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Abstract Social exclusion is widely used as a control
mechanism to promote cooperative behavior in human
societies. However, it remains unclear how such control
strategies actually influence the evolutionary dynamics
of cooperation. In this paper, we introduce two types
of control strategies into a population of agents that
play the public goods game, namely prosocial pool
exclusion and antisocial pool exclusion, and we use
the replicator equation to study the resulting evolu-
tionary dynamics for infinite well-mixed populations.
We show that the introduction of prosocial pool exclu-
sion can stabilize the coexistence of cooperators and
defectors by means of periodic oscillations, but only in
the absence of second-order prosocial pool exclusion.
When considering also antisocial pool exclusion, we

L. Liu · X. Chen (B)
School of Mathematical Sciences, University of Electronic
Science and Technology of China, Chengdu 611731, China
e-mail: xiaojiechen@uestc.edu.cn

L. Liu
e-mail: linjieliu@std.uestc.edu.cn

M. Perc
Faculty of Natural Sciences and Mathematics, University
of Maribor, Koroška cesta 160, 2000 Maribor, Slovenia
e-mail: matjaz.perc@um.si

M. Perc
Center for Applied Mathematics and Theoretical Physics,
University of Maribor, Mladinska 3, 2000 Maribor,
Slovenia

M. Perc
Complexity Science Hub Vienna, Josefstädterstraße 39,
1080 Vienna, Austria

show that the population exhibits a heteroclinic circle,
where cooperators can coexist with other strategists.
Moreover, when second-order exclusion is taken into
account, we find that prosocial pool exclusion is the
dominant strategy, regardless of whether the second-
order exclusion is prosocial or antisocial. In compari-
son with punishment, we conclude that prosocial pool
exclusion is amore effective controlmechanism to curb
free-riding.

Keywords Evolutionary dynamics of cooperation ·
Pool exclusion · Public goods game · Replicator
equation

1 Introduction

Survival of the fittest is the survival rule of nature and
human society [1–14]. In order to survive and repro-
duce, naturally there will be deadly competition among
species. However, cooperative or altruistic behavior in
human society is a common phenomenon [15–25]. In
a competitive environment, how to promote the emer-
gence of cooperation has attracted considerable atten-
tion, although a series ofmechanisms have been proved
to promote cooperation, such as indirect reciprocity, kin
selection, reputation, punishment, and reward [26–36].
As an effective control tool to promote cooperation in
the real world, costly punishment plays a decisive role
in restraining free-riders by reducing their benefit at a
cost to the performers. Previous theoretical and exper-
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imental studies based on the public goods game (PGG)
have shown that individuals are willing to pay costs
to punish non-cooperators [37–42]. On the other hand,
however, the research community has begun to ques-
tion the positive effects of costly punishment on coop-
eration [43–45]. When non-cooperators are allowed to
punish cooperators which is called as antisocial pun-
ishment [46,47], the appearance of such punishment
regime causes cooperation not be promoted and instead
natural selection favors substantial levels of antisocial
punishment in the system [48,49].

Social exclusion, as a stronger control means than
costly punishment, has been widely used to promote
the evolution of cooperation [50–55]. A series of theo-
retical researches found that social exclusion can reg-
ulate the number of beneficiaries by preventing free-
riders from sharing public goods [51,52]. For exam-
ple, Sasaki and Uchida focused on the incentive sys-
tems in which peer punishment and peer exclusion are,
respectively, considered and revealed that such exclu-
sion can overcome two substantial difficulties of costly
punishment [51]. Subsequently, Li et al. [52] proposed
another different exclusion regime, pool exclusion, to
investigate the evolution of social exclusion in finite
populations. They assumed that individuals can resort
to a central control authority for expelling free-riders
and all the excluders equally share the associated exclu-
sion cost, and found that peer excluders can overcome
pool excluders if the exclusion costs are small.

