
Nonlinear Dyn (2023) 111:7899–7910
https://doi.org/10.1007/s11071-023-08231-1

ORIGINAL PAPER

Evolutionary games with two species and delayed reciprocity

Kaipeng Hu · Zhouhong Li · Lei Shi ·
Matjaž Perc

Received: 26 November 2022 / Accepted: 28 December 2022 / Published online: 12 January 2023
© The Author(s), under exclusive licence to Springer Nature B.V. 2023

Abstract In the rich variety of biological interaction
patterns, the state of an individual often does not depend
solely on immediate factors but is significantly asso-
ciated also with interactions or circumstances from
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the past. In evolutionary game theory with the focus
on the evolution of cooperation, these phenomena fre-
quently fall under the umbrella of delayed reciprocity.
Especially in populations or systems where multiple
species are considered there is significant asymmetry
in the different types of interaction returns, but also in
various delayed effects incurred by different species.
With this motivation, this paper studies three different
two-species evolutionarymodels: the intraspecific pay-
off delay model, the interspecific payoff delay model,
and the all-payoff delay model. It is found that if the
delay applies only to interspecific interactions, it only
affects the convergence time of the cooperation rate
but not the stability of the equilibrium points. In con-
trast, once the delay applies to intraspecific interac-
tions, then the system transitions from asymptotic sta-
bility to oscillations around the equilibrium point as the
timedelay period increases. Lastly, increasing the delay
value postpones convergencewhen the internal equilib-
rium point is asymptotically stable, and increases the
amplitude when the system is oscillating.

Keywords Evolutionary game · Delayed reciprocity ·
Multiple species · Stability

1 Introduction

Over the past few decades, research using evolution-
ary game theory has provided many explanations as
to why natural selection might favor the evolution of
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cooperation [1–8]. Among these, reciprocity has per-
haps beenmostwidely studied and this in various forms
[9]. In general, reciprocity can be divided into two cat-
egories, namely direct and indirect reciprocity [10,11].
The former relies only on the performance in repeated
direct interactions [12,13], while the latter also takes
into account the experiences of others [14–16], possi-
bly in social networks [17,18], or related to reputation
in general [19]. In many other cases, altruism typically
does not bring any immediate paybacks, rather on the
contrary, but it does provide long-term benefits; hence,
the term delayed reciprocity for this type of interactions
[20,21].

The significance of time delays in action is readily
understood in biological systems and has been demon-
strated to possibly affect the stability of equilibrium
points as well as the evolution of cooperation [22–26].
Likewise, the effect has been shown to be valid within
the framework of evolutionary game theory. Specifi-
cally, the stability of the interior equilibrium of the pure
strategy model under this long-term effect depends not
only on the properties of the payoff matrix, but also on
the effect of time delays [27]. Thereafter, the impact of
strategy-related asymmetric delays, on the evolution-
ary dynamics of the system’s equilibrium point, has
received further attention and examination [28]. The
uncertainty of the existence of delay periods in real-
istic interactions and its consequent consideration as
a random variable appear in the study of evolutionary
game theory. The results reveal that the interior equilib-
rium point is asymptotically stable for any rate param-
eter value under an exponential delay distribution; they
also derive sufficient conditions for asymptotic stability
under the uniform and Erlang distributions [29].

In addition to the classical evolutionary game theory
explorations noted above, research including coevolu-
tion [30] has also received much attention in recent
years [31–33]. In environmental feedback games [34–
38] involving resource growth, the introduction of
delay effectsmay lead to the systemoscillating between
depleted and replenished environments and between
cooperation and defection behavior [39]. When the rel-
evant coevolutionary issues are revisited, the nature
of the growable resource or environment becomes
the simple abstraction of other species involved in
secondary interactions, which further influences the
study of multi-group competition. In multi-population
approaches, individuals may engage in different types
of interactions with opponents from different groups

[40]. In particular, the time delay effects are divided by
strategy or space, and previous research has shown that
delayed reciprocity also affects the stability of equilib-
rium points [41,42].

