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Abstract We study the effects of different coupling
strengths and network topologies on signal detection
in small-world neuronal networks. Research has previ-
ously revealed that the ability of detecting subthreshold
signals could be significantly enhanced by appropri-
ately fine-tuning the noise intensity. Here we show that
the coupling strength and the structure of the underlying
network can also lead toward enhanced signal detec-
tion. In particular, we show that there are two levels
of the coupling strength at which the subthreshold sig-
nal can be detected at an appropriate noise intensity and
network structure. We also show that the network struc-
ture has little impact on signal detection if the coupling
is weak. On the other hand, for intermediate coupling
strengths, we show that the shorter the average path
length, the better the signal detection. Finally, if the
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coupling is strong, we show that there exists an inter-
mediate average path length at which signal detection
becomes optimal.

Keywords Neuronal network - Small-world network -
Multiple stochastic resonance - Signal detection

1 Introduction

Noise is ubiquitous in nonlinear systems. Contrary
to the traditionally thought, noise plays a positive
role sometimes. For example, under certain condi-
tions, noise is reported to help nonlinear systems to
detect weak signals [1]. This phenomenon is called as
stochastic resonance, firstly introduced by Benzi et al
in early 1980s to explain the periodic recurrence of ice
ages [2,3]. Nowadays stochastic resonance is widely
observed in various nonlinear systems [4—6].
Different from stochastic resonance whereby addi-
tion of certain amount of noise in nonlinear system
makes weak signal could be amplified, coherence res-
onance is a phenomenon whereby addition of certain
amount of noise in excitable system makes its oscilla-
tory responses most coherent [7-9]. With further stud-
ies, Vider et al. found out that there existed more than
one noise intensity at which the signal detection ability
was enhanced, which is referred as stochastic multi-
resonance [10]. And this significant finding provides
more than one optimal noise intensities for signal detec-
tion. In neuronal systems, there are various of noise
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sources such as the random switch of ion channel, the
release of neurotransmitter [11-13]. Both experimental
and theoretical studies have suggested that weak sig-
nal can be optimized by noise [14—16]. Thus stochastic
resonance may be a underlining mechanism for the effi-
ciency of information transmission in neuronal systems
[17-19]. Inspired by Vider et al., we recently revealed
that stochastic multi-resonance could occur in small-
world neuronal networks constructed by FitzHugh—
Nagumo neuronal models locally [20,21].

There are about 86 billion neurons in human brain
and neurons interacts with each other via synapses
[22,23], proper interactions between pairwise of neu-
rons play a vital role in signal detection as well.
Effects of various types of coupling item have been
studied on neuronal networks’ nonlinear dynamical
behaviors through numerical stimulations recently. For
example, it has been reported that coupling strength
could induce different dynamical behaviors in excita-
tory and inhibitory chemically coupled neuronal net-
works [16]; proper time delays and proper coupling
strengths could induce synchronization in chemically
coupled neuronal networks [24]. Coupling strength
could enhance stochastic resonance in electrically cou-
pled networks as well [25]. With further studies, muta-
tive coupling items instead of fixed coupling items are
considered in neuronal networks, such as the adaptive
coupling and the time-varying coupling strength. It has
been proved that adaptive coupling not only enhances
stochastic resonance but also enhances synchroniza-
tion [26-28]. And fine-tuned time-varying coupling
could make the spiking regularity maintain at a high
level [29,30]. Moreover, spiking-time-dependent plas-
ticity is a more biological synaptic modulation [31—
33]. Effects of spiking-time-dependent plasticity on
coherence resonance and synchronization have been
studied recently [34,35]. Through above-mentioned
works, although various types of coupling items could
induce different neuronal network behaviors, coupling
strength always plays a vital role in dynamical behavior
of neuronal network.