Note that pool excluders, similarly to pool punish-
ers [56], should pay a fixed, permanent cost before
contributing to the public pool to maintain an institu-
tionalized mechanism for restraining free-riders [53].
Thus, the pool exclusion strategy considered in this
work is different from previous one in Ref. [52], where
exclusion costs are shared by all excluders. However, it
remains unclear how pool exclusion strategy with such
scenario influences the evolution of cooperation in infi-
nite populations.On theother hand, almost all the previ-
ous studies only consider the prosocial exclusion strate-
gies in a fair and reasonable exclusion rule, and thus
completely ignore the influence of antisocial exclusion,
i.e., non-cooperators exclude cooperators. Indeed, the
existence of antisocial exclusion is inevitable in the real
society. For example, social exclusionhas been found to
stimulate antisocial emotions [57–60]. Thus, if some-
bodywho is beneficial to groups is excluded,what strat-
egywill other individuals choose?Will the introduction
of antisocial exclusion strategy result in negative effects

on the evolutionary dynamics of cooperation just as the
antisocial punishment strategies does [48,49]?

In this paper, we thus introduce two forms of con-
trol strategies for pool exclusion, that is, prosocial pool
exclusion and antisocial pool exclusion, into a popula-
tion of agents who play the public goods game, and aim
to study the evolutionary dynamics of exclusion strate-
gies in infinite well-mixed populations by using repli-
cator equations [61–66]. Briefly, the main contribution
of this paper can be summarized as follows. In our
model, we introduce the prosocial pool exclusion strat-
egy proposed in Ref. [53], under which pool excluders
apply a permanent effort to maintain the sanctioning
institutions, and prove that the introduction of prosocial
pool exclusion can transform the public goods game
into a rock–paper–scissors game. Furthermore,we con-
sider the characteristic of applying a permanent cost
for the antisocial pool exclusion strategy, and further
propose the antisocial pool exclusion strategy accord-
ingly. We demonstrate that the coexistence of the four
strategies can appear. We also consider the second-
order exclusion for prosocial pool exclusion and anti-
social exclusion strategies, respectively. We find that
the prosocial pool exclusion is the most advantaged
strategy no matter whether the type of second-order
exclusion is prosocial or antisocial.

The rest of this paper is organized as follows. In
Sect. 2, we investigate the evolutionary dynamics of
cooperation in the public goods game with the proso-
cial pool exclusion strategy. In Sect. 3, we further incor-
porate the antisocial pool exclusion into the popula-
tion system. In Sect. 4, we consider the second-order
exclusion for prosocial pool exclusion strategy. And in
Sect. 5, we introduce antisocial pool exclusion strategy
and also consider the second-order exclusion for both
prosocial and antisocial exclusion strategies. Finally,
conclusions are drawn in Sect. 6.

2 Prosocial pool exclusion without second-order
exclusion

2.1 Modeling

We assume that in an infinitely large, well-mixed pop-
ulation, N > 2 players are chosen randomly and form
a group to play a one-shot PGG. In the PGG, a cooper-
ator (C) contributes a fixed cost c to the common pool,
whereas a defector (D) does not contribute anything.
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The sum of the contributions is multiplied by the syn-
ergy factor r (1 < r < N ) and then equally allocated
among all individuals who participate in public goods
game irrespective of their contribution to the common
pool. If all the individuals contribute to the common
pool, then everyone in the group can obtain the largest
benefit c(r − 1). However, if nobody contributes, the
group can get nothing.

Then, we introduce a control strategy, namely the
prosocial pool exclusion, into the game. Pool excluders
not only contribute c to the game, but also, beforehand,
a permanent cost, δP , which is a control parameter,
to the exclusion pool. In the absence of second-order
exclusion, only defectors are excluded by pool exclud-
ers, and then, they get nothing. It needs to be pointed
out that the excluded defector is different from loner
who is just watching the game but can get a constant
payoff from PGG [56,64]. Besides, the control effect
of the exclusion strategy is not the same as costly pun-
ishment, and the difference lies in whether defector can
share the public goods.

