that not only does Lévy noise promote the evo-
lution of cooperation with reinforcement learning, it
does so comparatively better than Gaussian noise.
We explain this with the iterative updating pattern of
the self-regarding Q-learning algorithm, which has an
accumulative effect on the noise entering the payoff
matrix. It turns out that under Lévy noise, the Q-value
of cooperative behavior becomes significantly larger
than that of defective behavior when the current strat-
egy is defection, which ultimately leads to the preva-
lence of cooperation, while this is absent with Gaussian
noise or without noise. This research thus unveils a par-
ticular positive role of Lévy noise in the evolutionary
dynamics of social dilemmas.

Keywords Evolutionary dynamics · Prisoner’s
dilemma · Cooperation · Self-regarding Q-learning ·
Lévy noise

1 Introduction

In practice, cooperative behaviors widely exist even
though individuals are inherently selfish. This seems
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to contradict with Darwinian selection theory [1],
where any behavior producing benefits to theirs but not
directly to oneself will soon disappear. Hence, studying
the emergence of cooperative behaviors among self-
ish individuals becomes an interesting and challenging
problem which has attracted enormous attentions of
various scholars. Prisoner’s dilemmagame, as a general
metaphor for interpreting cooperation behaviors, has
been well studied [2,3]. In this basic model, two play-
ers are supposed to choose cooperation (C) or defection
(D) strategy simultaneously. Their payoffs are deter-
mined as follows: each player will get a reward R if
both sides cooperate, or a punishment P if both sides
defect. On the contrary, the sucker’s payoff S and the
temptation payoff T will be given to the cooperator
and defector, respectively. The following prerequisites,
i.e., T > R > P > S and 2R > T + S, should
be met to ensure the nature of the game [4,5], which
implies that defection is the best strategy irrespective
of the opponent’s choice. The result is that defection
behavior spreads among all players, known as the social
dilemma.

To aim to this dilemma, many theoretical and exper-
imental studies have been conducted to maintain coop-
eration. The pioneering discovery is the effect of spa-
tial structure on prisoner’s dilemma game, which indi-
cated that spatial structure is conductive to coopera-
tion [5]. Along with this line, several popular struc-
tures have been considered, including small-world net-
works [6–8], scale-free networks [9–12], interdepen-
dent networks [13,14]. Besides, to better reflect the
real-life scenarios, the strategy update rule and various
mechanisms have been extensively studied in evolu-
tionary games, such as tit-for-tat [15,16], win stay and
lose shift [17,18], Fermi function [19], Bush–Mosteller
[20–22], Q-learning [23,24], memory [25–27], aspira-
tion [28–30], age structure [31–34], reward and pun-
ishment [35–39], reputation [40–42], emotions [43],
coevolution [44–46], asymmetry [47], to name yet a
few. In particular, since uncertainties are ubiquitous
in daily life, people are inevitably effected by these
uncertainties. It thus becomes interesting to introduce
uncertainties into games, such as periodically oscillat-
ing payoffs [48], payoff regulation [49]. For example,
Gaussian noise [50] and Lévy noise [51] are consid-
ered in the payoff matrix of games, which shows that
the performance of Gaussian noise seems to be much
better than that of Lévy noise in promoting coopera-
tion. In spite of some progress, these studies are often

conducted under the framework of the Fermi strat-
egy update rule. Namely, each player chooses one of
its neighbors as the object to learn its strategy with
equal probability or preference, which may ignore the
influence of the environment. Recently, reinforcement
learning (i.e., Q-learning algorithm) has been well-
studied and incorporated into the evolutionary game
[23] and minority game [24] to understand the emer-
gence of cooperative behavior. Counterintuitively, rein-
forcement learning fails to promote cooperation in the
prisoner’s dilemma game. This is because these stud-
ies are mainly conducted in a well-mixed population
without considering any other mechanisms.