It has been reported that the topology of brain net-
work exhibits the small-world network characteristics
[36,37]. The topology of neuronal network is develop-
ing and changing with the aging [38,39] as well as some
brain disorders [40,41]. A good deal of numerical stud-
ies has been performed in a small-world structure net-
work [42—48]. Effects of rewiring probability on signal
detection in small-world neuronal networks have been
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studied by Yu et al., in which they pointed out that
the rewiring probability could affect the signal detec-
tion ability when neurons are coupled in delay-free
case [49]. The impacts of rewiring probability and time
delay on synchronization have been studied in small-
word networks as well [50,51]. Moreover, Perc has
studied stochastic resonance in Newman—Watts small-
world neuronal networks, in which he found that fine-
tuning topology of neuronal networks and appropriate
coupling strengths could enhance the ability of infor-
mation detection [52]. Besides that, dynamical behav-
iors of neuronal system are also studied under other
topologies of network [53-56].

As mentioned above, interactions between neurons
and network topology are quite important to informa-
tion transmission in neuronal network. In certain sys-
tems, noise could induce stochastic multi-resonance
which will give us more than one optimal noise intensi-
ties for efficient signal detection. Inspired by the former
studies, effects of the coupling strength and network
topology on signal detection ability are studied in this
paper. Based on our former study [21], we will investi-
gate effects of coupling strength and network topology
on signal detection ability in details. The paper is orga-
nized as follows: neuronal network model and algo-
rithm of constructing network are presented in Sect. 2;
Numerical results obtained are shown in Sect. 3; and
Sect. 4 gives a summary of this paper.

2 Model and method
2.1 FitzHugh—Nagumo neuronal network model

In the FitzZHugh—-Nagumo system(FHN) [57,58], there
are two regions of fast motion and therefore two jumps
of the phase; for simplicity we consider here a simpli-
fied model with one jump, which, nevertheless, cap-
tures all important qualitative features of the phase
dynamics [7]. Here, we also call the simplified model
as FitzHugh—-Nagumo model and use it as blocks to
build the studied neuronal network. Then, equations of
the studied neuronal network are presented as follows
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Here, x; and y; represent fast and slow variable of ith
neuron, respectively. They are discriminated by param-
eter e, whichissetase = 0.01. ]f—l Zj»v:l Jij(xj(t—1)—
x;(t)) is the synaptic current received from other neu-
rons in the network. J;; denotes whether the ith neuron
and the jth neuron are connected: if the ith neuron is
connected to the jth neuron then J;; = J;; = 1, other-
wise J;j = Jj; = 0. Meanwhile, autapse (synapse that
connects to itself) are not considered, thus J;; always
equals to zero for all neurons inside the network. g and
k; are the coupling strength and the connectivity degree
of ith neuron. a is a systematic parameter. A single neu-
ron exhibits either oscillatory behavior if |a| < 1.0 or
excitable behavior if |a| > 1.0. In this work, a is set as
1.1 for each neurons to make each neurons inside the
network stay at resting state in the absence of external
stimulations.

A sin(zT—”t) is the subthreshold signal with period 7,
and amplitilde A.Here, T, issetas 9 and A is setas 0.1
(the threshold is 0.136). Stochastic multiple resonance
induced by noise has been studied in details in Ref. [20].
It has been shown that occurrence of stochastic multi-
ple resonance depends on the period of subthreshold
signal T,. Here, we choose T, to be 9 at which stochas-
tic bi-resonance could be induced by noise. And other
values of T, which could let stochastic bi-resonance
occur can also be applied in our current paper. And
it does not influent the obtained results. In this paper,
neurons are stimulated to generate spiking activities by
Gaussian white noise Dé&; (t) [59], with (§;(f)) = 0 and
(Ei(D)E;(1")) = 8;j8(t — t'). Here, the noise is uncor-
related both in space and time. Namely, §;; = 1 if
i = j,otherwise §;; = 0; And 8(r — 1) = 1ifr =1/,
otherwise, 8(f — t’) = 0. And D represents the noise
intensity.