Inspired by the differentiated patterns of interac-
tion in different biological systems [43,44], a realiza-
tion was made that delay effects may also be species-
dependent and that immediate and delayed reciprocity
may co-exist. Aiming to address these issues, the repli-
cator dynamics were developed for three scenarios:
interspecific payoff delay systems and all-payoff delay
systems. The results show that if the delay effect acts
only on interspecific interactions, it only affects the
convergence time of the cooperation rate but not the
stability of the equilibrium point. In contrast, once
the delay effect acts on intraspecific payoffs, the sys-
tem transitions from asymptotic stability to oscillation
around the equilibrium point as the time delay period
increases.

2 Replicator dynamics in two species

To introduce the main framework of the multi-species
evolutionary game, in this section, it is assumed that
the population sizes of both species (A and B) are
infinitely large(NA,B → +∞). Interactions within
and among populations are considered as randomly
matched pairwise games. At each time step, each indi-
vidual may interact with an opponent from the same
species with probability p or from another species with
probability 1 − p. For the pairwise game, each par-
ticipant can choose cooperation(C) or defection(D),
and the corresponding payoffmatrices can be described
as:

M1 =
(CA DA

CA R1 S1
DA T1 P1

)
, M2 =

(CB DB

CA R2 S2
DA T2 P2

)
,

M3 =
(CA DA

CB R3 S3
DB T3 P3

)
, M4 =

(CB DB

CB R4 S4
DB T4 P4

)
.

where M1 and M4 are used for describing the intraspe-
cific payoffs of species A and B, while M2 and M3 are
used for the interspecific payoffs. Specifically, when
the four matrices are identical, the system is consis-
tent with classical single-species replicator dynamics.
The more general case is that species variability often
leads to asymmetric payoff patterns. Thus, it can be
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Table 1 Parameters in the model

Parameter Value

a1 p(R1 + P1 − S1 − T1)

a2 (1 − p)(R2 + P2 − S2 − T2)

a3 (1 − p)(R3 + P3 − S3 − T3)

a4 p(R4 + P4 − S4 − T4)

b1 p(S1 − P1) + (1 − p)(S2 − P2)

b2 (1 − p)(S3 − P3) + p(S4 − P4)

derived the following expected payoffs, relying on dif-
ferent payoff matrices:
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

PC
A = p[R1x + S1(1 − x)] + (1 − p)[R2y + S2(1 − y)]

PD
A = p[T1x + P1(1 − x)] + (1 − p)[T2y + P2(1 − y)]

PC
B = (1 − p)[R3x + S3(1 − x)] + p[R4y + S4(1 − y)]

PD
B = (1 − p)[T3x + P3(1 − x)] + p[T4y + P4(1 − y)]

(1)

where x and y represent the cooperation frequency
of species A and B. The replicator dynamics in two
species can be written as follows:

{
ẋ = x(1 − x)(PC

A − PD
A )

ẏ = y(1 − y)(PC
B − PD

B )
(2)

By substituting the expected payoffs in Eq.(1) into
Eq.(2), it is derived as follows:

{
dx
dt = x(1 − x)[a1x + a2y + b1]
dy
dt = y(1 − y)[a3x + a4y + b2]

(3)

where the parameters are shown in Table 1.
The dynamic system in Eq.(3) has a unique interior

equilibrium point (x∗, y∗) = ( a4b1−a2b2
a2a3−a1a4

, a3b1−a1b2
a1a4−a2a3

).
In addition, there are other four vertex fixed points,
namely (x∗, y∗) = (0, 0), (0, 1), (1, 0), (1, 1), and
four boundary fixed points, namely, (0,− b2

a4
), (1,

− a3+b2
a4

), (− b1
a1

, 0), (− a2+b1
a1

, 1).
In order to simplify the simulations required later,

only a few parameters are chosen to characterize the
asymmetric patterns of competition and reciprocity that
exist inmulti-species interactions. It isworth emphasiz-
ing that the payoff coupling and the setting of parameter
values here are unrelated to the interactions of real bio-
logical systems but merely provide a basis for verify-
ing the validity of the theoretical approach and demon-

strating specific evolutionary dynamics. Specifically,
the payoff matrix can be expressed as:

M1 =
(CA DA

CA 1 αS
DA T 0

)
, M2 =

(CB DB

CA 1 αS
DA T 0

)
,

M3 =
(CA DA

CB 1 S
DB αT 0

)
, M4 =

(CB DB

CB 1 S
DB αT 0

)
.

where α is used to control asymmetry between species.
Subsequently, we construct the evolutionary game

models for different time delay effects and analyze the
stability of their interior equilibrium points, respec-
tively.