Accordingly, we have three following strategies in
the game: cooperators (C) who contribute to the PGG
but not to the exclusion pool, prosocial pool excluders
(EC) who contribute to both the PGG and prosocial
exclusion pool, and defectors (D) who contribute to
neither the PGG nor the exclusion pool. Then, using
replicator equations, we study the evolutionary dynam-
ics for the cooperators (C), defectors (D), and proso-
cial pool excluders (EC), with frequencies x, y, and
z, respectively. Here x, y, z ≥ 0 and x + y + z = 1.
The expected payoffs of these three strategies can be
described by PI , with I = C, D, or EC . Thus, the
replicator equations [61] are written as

⎧
⎪⎨

⎪⎩

ẋ = x(PC − P̄),

ẏ = y(PD − P̄),

ż = z(PEC − P̄),

(1)

where P̄ = x PC + yPD + zPEC represents the average
payoff of the entire population.

Remark 1 Here, we assume perfect exclusion; namely,
exclusion never fails. Thus, defectors can get nothing
from the PGG if there exist prosocial pool excluders in
the group. Then, each EC individual can get the payoff
rc − c − δP , which is positive.

Accordingly, the expected payoff of defectors is
given by

PD =
N−1∑

NC=0

(
N − 1

NC

)

xNC (1 − x − z)N−NC−1 rcNC

N

= (1 − z)N−1 rc

N
(N − 1)

x

1 − z
, (2)

where
(N−1
NC

)
xNC (1−x−z)N−NC−1 describes the prob-

ability of finding the N − 1 coplayers with NC coop-
erators, N − NC − 1 defectors, and no excluders.

And the expected payoff of cooperators can be given
by

PC =
N−1∑

NC=0

(
N−1

NC

)

xNC (1−x−z)N−NC−1 rc(NC+1)

N

+
N−1∑

NEC=1

N−1−NEC∑

NC=0

(
N − 1

NC

)(
N−1−NC

NEC

)

xNC zNEC

×(1 − x − z)N−NC−NEC−1rc − c

= (1 − z)N−1 rc(1 − z + Nx − x)

N (1 − z)

+ rc[1 − (1 − z)N−1] − c, (3)

where the first term on the right side represents the
benefit of cooperators in the group without prosocial
pool excluders, the second term denotes the benefit of
cooperators when there exist prosocial pool excluders,
and NEC denotes the number of EC individuals in the
group.

After taking some calculations, the average payoffs
for cooperators, defectors, and prosocial pool excluders
can be, respectively, written as

PC = rc − c − (1 − z)N−1 rc(N − 1)y

N (1 − z)
, (4)

PD = (1 − z)N−1 rc(N − 1)x

N (1 − z)
, (5)

PEC = rc − c − δP , (6)

where (1 − z)N−1 denotes the probability that there is
no excluder in the N − 1 coplayers.

Remark 2 Because of z = 1− x − y, the equations of
system (1) can be rewritten as
{
ẋ = x[(1 − x)(PC − PEC ) − y(PD − PEC )],
ẏ = y[(1 − y)(PD − PEC ) − x(PC − PEC )], (7)

where

PC − PEC = δP − (x + y)N−1 rcy(N − 1)

N (x + y)
, (8)
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PD − PEC = (x + y)N−1 rcx(N − 1)

N (x + y)
− rc + c + δP . (9)

Solving PC = PD results in

z = 1 −
[
N (r − 1)

r(N − 1)

] 1
N−1

. (10)

Similarly, by solving PC = PEC , we have

y =
δP

[
N (r−1)
r(N−1)

] 1
N−1

(r − 1)c
. (11)

Theorem 1 For 1 < r < N and δP < rc −
c, system (1) or (7) has a unique interior equilib-

rium point (x, y, z) = ([ N (r−1)
r(N−1) ]

1
N−1 − δP [ N (r−1)

r(N−1) ]
1

N−1

(r−1)c ,

δP [ N (r−1)
r(N−1) ]

1
N−1

(r−1)c , 1−[ N (r−1)
r(N−1) ]

1
N−1 ). In addition, there are

three vertex fixed points, namely (x, y, z) = (1, 0, 0),
(0, 1, 0), and (0, 0, 1).