Neuronal networks considered in this paper contain
N = 200 neurons.! The studied neuronal networks are
constructed by employing the algorithm of Watts and
Strogatz [37]. The scheme of constructing neuronal net-
work is described as follows: Firstly aring network with
regular connectivities is constructed, where each neu-
ron connects to its k nearest neighbors; Then rewiring

! Notation: A small-world network topology is applied in this
paper. In order to satisfy the statistic characteristics of small-
world network topology, the network size should be not too small.
Usually, the network size should be larger than 100. Thus, we
choose N be 200 in this paper. And for different network size N,
we need to modulate value of k to keep the obtained results be
preserved.

each edge with a probability p randomly. k and p are
chosen as 10 and 0.05 if not stated specifically.

2.2 Measurement

The mean field of the membrane potential X (t) =
% ZlNz 1 xi (¢) is introduced to quantitatively charac-
terize collective response of neuronal network. To
quantitatively characterize the correlation of collective
response of the neuronal network X (¢) with the sub-
threshold input signal A sin(zT—’:t) as well as the ability
to detect the input signal, we calculate the Fourier coef-
ficient Q, defined as

i —1 thXt i 27Tt dt 3
Qsm—?/tm ()Sm<Te> 3)
_ L 2X (1) (2—”t dr 4)
Qcos = T /t:n Ccos T, ) (
Q = inn + ngs (5)

The integral interval is from t,, to ¢y casting off the
transient state from O to f,,. Here f,, and ¢y are set
as t; = 400 and 7y = 500. Larger Q indicates
stronger response of the entire neuronal network to the
subthreshold signal. Namely, larger Q represents the
stronger ability of detecting subthreshold signal.
Numerical integration of Eq. (1) is performed by
using the explicit Euler method with the time step of
0.001 and the initial state is set as x; (0) = 0, y; (0) = 0.
In the followings, the exhibited numerical results are
obtained by averaging over 10 independent realizations
to ensure the statistical accuracy with respect to the gen-
eration of Gaussian white noise and neuronal network.

3 Result

3.1 Multiple stochastic resonance induced by
coupling strength

An overlook of stochastic multi-resonance phenomena
induced by noise and coupling strength is presented in
Fig. 1. In this paper, Fourier coefficient Q is applied
as a measure to quantify the ability of detecting sub-
threshold signal. Fourier coefficient Q calculated as a
function of coupling strength g and noise intensity D
is exhibited in Fig. 1. As we can see when coupling
strength g < 0.08, Q only has one peak with increas-
ing of noise intensity D, which indicates there exists
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Fig. 1 Fourier coefficient
Q as a function of noise
intensity D and coupling
strength g

0.4

Q10.2

an optimal noise intensity enhancing signal detection
of neuronal network; while when coupling strength
g > 0.08, Q has two peaks with increasing of noise
intensity, indicating there are two optimal noise inten-
sities enhancing signal detection, this phenomena is
called stochastic bi-resonance and investigated system-
atically in Ref. [20]. While when the noise intensity
D is fixed at an appropriate level there also exhibit
multiple resonant behavior with increasing of coupling
strength which indicating there exist not only one opti-
mal coupling strength in signal detection. We can draw
a conclusion that fine-tuned noise intensity and cou-
pling strength can greatly enhance the signal detection
ability of the studied neuronal network.

To get a better explanation about the effects of cou-
pling strength on signal detection, we take an example
by fixing the noise intensity D to be 0.04. And corre-
spondingly, the dependence of Q with respect to cou-
pling strength g is exhibited in Fig. 2. As demonstrated,
there are two peaks of Q with increasing of coupling
strength g. Itindicates that coupling strength can induce
multiple stochastic resonance when noise intensity is
fixed at an appropriate level. It also enlighten us that
when noise intensity is fixed at an appropriate level,
there exist more than one coupling strength which can
enhance the ability of detecting subthreshold signal of
neuronal network.
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Fig. 2 Fourier coefficient of Q as function of coupling strength
g, when noise intensity set as D = 0.04

In order to get a deeper understanding of coupling
strength-induced multiple stochastic resonance, three
typical spatiotemporal patterns and the corresponding
distribution of inter-spike intervals are presented, as
shown in Fig. 3. According to the results shown in
Fig. 2, when the coupling strength of network takes
some small values which are around g = 0.15, QO
reaches the first locally maximum; when the coupling
strength of network takes some moderate values which
are near g = 0.38, Q decreases to a locally minimum;
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Fig. 3 Time-space plots and the distribution of ISI (Inter-spike-interval). Time-space plots witha g = 0.15b g = 0.38 ¢ ¢ = 0.6 and
the distribution of ISI withd g = 0.15 e g = 0.38 f g = 0.6. Other parameter are set as D = 0.04

and when the coupling strength of network takes some
large values which are larger than 0.6 and smaller than
1.2, Q reaches to large values for the second time.