3 Replicator dynamics of intraspecific payoffs
delay

This section explores the situation when the delay
is applied to intraspecific payoffs, which means the
expected intraspecific payoff of species A (B) at time t
depends on the interaction at time t −τ1 (t −τ2). Thus,
the expected payoffs in Eq.(1) can be rewritten as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

PC
A (t) = p[R1x(t − τ1) + S1(1 − x(t − τ1))]
+(1 − p)[R2y(t) + S2(1 − y(t))]

PD
A (t) = p[T1x(t − τ1) + P1(1 − x(t − τ1))]
+(1 − p)[T2y(t) + P2(1 − y(t))]

PC
B (t) = (1 − p)[R3x(t) + S3(1 − x(t))]
+p[R4y(t − τ2) + S4(1 − y(t − τ2))]

PD
B (t) = (1 − p)[T3x(t) + P3(1 − x(t))]
+p[T4y(t − τ2) + P4(1 − y(t − τ2))]

(4)

By substituting the terms in Eq.(4) to the replica-
tor dynamics in Eq.(2), the delay differential system is
transformed as follows:

{
dx(t)
dt = x(t)(1 − x(t))[a1x(t − τ1) + a2y(t) + b1]

dy(t)
dt = y(t)(1 − y(t))[a3x(t) + a4y(t − τ2) + b2]

(5)

Next, we investigate the stability of the interior equi-
librium of the system in Eq. (5). The linearized approx-
imation around x = x∗ and y = y∗ can be given by:

{
dx(t)
dt ≈ δ1x(t − τ1) + δ2y(t)

dy(t)
dt ≈ δ3x(t) + δ4y(t − τ2)

(6)
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Fig. 1 Simulation results
for the intraspecific payoff
delay model when τ1 = τ2.
Since τ ∗ ≈ 10.465 is
calculated, τ = 10.2 is
adopted in the left column
and τ = 10.6 in the right
column, and thereby
observe the evolutionary
dynamics of the interior
equilibrium point under
stability and instability. The
other parameters are
S = 0.5, T = 1.5, α =
0.8, p = 0.8

where δ1 = a1x∗(1 − x∗), δ2 = a2x∗(1 − x∗), δ3 =
a3y∗(1 − y∗), and δ4 = y∗(1 − y∗)a4.

We first investigate the symmetric delay (τ1 = τ2 =
τ ) by applying the Laplace transform to system (6);
there is the following characteristic equation:

(λ2 − δ2δ3)e
λτ + δ1δ4e

−λτ − λ(δ1 + δ4) = 0. (7)

Let λ = iw and substitute it into the characteristic
equation, by separating the real and imaginary parts,
then it follows that

{
(w2 + δ2δ3 − δ1δ4) cos(τw) = 0
(w2 + δ2δ3 + δ1δ4) sin(τw) = −(δ1 + δ4)w

(8)

From Eq.(8), it can be derived that τ ∗ = π
2w is the

threshold for the transition through a Hopf bifurcation,

wherew= 1
2

(
±(δ1+δ4)±

√
δ21−2δ1δ4+δ24 − 4δ2δ3

)
.

Thus, when τ < τ ∗, the unique interior equilibrium
point is asymptotically stable.

With the parameters setting in Fig. 1, it can be cal-
culated that w ≈ 0.150 and τ ∗ ≈ 10.465. The interior
equilibrium point (x∗, y∗) ≈ (0.354, 0.804) is asymp-
totically stable when applying τ = 10.2 < τ ∗ (in the
left panel), and it is unstable when τ = 10.6 > τ ∗(in
the right panel). It can be found that asymptotic stabil-
ity is associated with the phenomenon of the coopera-
tion rate gradually converging individually to its inte-
rior fixed point over time, whereas instability implies
that the cooperation rate persists in periodic oscillations
within a specific range. In addition, the evolutionary
trace on the left shows them spiraling toward and even-
tually into the interior equilibrium point, while the case
on the right shows them not approaching nor moving
away and finally forming a limit ring. Note that the red
arrows in the diagram indicate the initial point, while
the black arrows indicate the direction of evolution.