Inspired by all these innovations, an interesting
problem puts itself forward: if we combine the pay-
off noise and reinforcement learning simultaneously on
square lattice, will the level of cooperation be promoted
or not? In this work, we consider the situation where
the payoff variations are controlled by Lévy noise in
the prisoner’s dilemma game and the strategy update
rule is self-regarding Q-learning. Numerical simula-
tion results show that noise can promote cooperation,
and compared with Gaussian noise, the Lévy noise per-
forms better inmaintaining cooperation. Consequently,
the studies on the effects of Lévy noise with reinforce-
ment learning become meaningful for further compre-
hension of human cooperation. Thus, the main con-
tributions of this work consist of two aspects: (1) We
propose a self-regarding Q-learning framework, where
agents pursue optimal strategy by only referring to their
own strategy (rather than interaction environment or
neighbors’ actions, which is necessary in traditional
reinforcement methods). (2) As noise is introduced
into reinforcement learning games, we at first explore
how its accumulative effect in payoff or reward influ-
ences cooperation, while such an inherent effect is non-
existent in statistical physics or mathematics methods.

The structure of this paper is presented as follows.
In Sect. 2, the Lévy noise and reinforcement learning
rule are introduced into prisoner’s dilemma game. In
Sect. 3, simulation results are presented with extensive
explanations. Finally, the conclusion and discussion are
provided in Sect. 4.

2 Model

Here, the prisoner’s dilemma is considered to study
the emergence and maintenance of cooperation, where
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players are located at vertices of a square lattice with
periodic boundary conditions. Without loss of general-
ity, the rescaled payoffs matrix is R = 1, P = S = 0,
T = b, where b (1 < b < 2) characterizes the
temptation to defection [5]. Given that individuals are
inevitably effected by the environmental factors, such
as the existence of ubiquitous uncertainties in prac-
tice, we assume that players’ payoffs are influenced by
uncertainties presented by random payoff variations.
Specially, a Lévy noise variable θ is introduced to
account for the statistical description of rare events, and
the value of noise also varies due to the diversity or dis-
crepancy among individuals. Thus, the payoff matrix
Mx of player x is denoted as

Mx =
(
1 + θx 0 + θx
b + θx 0 + θx

)
. (1)

The Lévy noise θx is defined by the characteristic
function [52],

ϕ(t) = exp
[
−σα|t |α

(
1 − iβsign(t) tan

πα

2

)
+ iut

]
,

(2)

whereα ∈ (0, 2] is referred as the stability index, repre-
senting the jump frequency and size of the noise distri-
bution.Asα increases, the jump frequency and sizewill
decrease. When α = 2, Lévy noise turns to a Gaussian
noise. σ ≥ 0, indicates the width or standard devia-
tion of the distribution, and σ = 0 corresponds to the
case without noise. The skewness of the distribution
is characterized by the parameter β ∈ [−1, 1], where
β < 0 skews to the left and β > 0 skews to the right. u
(u ∈ R) is named as the location parameter represent-
ing the mean value. Like previous research [51], we fix
in our work u = 0 and β = 0. Thus, we mainly focus
on the effects of parameters α and σ , which describe
the size strength and width of the distribution of pay-
off variations, respectively. In addition, we certify that
initial payoffs minus θ [replacing plus θ like Eq. (1)]
will also guarantee the same effect as the represent pay-
off matrix. For simplicity, we will mainly focus on the
present case in this work.

During the game of each round, a player x that is
randomly select from the population with the strategy
of cooperation (C) or defection (D) is depicted as sx ,
i.e., sx = C = (1, 0)T or sx = D = (0, 1)T. Then,
player x interacts with its four neighbors and obtains
its payoff Px as

Px =
∑
y∈Ωx

sTx Mxsy, (3)

where Ωx denotes the set of neighbors for player x .
As for the strategy update process, players are sup-

posed to adopt the self-regarding Q-learning algo-
rithm, which is different from traditional Q-learning
method involving interaction with environment [53].
Under such a novel framework, player x updates the
strategy with maximal Q-value based on their experi-
ence, regardless of the neighbors’ strategies (which is
necessary in previous Q-learning method). Q-value is
defined by Q-table to record the relative utility of dif-
ferent actions in different states. In the following, the
state set s and action set a are supposed to be the same,
i.e., {C, D}. The Q-table with states (rows) and actions
(columns) is provided as follows:

Q(t) =
[
QC,C (t) QC,D(t)
QD,C (t) QD,D(t)

]
, (4)

where Qs,a(t) represents the Q-value of the playerwith
state s and action a at time step t . For simplicity but
without loss of generality, s indicates the current state
of a player, and a indicates the action that the player
may take. Subsequently, when the player interacts with
the neighbors, the Q-table updates according to the
following equation [23,24]:

Qs,a(t + 1) = (1−η)Qs,a(t)+η[P(t)+ γ Qmax
s′ ,a′ (t)],

(5)

where η ∈ (0, 1] means the learning rate, P(t) is the
calculated payoff for the current action, and γ ∈ [0, 1)
is the discount factor representing foresight level of
players (small γ means that players pay more attention
to the current payoff). Qmax

s′ ,a′ (t) is the maximum value

of the Q-table in the row of next state s
′
. Besides, in

each round, the ε-greedy exploration is used during
the updating. A player either acts randomly with the
probability ε (a small value) or acts with the maximum
value of Q-table with the probability 1−ε. In this way,
the high payoff action will be reinforced.

Totally, the evolution of games is summarized as fol-
lows: (1) Initially, players are assigned on the vertices
of a N = L × L square lattice, and their initial states
are randomly assigned, i.e., players choose to cooper-
ate and defect with equal probability. (2) Since players
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Fig. 1 Contour plots of cooperation in different panels. a Coop-
erative traits in σ − b parameter panel with α = 1.4, it is clear
large σ (i.e., wider distribute of noise) promotes cooperation. b
Cooperative traits in α − b parameter panel with σ = 0.4, it is
clear that large α inhibits the level of cooperation. In addition,

parameter τ is a very small value to define the limit of variable α.
cCooperative traits in σ −α parameter panelwith b = 1.6,which
indicates the broad diversity of noise resolving social dilemma.
Other parameters are γ = 0.8, η = 0.8, ε = 0.02. In all cases
τ = 0.05

are initially unaware of the game or environment, the
Q-table is initialized to zero. (3) At each round, one
player x with state s and action a is randomly chosen,
then interactswith its four neighbors to obtain its payoff
according to Eq. (3), and updates the Q-value accord-
ing to Eq. (5). (4) Next, based on the selected action a,
the state of player x is updated from the current s to s

′
.

(5) Repeating procedures (3) and (4) for N times, one
Monte Carlo step of game will be finished.

The evolutionary game is iterated forward accord-
ing to the Monte Carlo simulation procedure with a
200 × 200 square lattice. The noise parameters θx are
independently drawn for each player at each Monte
Carlo step. The level of cooperation ρc is obtained from
the average of the stationary state, namely, the last 500
steps of total 5000 steps. Meanwhile, 10 independent
experiments are carried out to guarantee high accuracy.

3 Results

In this section, extensive simulations are conducted for
scenarios with different parameters. Figure 1 shows
how cooperation evolves under different parameter
combinations. As indicated, noise plays a positive role
in promoting cooperation with reinforcement learning.
In Fig. 1a, when σ = 0 (corresponds to the traditional
scenario of no noise), cooperation level will decrease
quickly as b increases. However, when noise is consid-
ered (i.e., σ > 0), the decreasing trend of cooperation
becomes much slower. Figure 1b turns to exploring the

impact of parameterα on cooperation.Whenα ≤ 1, the
level of cooperation nearly does not change, regardless
of the variation of b. However, when α > 1, increase
of both parameters b and α is unbeneficial for the level
of cooperation. That is, the performance of Gaussian
noise (α = 2) is inferior to that of Lévy noise. In addi-
tion, Fig. 1c depicts the contour plots of cooperation in
σ–α panel. It also demonstrates the diverse effects of
noise factors on the facilitation of cooperation: param-
eter σ promotes cooperation, yet parameter α inhibits
it. Considering that cooperation level ρc is not signif-
icant influenced for α < 1, we only focus on the case
α ∈ [1, 2] in the following.

Then, we study the influence of Q-learning parame-
ters on cooperative with andwithout noise. As depicted
in Fig. 2, parameter ε plays a hybrid role in effecting the
level of cooperation. In absence of noise (i.e., σ = 0),
large ε promotes cooperationwhen b is relatively small.
However, as the further increase of b, small ε performs
much better in promoting cooperation, while for the
case with noise, ρc monotonically increases with the
decrease of ε. At the same time, cooperation becomes
stable with the introduction of noise.