Take g = 0.15 for an example to show the character-
istics of the corresponding spatiotemporal pattern and
distribution of inter-spike intervals for these small val-
ues of g. The firing pattern is quite regular and neurons
spike twice within one period (7, = 9) as exhibited in
Fig. 3a and the corresponding ISI distribution exhibited
in Fig. 3d are concentrating round two points which are
approximately 3 and 6, the sum of them is 9 equaling to
the subthreshold signal period 7,. Thus, the output of
the neuronal system has relatively high correlation with
input signal, which results in a local maximal value of
Q; as the coupling strength g increased to 0.6, the firing
pattern exhibited in Fig. 3c is quite regular and the ISIs
concentrate around 9, thus system has high correlation
with input signal as well; when g = 0.38, as illustrated
in Fig. 3b, e, the firing pattern is not regular. Thus, the
output of neuronal network cannot follow the rhythm
of input signal and then Q takes small values.

With the above obtained results presented in Figs. 1,
2 and 3, we can see that stochastic multi-resonance
could be induced by coupling strength and noise inten-
sity. Namely, fine-tuned noise intensity and coupling

strength can enhance the ability of detecting subthresh-
old signal of the neuronal system. It is known that
network topology plays a vital role both in functional
achievements and brain disorders. Here, we present that
the ability of detecting subthreshold signal of the stud-
ied neuronal system could be enhanced by approxi-
mately tuning coupling strength and noise intensity.
Thus, we further interested in discussing how network
properties influent the effects of coupling strength and
noise intensity on the ability of signal detection. We
will focus on discussing this in details in the following
section.

3.2 Effects of neuronal network topology on signal
detection ability

Since WS small-world network is considered in this
paper, the network topology is mainly controlled by the
parameter k and the rewiring probability p. In the fol-
lowings, effects of connectivity k and rewiring proba-
bility p on signal detection are investigated. Here noise
intensity is fixed as D = 0.04. In order to avoid the
effects of randomness on signal detection as explained
in “Appendix”, we only consider a proper range of cou-
pling strength, i.e., g < 1.0.
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Fig. 4 Fourier coefficient Q as function of rewiring probability
p with different k, when noise intensity set as D = 0.04 and
coupling strength set as g = 0.15

As presented in Fig. 3, when the values of coupling
strength are around g = 0.15, the neurons in network
have a nearly periodic-2 spiking pattern as exhibited
in Fig. 3a and the neuronal network has a relatively
strong signal detection ability; when the values of cou-
pling strength are larger than g = 0.5 and less than
g = 1.0, the neuronal network has a nearly periodic-1
spiking and neuronal network can also efficiently catch
the input signal; for the values of coupling strength
are near g = (.38, the neuronal network has a rel-
atively weak ability of signal detection as exhibited
in Fig. 3b. These typical values of coupling strength
are quite important for the signal detection in neuronal
network, and influences of network topology on sig-
nal detection are studied under above-mentioned val-
ues of coupling strength. Coupling strength is classi-
fied as small (when the values of coupling strength are
around g = 0.15), middle (when the values of coupling
strength are near g = 0.38) and large (when the values
of coupling strength are larger than ¢ = 0.5 and less
than g = 1.0) values of coupling strength, respectively.
For simplicity, we take these typical values of coupling
strength from above-mentioned classification.