Proof See Remark 2.
Then, we investigate the dynamics on each edge of

the simplex S3. On the edge C − D, we have z = 0,
resulting in ẏ = y(1 − y)(PD − PC ) = y(1 − y)(c −
rc/N ) > 0. Thus, the direction of the dynamics goes
from C to D.

On the edge D−EC : since x = 0 and y+ z = 1, we
have ż = z(1−z)(PEC−PD) = z(1−z)(rc−c−δP ) >

0. Thus, the direction of the dynamics goes from D to
EC .

On the edge C−EC : since y = 0 and x + z = 1,
we have ẋ = x(1− x)(PC − PEC ) = x(1− x)δP > 0.
Thus, the direction of the dynamics goes from EC to
C . ��

2.2 The stabilities of equilibria

Here we set that

f (x, y) = x[(1 − x)(PC − PEC ) − y(PD − PEC )],
g(x, y) = y[(1 − y)(PD − PEC ) − x(PC − PEC )].
Then, the Jacobian matrix of the system is

J =
[

∂ f (x,y)
∂x

∂ f (x,y)
∂y

∂g(x,y)
∂x

∂g(x,y)
∂y

]

, (12)

where

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ f (x, y)

∂x
= [(1 − x)(PC − PEC ) − y(PD − PEC )]

+ x[−(PC − PEC ) + (1 − x)
∂

∂x
(PC − PEC )

− y
∂

∂x
(PD − PEC )],

∂ f (x, y)

∂y
= x

[

(1 − x)
∂

∂y
(PC − PEC )

− (PD − PEC ) −y
∂

∂y
(PD − PEC )

]

,

∂g(x, y)

∂x
= y

[

(1 − y)
∂

∂x
(PD − PEC )

− (PC − PEC ) −x
∂

∂x
(PC − PEC )

]

,

∂g(x, y)

∂y
= [(1 − y)(PD − PEC ) − x(PC − PEC )]

+ y[−(PD − PEC ) + (1 − y)
∂

∂y
(PD − PEC )

−x
∂

∂y
(PC − PEC )

]

.

(13)

Theorem 2 In the condition of Theorem 1, all the three
vertex equilibria are saddle points, and the interior
equilibrium point is neutrally stable, surrounded by
closed orbits.

Proof (1) For (x, y, z) = (0, 0, 1), the Jacobian is

J (0, 0, 1) =
[
δP 0
0 −rc + c + δP

]

, (14)

and thus, the fixed equilibrium is unstable.
(2) For (x, y, z) = (1, 0, 0), the Jacobian is

J (1, 0, 0) =
[−δP −(δP + c − rc/N )

0 c − rc/N

]

(15)

thus, the fixed equilibrium is unstable.
(3) For (x, y, z) = (0, 1, 0), the Jacobian is

J (0, 1, 0) =
[

rc/N − c 0
−(rc/N − rc + δP ) rc − c − δP

]

,

(16)

and thus, the fixed equilibrium is unstable.