For the case of asymmetric delays between two
species, if τ1 �= τ2, then the following characteristic
equation holds:
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Fig. 2 Simulation results
for the intraspecific payoff
delay model when τ1 �= τ2.
When τ2 = 5(τ1 = 5) is a
fixed value, hence
τ ∗
1 ≈ 9.774(τ ∗

2 ≈ 17.222).
In the top row, the values of
τ1 in the left and right
panels are taken as 9.6 and
9.8, respectively, while in
the bottom row, the left and
right panels take τ2 equal to
17 and 17.5, respectively.
The other parameters are
S = 0.5, T = 1.5, α =
0.8, p = 0.8

λ2−λ(δ1e
−λτ1+δ4e

−λτ2 )+δ1δ4e
−λ(τ1+τ2)−δ2δ3 = 0 (9)

Similarly let λ = iw. Then

⎧⎪⎪⎨
⎪⎪⎩

−w2 − wδ1 sin(wτ1) − wδ4 sin(wτ2)

−δ1δ4 cos[w(τ1 + τ2)] = 0
−wδ1 cos(wτ1) − wδ4 cos(wτ2)

−δ1δ4 sin[w(τ1 + τ2)] = 0

(10)

Compared to Eq. (8), there is an additional unknown
time delay variable inEq. (10), and therefore only if one
of the values is fixed does the other have a solution. Let
τ ∗
1 (τ ∗

2 ) be the critical value of the transition when the
value of τ2(τ1) is given, then:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

sin(wτ ∗
1 ) = −

δ2δ3(δ4 sin(τ2w)+w)

δ24+w2+2δ4w sin(τ2w)
+w

δ1

cos(wτ ∗
1 ) = δ2δ3δ4 cos(τ2w)

δ1
(
δ24+w2+2δ4w sin(τ2w)

)
sin(wτ ∗

2 ) = −w3+δ1
(
δ2δ3+2w2

)
sin(τ1w)+δ21w+δ2δ3w

δ4
(
δ21+w2+2δ1w sin(τ1w)

)
cos(wτ ∗

2 ) = δ1δ2δ3 cos(τ1w)

δ4
(
δ21+w2+2δ1w sin(τ1w)

)

The solution is that τ ∗
1 = arccos

(
δ2δ3δ4 cos(τ2w)

δ1
(
δ24+w2+2δ4w sin(τ2w)

) )/w, and τ ∗
2 = arccos

(
δ1δ2δ3 cos(τ1w)

δ4
(
δ21+w2+2δ1w sin(τ1w)

) )/w. It is worthmentioning that

the solutions for w are different when solving sepa-
rately for τ ∗

1 and τ ∗
2 . Furthermore, when τ2 is given,

the interior equilibriumpoint (x∗, y∗) is asymptotically
stable if τ1 < τ ∗

1 ; alternatively, when τ1 is given, it is
asymptotically stable if τ2 < τ ∗

2 .
In Fig. 2, numerical simulations are carried out with

the same parameter values as in Fig. 1 to examine the
effect of asymmetric time delays on stability. By fixing
τ2 = 5 (τ1 = 5), it can be calculated that τ ∗

1 ≈ 9.774
(τ ∗

2 ≈ 17.22). In the panels, the evolutionary dynam-
ics are shown when values are taken around the critical
values. In the left column, the cooperation frequen-
cies eventually converge to the asymptotically stable
interior equilibrium points after sufficient relaxation
(τ1 = 9.6 in the top panel and τ2 = 17 in the bottom
panel), while in the right column, the system is con-
tinuously in an unstable state of periodic oscillations
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Fig. 3 A comparison of
non-delay systems
(τ1 = τ2 = 0 in the left
panel) with interspecific
payoff delay systems
(τ1 = τ2 = 50 in the right
panel). The simulation
results show that the delay
effect does not affect the
stability of the system, but
rather postpones the
convergence time. The other
parameters are
S = 0.5, T = 1.5, α =
0.8, p = 0.8

Fig. 4 Evolutionary
multistability resulting from
different initial points.
Based on a non-time delay
system, the simulation
demonstrates that the
unstable interior
equilibrium is attracted to
other different equilibria,
resulting in multi-stable
evolutionary dynamics. The
other parameters are
S = −0.5, T = 0.8, α =
0.8, p = 0.8

(τ1 = 9.8 in the top panel and τ2 = 17.5 in the bottom
panel).