When the system is weakly coupled, e.g., g = 0.15,
we calculate the dependence of Q on the rewiring prob-
ability p for various values of k, as shown in Fig. 4.
From this figure, we can see that Q almost does not
change with increasing of p; and Q also does fluctuate
greatly with changing of parameter k. It indicates that
network topology of the considered WS small network
has little influences on the detecting ability of the neu-
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p

Fig. 5 Fourier coefficient Q as function of rewiring probability
p with different k with noise intensity D = 0.04 and coupling
strength g = 0.38

ronal system when neurons inside are weakly coupled
with each other.

When system is coupled with a middle coupling
strength, e.g., g = 0.38, dependence of Q with respect
to p for various values of k is presented in Fig. 5.
When « is fixed, Fourier coefficient Q is always higher
for larger values of rewiring probability p. When the
rewiring probability p is fixed, Fourier coefficient Q
increases monotonically with increasing of connec-
tivity k. Thus, the ability of signal detection can be
enhanced with increasing of k and the rewiring prob-
ability p in this case. The characteristic path length
[37] is employed to explain this obtained result. The
characteristic path length L(p) is defined as follow:
the shortest path that connect two neurons in the net-
work, then averaging all the path lengths in the network.
The characteristic path length in our work reflects the
averaging shortest path with which two neurons are
connected. Characteristic path length L(p) as a func-
tion of rewiring probability p with different & is pre-
sented in Fig. 6. We can observe that shorter path length
will indicate a higher value of Q as shown in Fig. 5.
Thus, we can draw an conclusion that with the change
of rewiring probability p and k, the signal detection
ability can be enhanced at a shorter characteristic path
length of network.

Space-time plots of the neuronal network which are
coupled at a middle level are exhibited in Fig. 7 for
different k£ under the rewiring probability being fixed
as p = 0.05. With increasing of k, the spatiotempo-
ral patterns of the neuronal network become more and
more regular and the inter-spike intervals are more and
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Fig.6 The characteristic pathlength L(p) as a function of rewire
probability p with various k

more closer to the period of subthreshold signal 7.
With the results shown in Fig. 6, the characteristic path
length of neuronal network is shorter with increasing
of k when the rewiring probability p is fixed. When
the coupling strength is not too small, here, g = 0.38,
the more shorter the network characteristic path length
is, the more easily coherent the pairwise of neurons
in network are. And meanwhile, the period of the fir-
ing activities become more and more coherent with the
input signal, which results in the enhancement of the
ability of detecting subthreshold signal.

When the system is coupled with some strong cou-
pling strengths, e.g., g = 0.6, variations of Q as a
function of rewiring probability p for different values
of k are exhibited in Fig. 8. A resonance-like behavior
is observed for k = 10 and £k = 20, and Q changes
not too much for £ = 100, while for other values of
k, O almost not changes at first and then decreases
with increasing of p. Moreover, dependence of Q with
respect to k for various p is also exhibited in the left
panel of Fig. 9. It is shown that, when p is not too large
(p < 0.15), there exist some intermediate k at which

Fig. 8 The Fourier coefficient Q as function of rewiring prob-
ability p with different k, with noise intensity D = 0.04 and
coupling strength g = 0.6

0 takes maximal values, which indicates the neuronal
system could detect the subthreshold signal efficiently.
These results imply that network topology could also
have great influences on the ability of detecting signals
when neurons are coupled strongly.

Inspired by the observations in the neuronal sys-
tem with coupling strength takes middle values, as pre-
sented by Figs. 5 and 6, we guess that the observed
effects of network topology on signal detection in the
current case also have close relationship with the char-
acteristic path length L of the network. In Fig. 8, O
takes local maximum at p ~ 0.25 for &k = 10 and
at p 0.0625 for k = 20, respectively. By cal-
culation, we get that the characteristic path length L
equals 2.825 when p = 0.25, k = 10 and 2.562 when
p = 0.0625,k = 20. Up to now, we do not catch
any relationship between Q and L. Thus, we further
analyze the results shown in Fig. 9. In the left panel
of Fig. 9, a purple band is added to show the region
where Q takes large values Q > 0.28, and the char-
acteristic path length L is in the same region is also