(4) For (x, y, z) = ([ N (r−1)
r(N−1) ]

1
N−1 − δP [ N (r−1)

r(N−1) ]
1

N−1

(r−1)c ,

δP [ N (r−1)
r(N−1) ]

1
N−1

(r−1)c , 1 − [ N (r−1)
r(N−1) ]

1
N−1 ), we define the
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equilibrium point as (x∗, y∗, z∗) hereafter, and the
elements in the Jacobian matrix are written as
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ f

∂x
(x∗, y∗) = x∗

[

(1 − x∗) ∂

∂x
(PC − PEC )

−y∗ ∂

∂x
(PD − PEC )

]

,

∂ f

∂y
(x∗, y∗) = x∗

[

(1 − x∗) ∂

∂y
(PC − PEC )

−y∗ ∂

∂y
(PD − PEC )

]

,

∂g

∂x
(x∗, y∗) = y∗

[

(1 − y∗) ∂

∂x
(PD − PEC )

−x∗ ∂

∂x
(PC − PEC )

]

,

∂g

∂y
(x∗, y∗) = y∗

[

(1 − y∗) ∂

∂y
(PD − PEC )

−x∗ ∂

∂y
(PC − PEC )

]

,

(17)

where
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂x
(PC − PEC ) = −(x∗ + y∗)N−3rcy∗

(N − 1)(N − 2)

N
,

∂

∂y
(PC − PEC ) = −(x∗ + y∗)N−3rc(N − 1)

(N − 1)y∗ + x∗

N
,

∂

∂x
(PD − PEC ) = (x∗ + y∗)N−3

rc(N − 1)

N
[(N − 1)x∗ + y∗],

∂

∂y
(PD − PEC ) = (x∗ + y∗)N−3

rcx∗(N − 1)(N − 2)

N
.

Then, we define that p = ∂ f
∂x (x∗, y∗) ∂g

∂y (x
∗, y∗) −

∂ f
∂y (x∗, y∗) ∂g

∂x (x∗, y∗) and q = ∂ f
∂x (x∗, y∗) +

∂g
∂y (x

∗, y∗). Thus, we have

p = ∂ f

∂x
(x∗, y∗) ∂g

∂y
(x∗, y∗)

− ∂ f

∂y
(x∗, y∗) ∂g

∂x
(x∗, y∗)

= x∗y∗(1 − x∗ − y∗)
[

∂

∂x
(PC − PEC )

∂

∂y
(PD−PEC )− ∂

∂y
(PC−PEC )

∂

∂x
(PD−PEC )

]

= x∗y∗(1 − x∗ − y∗)
(x∗ + y∗)2N−4r2c2(N − 1)3/N 2 > 0,

and

q = ∂ f

∂x
(x∗, y∗) + ∂g

∂y
(x∗, y∗)

= x∗(1 − x∗) ∂

∂x
(PC − PEC )

+ y∗(1 − y∗) ∂

∂y
(PD − PEC )

− x∗y∗
[

∂

∂x
(PD − PEC ) + ∂

∂y
(PC − PEC )

]

= x∗y∗(x∗ + y∗)N−3rc(N − 1)(N − 2)

[(y∗ − x∗) + (1 − y∗) − (1 − x∗)]/N
= 0.

We have q2 − 4p < 0 and q = 0; therefore, the
eigenvalues of the Jacobian matrix corresponding
to the interior equilibrium point are pure imaginary.
The dynamics analysis of the interior of S3 and the
stability of interior fixed point can see the following
subsection.

��

2.3 The Hamiltonian system

Theorem 3 System (1) or (7) is a conservative Hamil-
tonian system.

Proof We introduce a new variable ε = x
x+y , which

represents the fraction of cooperators among mem-
bers who do not contribute to the exclusion pool. This
yields

ε̇ = xy

(x + y)2
(PC − PD) = −ε(1 − ε)(PD − PC ).

(18)

On the other hand, ż = z(PEC − P̄), where

P̄ = x PC + yPD + zPEC

= x(PC − PD)+(1−z)(PD − PEC )+PEC . (19)

Thus, we have

ż = z[x(PD − PC ) − (1 − z)(PD − PEC )], (20)

where

PD − PC = (1 − z)N−1 rc(N − 1)

N
− rc + c, (21)
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PD − PEC = (1 − z)N−1 rc(N − 1)x

N (1 − z)
− rc + c + δP .