4 Replicator dynamics of interspecific payoffs
delay

In this section, we study the replicator dynamics when
interspecific payoffs are delayed, i.e., the interspecific
payoffs of species A (B) at time t in dependence on
interactions at time t−τ1 (t−τ2), whereas intraspecific
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Fig. 5 The evolutionary
trajectory of instability (left
panel) and stability (right
panel). The parameters on
the left are
T = 0.8, S = 0.5 and the
right are T = 1.5, S = 0.5.
The common parameter
values include
α = 0.8, p = 0.8

payoffs are obtained immediately. Then, the expected
payoff in Eq.(1) can be rewritten as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

PC
A (t) = p[R1x(t) + S1(1 − x(t))]
+(1 − p)[R2y(t − τ1) + S2(1 − y(t − τ1))]

PD
A (t) = p[T1x(t) + P1(1 − x(t))]
+(1 − p)[T2y(t − τ1) + P2(1 − y(t − τ1))]

PC
B (t) = (1 − p)[R3x(t − τ2) + S3(1 − x(t − τ2))]
+p[R4y(t) + S4(1 − y(t))]

PD
B (t) = (1 − p)[T3x(t − τ2) + P3(1 − x(t − τ2))]
+p[T4y(t) + P4(1 − y(t))]

(11)

By substituting the terms in Eq. (11) to the replicator
dynamics in Eq. (2), one has the following system:

{
dx(t)
dt = x(t)(1 − x(t))[a1x(t) + a2y(t − τ1) + b1]

dy(t)
dt = y(t)(1 − y(t))[a3x(t − τ1) + a4y(t) + b2]

(12)

Next, we investigate the stability of the interior equi-
librium of the system. The linearized system in Eq.(12)
around x = x∗, and y = y∗ is:

{
dx(t)
dt ≈ δ1x(t) + δ2y(t − τ1)

dy(t)
dt ≈ δ3x(t − τ2) + δ4y(t)

(13)

Bymeans of the Laplace transformation, the follow-
ing characteristic equation is obtained:

λ2 + aλ + bλe−λ(τ1+τ2) + c + de−λ(τ1+τ2) = 0 (14)

where a = −(δ1 + δ4), b = 0, c = δ1δ4, d = −δ2δ3.
As b2 + 2c − a2 < 0, and when 0 < x∗ < y∗, 0 <

y∗ < 1 is satisfied, it gives c2−d2 > 0. Hence, there is

no purely imaginary solution for this equation, and the
stability of the interior equilibrium point is unaffected
by the time delay terms. As shown in Fig. 3, the evolu-
tionary dynamicswithout andwith time delay terms are
shown in the left and right panels, respectively. It can
be observed that the cooperation rate with the identi-
cal initial condition (0.5, 0.5) ultimately evolves to the
same state, namely the stable interior equilibrium point
(x∗, y∗), and the time delay effect is mainly in postpon-
ing the time for the system to evolve into a steady state.

Although the stability is unaffected by the delayed
interspecific returns, it is still of significant value to
explore the stability of the unique interior equilibrium
point. The simple simulations in Fig. 4 reveal the exis-
tence of multiple stability when the interior fixed point
is unstable. Specifically, the identical parameter values
settings were applied in the four subplots; however,
the unique variation of the initial cooperation rate ulti-
mately resulted in the system being attracted to four
different vertex points, namely (1, 1), (0, 0), (1, 0) and
(0, 1).

We subsequently analyze the stability of systems in
the absence of time delays. Applying Lyapunov’s sta-
bility discriminant, the Jacobian matrix can be written
as:

J =
[

δ1 δ2
δ3 δ4

]
(15)

The eigenvalues are solved as:
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⎧⎨
⎩

λ1 = 1
2 (−

√
δ21 − 2δ4δ1 + δ24 + 4δ2δ3 + δ1 + δ4)

λ2 = 1
2 (

√
δ21 − 2δ4δ1 + δ24 + 4δ2δ3 + δ1 + δ4)

(16)

The unique interior equilibrium point (x∗, y∗) is sta-
ble when the corresponding two eigenvalues both have
negative real parts, and it is unstable if any eigenvalue
has a positive real part. With the same parameter val-
ues settings in Fig. 4, it is clear that the interior equi-
librium point (x∗, y∗) ≈ (0.695, 0.553) is unstable,
as the eigenvalues are calculated as λ1 ≈ 0.089 > 0
and λ2 ≈ 0.183 > 0, respectively. Moreover, the
details of the evolution both for stable and unstable
state are reflected in Fig. 5. In the left panel, the vec-
tor field shows an unstable interior equilibrium point,
where any deviation from that equilibrium point even-
tually converges to one of the vertex points. In the
right plot, by applying the same parameter values as
in Fig. 1, it can be seen that any initial point eventu-
ally converges to the unique internal equilibrium point
(x∗, y∗)/approx(0.354, 0.804).