Based on the above discussions, we further inves-
tigate the impact of noise with two other parameters
in Fig. 3. The top panels show the simulation results
obtained for the scenario without noise. For both η and
γ , ρc decreases with the increase of b. However, for
fixed b,η and γ showdifferent trends: cooperation level
increases with the increase of η but decreases with the
increase of γ . At the same time, it can be seen that
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Fig. 2 Fraction of cooperation ρc in dependence on b for differ-
ent values of ε. The results show ε plays a different role with and
without noise. Other parameters are γ = 0.8, η = 0.8, α = 1.4
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Fig. 3 Contour plots of cooperation in parameters panels with
andwithout noise.aη−b parameter panelwithγ = 0.8 andbγ−
b parameter panel with η = 0.8 under σ = 0. The results show
cooperation level increases with the increase of η but decreases
with the increase of γ when there is no noise. c η − b parameter
panel with γ = 0.8 and d γ − b parameter panel with η = 0.8
under σ = 0.4. The results show the same trends as a and b, but
cooperation level is enhanced when noise is introduced. Other
parameters are α = 1.4, ε = 0.02. In all cases τ = 0.025

there is no dramatic change in the level of coopera-
tion when γ ≤ 0.75. Moreover, with a larger value of
σ = 0.4 (bottompanels),where the noise is introduced,
the results show the same trends as Fig. 3a, b, but the
total level of cooperation is enhanced. It is worthymen-
tioning that the above observation is also suitable for
larger σ values.

Next, in order to clearly understand the impact of
noise and self-regarding Q-learning, contour plots of

cooperation in η − γ parameter panels are shown in
Fig. 4 for different α. It is clear when noise is intro-
duced, the level of cooperation is enhanced with the
decrease ofα (fromFig. 4b–d).Asα is large (α = 2, the
heterogeneity of noise is small), the level of cooperation
is almost the same as the case without noise (Fig. 4a).
Thus, the impact of Gaussian noise on cooperation is
negligible. With the increase of noise, Fig. 4c, d shows
that small values of α promote cooperation reaching a
higher level. Furthermore, as presented in Fig. 4d, the
level of cooperation is not influenced by varying self-
regarding Q-learning parameters, which indicates that
Lévy noise performs better in maintaining cooperation
with reinforcement learning, compared with Gaussian
noise (Fig. 4b).

Considering the two noise parameters, the time evo-
lution of ρc is reported in Fig. 5 for several typical val-
ues of σ and α. It can be observed that almost all evolu-
tionary processes will arrive at the stationary state after
about 1000 steps, and the results indicate that with the
increase of σ and decrease ofα, the cooperators’ ability
to resist the defectors becomes stronger. In particular,
when there is no noise (σ = 0, in Fig. 5a), the level
of cooperation finally stabilizes at around 32%. How-
ever, when noise is introduced, ρc can be significantly
improved with the increase of σ (especially for σ < 1).
It is also worth noting that increase of σ will change
the direct decline of cooperation to a weak negative
feedback effect (i.e., a normal enduring + expanding
process [54]). However, when σ is sufficient large (i.e.,
σ = 10), there is no influence on initial cooperation
level. That’s why we limit σ to [0, 2] in Fig. 1. Further,
Fig. 5b shows that ρc decreases with the increase of α.
At the same time, the enduring + expanding process
turns to monotonic decreasing.

The remaining problem is how to explain the above
phenomenon. As described before, the adopted strat-
egy update rule is self-regarding Q-learning, and the
action that players will choose at time t relies on their
current Q-table. Thus, the evolution of Q-table is a key
to understand the above phenomena. Here, the evolu-
tion of average Q-table and noise from theMonteCarlo
simulation of all players is recorded in Fig. 6. During
simulation, the average Q-table is defined as follows:

Q̄(t) =
[
Q̄C,C (t) Q̄C,D(t)
Q̄D,C (t) Q̄D,D(t)