(22)

Accordingly, the equation system becomes
⎧
⎨

⎩

ε̇ = −ε(1 − ε)[(1 − z)N−1 rc(N − 1)

N
− rc + c],

ż = z(1 − z)[rc − c − δP − ε(rc − c)].
(23)

The separability of the factors allows us to write

dz

dε
= z(1 − z)

(1 − z)N−1 rc(N−1)
N − rc + c

rc − c − δP − ε(rc − c)

−ε(1 − ε)
,

such that
∫

(1 − z)N−1 rc(N−1)
N − rc + c

z(1 − z)
dz

=
∫

rc − c − δP − ε(rc − c)

−ε(1 − ε)
dε. (24)

The integral of the right-hand side is

(rc−c−δP )[log(1−ε) − log(ε)]−(rc−c) log(1 − ε)

= −δP log(1 − ε) − (rc − c − δP ) log(ε).

The integral of the left-hand side is

(rc − c)[log(1 − z) − log(z)]
+rc(N − 1)

N

∫
(1 − z)N−2

z
dz,

where
∫

(1 − z)N−2

z
dz =

∫
1 + ∑N−2

k=1

(N−2
k

)
(−z)k

z
dz

=
N−2∑

k=1

(
N − 2

k

)

(−1)k
zk

k
+ log(z) + Const. (25)

In this way, we identify the constant of motion

H(ε, z) = −δP log(1 − ε) − (rc − c − δP ) log(ε)

+ (rc − c)[log(1 − z) − log(z)]

+
N−2∑

k=1

(
N − 2

k

)

(−1)k
zk

k
+ log(z). (26)

Therefore, we have

Ḣ = ∂H

∂ε
ε̇ + ∂H

∂z
ż = 0. (27)

Thus, the system is conservative and all constant level
sets of H correspond to closed curves. Besides, the inte-
rior fixed point is neutrally stable surrounded by those
closed and periodic orbits (see [62,67] for details),
which indicates that the introduction of the prosocial
pool exclusion strategy can stabilize the coexistence of
cooperators and defectors by forming periodic oscil-
lations in the absence of second-order prosocial pool
exclusion. ��

2.4 Numerical example

Example 1 As seen in Theorems 1 and 2, for r < N
and rc − c − δP > 0 the dynamics of system (1) or
(7) have been presented in simplex S3 (see Fig. 1b).
We show that there are four fixed points, and three of
them are the vertex equilibrium points, that is, all C
(x = 1), all D (y = 1), and all EC (z = 1), cor-
responding to three vertices of the simplex S3, respec-
tively. Besides, there exists an interior equilibrium. The
result suggests that when defectors can be excluded by
prosocial pool excluders, C, D, and EC could coex-
ist by forming a rock–paper–scissors circle [68,69].
As shown in Fig. 1a, time series of the frequencies of
these three strategies reveal that the population follows
periodic oscillations among C, D, and EC . And they
correspond to the close circle shown in Fig. 1b.

3 Antisocial pool exclusion without second-order
exclusion

3.1 Modeling

We further introduce a new control strategy, antiso-
cial pool exclusion strategy (ED), into the model in
Sect. 2. Cooperator will also contribute c to the com-
mon pool while defectors contribute nothing. The ED
individuals do not contribute to the PGG but invest δA,
which works as a control parameter, to the antisocial
exclusion pool, and the EC players not only contribute
c to the PGG but also invest δP to the prosocial exclu-
sion pool. In the absence of second-order exclusion, we
assume that they exclude cooperators as well as proso-
cial excluders since the latter also contributes to the
common pool. As previously, in the absence of second-
order exclusion, prosocial pool excluders exclude those
who do not contribute to the PGG including defectors
and ED individuals. Thus, there are four strategies
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Fig. 1 Evolutionary dynamics of prosocial pool exclusion with-
out second-order exclusion. a Time series of the frequencies
of three strategies C (cooperators, black dot line), D (defec-
tors, red solid line), and EC (excluding cooperators, blue dash
dot line). The population system displays periodic oscillations
among C, D, and EC . b The dynamics of the system with coop-
erators, defectors, and prosocial pool excluders in the simplex S3.