5 Replicator dynamics of all-payoffs delay

In this section, we focus on the replicator dynamics
when all payoffs are delayed, which suggests that all
the payoffs of species A(B) at time t are dependent on
the interactions at time t − τ1(t − τ2). The expected
payoffs for the four types of players are defined as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

PC
A (t) = p[R1x(t − τ1) + S1(1 − x(t − τ1))]
+(1 − p)[R2y(t − τ1) + S2(1 − y(t − τ1))]

PD
A (t) = p[T1x(t − τ1) + P1(1 − x(t − τ1))]
+(1 − p)[T2y(t − τ1) + P2(1 − y(t − τ1))]

PC
B (t) = (1 − p)[R3x(t − τ2) + S3(1 − x(t − τ2))]
+p[R4y(t − τ2) + S4(1 − y(t − τ2))]

PD
B (t) = (1 − p)[T3x(t − τ2) + P3(1 − x(t − τ2))]
+p[T4y(t − τ2) + P4(1 − y(t − τ2))]

(17)

Then, the dynamical systemwith timedelay is given:

{
dx(t)
dt = x(t)(1 − x(t))[a1x(t − τ1) + a2y(t − τ1) + b1]

dy(t)
dt = y(t)(1 − y(t))[a3x(t − τ1) + a4y(t − τ1) + b2]

(18)

In order to study the stability of the interior fixed
point, the system is linearized at the equilibrium point

(x∗, y∗) as:
{

dx(t)
dt = δ1x(t − τ1) + δ2y(t − τ1)

dy(t)
dt = δ3x(t − τ2) + δ4y(t − τ2)

(19)

When τ1 = τ2, the characteristic equation is given
by:

(δ1δ4 − δ2δ3)e
−λτ∗ − λ(δ1 + δ4) + λ2eλτ = 0, (20)

Letting λ = iw and separating the real and imagi-
nary parts, from which one has:

{
w2 + w(δ1 + δ4) sin(wτ) − (δ1δ4 − δ2δ3) cos(2wτ) = 0
(δ1δ4 − δ2δ3) sin(2wτ) + w(δ1 + δ4) cos(wτ) = 0

(21)

From Eq.(21), one can derive τ ∗ = π
2w , and

w = 1
2 (±

√
u2 − 4v ± v), where u = δ1δ4 − δ2δ3,

v = δ1 + δ4. Therefore, the interior equilibrium point
(x∗, y∗) is asymptotically stable when τ < τ ∗. In Fig.
6, the same parameter values as in Fig. 1 are applied,
whereby it is easy to obtain τ ∗ ≈ 8.966. The stability
and instability of the interior equilibrium point and the
corresponding dynamics characteristics are illustrated
in the left and right columns of Fig. 6, respectively.
From the left column, taking values away from the
threshold τ ∗ results in faster convergence of the coop-
eration rate, while in the right column, values of τ away
from this Hopf bifurcation point result in larger ampli-
tudes of the cooperation rate. Moreover, the numerical
simulations also prove the correctness of the theoretical
derivation.