IS

Fig.7 Space-time plots (a) (b) (c) (d)
with different k, under 200
D =0.04, g =0.38 and ~
p=005ak=10;b by
k=20;ck=40;dk =80 S 100
=
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Fig. 9 The Fourier coefficient Q and characteristic path length L as function of k/2 with different rewiring probability p, with noise

intensity D = 0.04 and coupling strength ¢ = 0.6
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Fig. 10 Fourier coefficient Q as a function of coupling strength
g using different random seeds for generating noise, under noise
intensity D = 0.04

colored with a purple band in the right panel of Fig. 9
correspondingly. Then, we find that L falls into the
interval [2.2, 2.8] when Q > 0.28. It means that, when
p is fixed, the ability of detecting subthreshold signal
of the neuronal systems could be enhanced when the
characteristic path length L € [2.2,2.8]. Therefore,
conclusion may be drawn that when system is coupled
at a large value, there exists an optimal interval of the
characteristic path length, in which the subthreshold
signal could be detected efficiently.
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Fig. 11 The (/SI) as a function of coupling strength g using
different random seeds for generating noise, under noise intensity
D =0.04

4 Summary

Effects of coupling strength and network topology on
signal detection in a small-world neuronal network
are numerically studied. Through numerical stimula-
tions, multiple stochastic resonance can be found with
increasing of coupling strength. It indicates that sub-
threshold signal can be amplified under more than
one coupling strengths as noise intensity is fixed at an
appropriate level. Moreover, effects of network topol-
ogy on signal detection are also studied when the neu-
ronal networks are coupled with weak, medium and
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strength g = 1.2 and D = 0.04

large coupling strengths. When neurons are weakly
coupled, network topology has no significant influ-
ences on signal detection of neuronal network. When
neurons are coupled with some intermediate coupling
strengths, the ability of detecting subthreshold sig-
nal could be enhanced by tuning k and the rewiring
probability p if the corresponding characteristic path
length L is short. Finally, when neurons are coupled
strongly, an optimal interval of the characteristic path
length of the network is revealed, within this interval the
neuronal network detects the subthreshold signal effi-
ciently. Due to the importance of interaction between
neurons and the topology of neuronal network men-
tioned in the introduction, we hope that the obtained
results could shed lights on the efficiency of signal
detection in biology neuronal network.

5 Appendix

In Sect. 3.1, we exhibit the firing pattern of three values
of coupling strength, we try to explain the reason why
we do not choose g &~ 1.2 which corresponds to the
second peak of Q in this section. In Fig. 2, to ensure
the statistical accuracy, we run 10 times of independent
realizations using different random seeds of generating
noise and averaging the values of Fourier coefficient Q.

In Fig. 10, we exhibit the ten curves of Q as a func-
tion of g using different random seeds, from which we
can see that the tendency is obviously the same as the
curvein Fig. 2. But with increasing of coupling strength
g (for approximately g > 1.0), the curve is quite sen-
sitive to the random seeds. Moreover, the mean value
of ISIs is calculated as a function of coupling strength
g as exhibited in Fig. 11. As shown in this figure, (IS7)
fluctuates largely when g > 1.0. Then, we can image
that firing patterns could be quite different for different
random seeds. Take g = 1.2 for an example, as exhib-
ited in Fig. 12, the firing patterns and the distribution
of ISIs are presented for four randomly chosen seeds.
In Fig. 12a, b, there exists some irregular spiking in fir-
ing pattern and a large part of ISIs concentrate around
9 and a small part concentrate around 18. In Fig. 12c,
the firing patterns are quite regular and ISIs concen-
trate around 9. While for fourth random seed, the firing
pattern is irregular again and ISIs are distributed in a
much wide range and concentrate round 9, 18 and 27.
Then, we can see that there are different patterns with
different random seeds in this case. Thus, to weaken
the influence of randomness, we set coupling strength
g be smaller than 1.0 when effects of network topol-
ogy on the ability of detecting subthreshold signal of
the neuronal networks are investigated.
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