]
, (6)
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Fig. 4 Contour plots of cooperation in η − γ parameter pan-
els. From b to d, the noise parameter α is set to be 2, 1.4, and
1, respectively. Meanwhile, for comparison, panel a shows the
cooperation level when there is no noise. The results show that

compared with Gaussian noise (α = 2), Lévy noise performs
better in maintaining cooperation with reinforcement learning.
Other parameters are b = 1.6, ε = 0.02. In all cases τ = 0.025
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Fig. 5 The time evolution of cooperation with the noise param-
eters. a α = 1.4 b σ = 0.4. The results indicate that with the
increase of σ and decrease of α, the cooperators’ ability to resist
the defectors becomes stronger. Other parameters are b = 1.6,
γ = 0.8, η = 0.8, ε = 0.02

where Q̄s,a(t) = ∑N
i Qs,a(t)/N . Figure 6 shows the

evolution of Q-value is effected by the fluctuation of
noise. When there is no noise (Fig. 6a) or small noise
(Fig. 6b), Q̄s,a reaches a positive stable value quickly.
However, with the increase of noise, the fluctuation of
Q̄s,a will become more and more frequent, as shown
in Fig. 6c, d. This is because the effect of noise is accu-
mulated in the Q-value update formula.

We further explore the dynamic evolution processes
of different Q̄s,a in Fig. 7. As previously, absence of
noise (Fig. 7a) or low noise (Fig. 7b) enables Q̄s,a to
reach a stable state but high noise (Fig. 7c, d) makes
them fluctuate. It is obvious that irrespective of any
case, Q̄C,D is always large than Q̄C,C . However, as
noise increases, Q̄D,C will become greater than Q̄D,D .
This interesting reversal means when the current state
of a player is defection under self-regarding Q-learning

rule, cooperative behavior will have an advantage over
defective behavior subsequently. Thus, more defectors
will turn to cooperation in next round. This can explain
why Lévy noise performs better than Gaussian noise.

Finally, it is still interesting to study whether the ini-
tial setting affects the stability of cooperation (i.e., the
robustness of our method). To this aim, we randomly
select 10%, 30%, 50%, 70%, and 90% of overall pop-
ulation as cooperation in the early stage. As shown
in Fig. 8, since players strongly prefer to learn the
maximal-payoff strategy (avoid being exploited by oth-
ers), the level of cooperation is almost unconstrained
to the initial distribution, which is robust to small and
larger noise values. From this perspective, cooperation
can reach a steady state with the same cooperation level
if players only learn the maximal-payoff action. More-
over, the case with noise (solid lines) converges to a
steady state faster than the case without noise (dash
lines).

4 Conclusion and discussion

To conclude, we have studied the impact of noise with
reinforcement learning on the level of cooperation.
Numerical simulations show that noise can enhance
the survival of cooperation even when the temptation
is high. In detail, the decrease of noise parameter α

could support a more stable evolution of cooperation,
which means that Lévy noise performs better in main-
taining cooperation thanGaussian noise. Then, in order
to explain the above phenomena, we further explore
the time evolution of noise parameters, which indicates
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reverse the order, which means players will be more inclined to
cooperate when the current state of a player is defection. Other
parameters are b = 1.6, γ = 0.8, η = 0.8, ε = 0.02. (Color
figure online)

that players can quickly converge to a stable state and
the cooperators’ ability to resist the defectors becomes
stronger with the increase of noise parameter σ and the
decrease of α. Then the time evolution of average noise
and Q-value shows that the Q-value fluctuates with the
increase of noise, and the effect is accumulated in the
Q-value update formula. In particular,with the increase
of noise, the Q-value of cooperative behavior will be

larger than that of defective behavior. Thus, it leads to
the improvement of cooperation. Finally, we also ver-
ify that cooperation will always converge to the same
level regardless of the initial state.

In contrast to Ref. [51], where the Fermi function
is utilized as the update rule, the self-regarding Q-
learning algorithm unveils a particular positive role
of Lévy noise in the evolutionary dynamics of social
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Fig. 8 Evolution of cooperation with different initial coopera-
tion levels. The results show cooperation level will always con-
verge to the same value regardless of the initial state. Other
parameters are b = 1.6, α = 1.4, γ = 0.8, η = 0.8, ε = 0.02

dilemmas. Furthermore, our work is also different from
Refs. [23,24]. They considered Q-learning algorithm
with the evolutionary game and minority game in a
well-mixed population. Here, we focus on structured
population with noise, which is more close to empiri-
cal observations. Thus,we believe that our studywill be
useful in addressing more social dilemmas that arises
in real-life situations.
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