When τ1 �= τ2, through fixing one of the time delay
terms, the critical value of another one can be easily
derived. From the linear dynamics shown in Eq. (19),
the characteristic equation gives:

λ2−λ(δ1e
−λτ1+δ4e

−λτ2)+(δ1δ4−δ2δ3)e
−λ(τ1+τ2) = 0

(22)

Let λ = iw a pure imaginary, one has:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

sin(wτ1) = −w(u(δ4+w sin(τ2w))+δ1w(δ4 sin(τ2w)+w))

u2+δ21w
2+2uδ1w sin(τ2w)

cos(wτ1) = w2(u−δ1δ4) cos(τ2w)

u2+δ21w
2+2uδ1w sin(τ2w)

sin(wτ2) = −w(w(u sin(τ1w)+δ4w)+δ1(u+δ4w sin(τ1w)))

u2+δ24w
2+2uδ4w sin(τ1w)

cos(wτ2) = w2(u−δ1δ4) cos(τ1w)

u2+δ24w
2+2uδ4w sin(τ1w)
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Fig. 6 Simulation results
for the interspecific payoff
delay model when
τ1 = τ2 = τ . With the
applied parameter values,
the critical value comes to
τ ∗ ≈ 8.966. By using
τ = 7, 8, 8.5 and 8.9 in the
left column and
τ = 9, 10, 12 and 18 in the
right column, various
characteristics regarding the
evolutionary dynamics can
be observed. Additional
parameters for this figures
are S = 0.5, T = 1.5,
α = 0.8, p = 0.8

It can be further calculated that τ ∗
1 = arccos

(
w2(u−δ1δ4) cos(τ2w)

u2+δ21w
2+2uδ1w sin(τ2w)

)/w, τ ∗
2 = arccos

(
w2(u−δ1δ4) cos(τ1w)

u2+δ24w
2+2uδ4w sin(τ1w)

), are the critical values atwhich

the system goes from stability to oscillation when the
values of τ2 and τ1 are given, respectively. In the
top(bottom) row of Fig. 7, the time delayed term τ2(τ1)
is fixed as 5, and the critical values are worked out
to be τ ∗

1 ≈ 9.653(τ ∗
2 ≈ 19.351). The convergence and

oscillations of the cooperation rate demonstrate asymp-
totically stable and unstable equilibria resulting from
the corresponding time delay values of τ1 and τ2.

6 Conclusion

Time delay effect is prevalent in systems ranging from
biology, economics to signal system and has signifi-
cant impacts on their proper functioning[45–47]. Typ-
ically, delayed reciprocity, a pattern of mutual assis-
tance in which individuals exchange altruistic behavior
in the present for rewards in future moments, is eas-

ily observed in the reproductive processes of birds and
mammalian organisms [21,48,49]. When individuals
from multiple species interact, they need to potentially
engage in both intraspecific and interspecific interac-
tions. Due to variability across species, these interac-
tion patterns may be asymmetric; therefore, four matri-
ces are adopted to characterize the gains in these inter-
actions.What’s more, for individuals from any species,
these different types of gains may be immediate or
delayed.

To analyze the impact of delay effects on the coop-
erative system in the above complex scenario, three
evolutionary game models based on replicator dynam-
ics constructed in this paper are: the intraspecific pay-
off delay model, interspecific payoff delay model, and
all-payoff delay model. The main result is that: if the
delay acts on intraspecific payoffs (intraspecific payoff
delay and all-payoffs delay model), the system under-
goes a transition from asymptotic stability to oscilla-
tion around the internal equilibrium point as the delay
period increases; otherwise, if delay applies only to
interspecific interactions, it affects only the conver-
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Fig. 7 Simulation results
for the interspecific payoff
delay model when τ1 �= τ2.
In the top and bottom rows,
τ2 and τ1 are fixed at 5,
respectively, and theoretical
calculations indicate that
τ ∗
1 = 9.653 and

τ ∗
2 = 19.351. In the top
(bottom) row, τ1 = 9.5 and
9.7(τ2 = 19.3 and 19.4) are
employed in the left and
right panels, respectively.
Thus, the stable and
unstable evolutionary
dynamics are illustrated in
the left and right columns,
respectively. The other
parameters are
S = 0.5, T = 1.5, α =
0.8, p = 0.8

gence time of the cooperation rate. Moreover, it is
shown that increasing the delay value postpones con-
vergence when the internal equilibrium point is asymp-
totically stable, and increases the amplitude when the
system is oscillating.

In summary, this paper investigated the impact of
time-delay effects associated with species and interac-
tions on cooperative systems. Although the proposed
idealized model is not directly applicable to the analy-
sis of realistic problems, it is an important addition to
the study ofmulti-species evolutionary games. In future
work, wewould like to continue exploring other factors
in multispecies interactions that may influence cooper-
ation and evolutionary dynamics, such as stochastic,
impulse effects [26,50,51].
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