The triangle represents the state space S3 = {(x, y, z) : x, y, z ≥
0, x + y + z = 1}, where x, y, z denote the frequencies of coop-
erators, defectors, and excluding cooperators, respectively. The
open circles represent unstable equilibria, and the three corners
are saddle points. There exists a fixed point in the S3, and it is
neutrally stable surrounded by closed orbits. Parameters: N = 5,
r = 3, c = 1, and δp = 0.5. (Color figure online)

in the system, namely C, D, EC , and ED, respec-
tively. We denote by x , y, z, and w the frequencies
of these strategies, respectively. Thus, x , y, z, w ≥ 0
and x+ y+z+w = 1.We also use replicator equations
to depict the evolutionary dynamics of the system as

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋ = x(PC − P̄),

ẏ = y(PD − P̄),

ż = z(PEC − P̄),

ẇ = w(PED − P̄),

(28)

where P̄ = x PC + yPD + zPEC + wPED describes
the average payoff of the population.

Next, we calculate the expected payoffs for each
strategy. As previously, we consider the perfect exclu-
sion. Thus, defectors can get nothing from the PGG if
the number of EC individuals is nonzero, and this is the
same to cooperators when there exist ED individuals
in the group.

Accordingly, the expected payoff of defectors can
be given as

PD =
N−1∑

NC=0

(
N − 1

NC

)

xNC (1 − x − w − z)N−NC−1

rcNC

N
+

N−1∑

NC=0

N−NC−1∑

NED=1

(
N − 1

NC

)

(
N − NC − 1

NED

)

xNCwNED

× (1 − x − w − z)N−NED−NC−1

rcNc/(N − NC )

= (1 − w − z)N−1 rcx(N − 1)

N (1 − w − z)

+ rc[(1 − z)N−1x(1 − w − x − z)

+wxN − x(1 − w − z)N−1

(1 − x − z)]/[(1 − x − z)(1 − w − x − z)],
where the first term on the right side denotes the payoff
of defectors when there are no ED individuals, while
the second term represents the obtained payoff when
there are ED individuals. And (1 − w − z)N−1 repre-
sents the probability that there are no excluders in the
N − 1 coplayers.

Similarly, cooperators will be excluded if there exist
ED individuals. Thus, in a group without ED, the
expected payoff of cooperators is given by

PC =
N−1∑

NC=0

(
N − 1

NC

)

xNC (1 − x − w − z)N−NC−1

rc(NC + 1)

N
+

N−1∑

NEC=1

N−1−NEC∑

NC=0

(
N − 1

NEC

)

(
N − 1 − NEC

NC

)

zNEC xNC

× (1 − x − w − z)N−NEC−NC−1rc − c
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= (1 − w − z)N−1
[

rcx(N − 1)

N (1 − w − z)
+ rc

N

]

+ rc[(1 − w)N−1 − (1 − w − z)N−1] − c,

where the first term on the right side represents the pay-
off of cooperators when the number of EC individuals
is zero, while the second term denotes the expected
payoff of cooperators when there exist EC individuals
in the group.

Since EC individuals can only get the payoff from
the game when the number of ED individuals is zero,
we have

PEC =
N−1∑

NEC=0

N−1−NEC∑

NC=0

(
N − 1

NEC

)(
N − 1 − NEC

NC

)

xNC

× zNEC (1−x−w−z)N−NC−NEC−1rc − c − δP

= (1 − w)N−1rc − c − δP .

Similarly, we can give the payoff expression for ED
individuals as

PED =
N−1∑

NC=0

N−NC−1∑

NED=0

(
N − 1

NC

)(
N − NC − 1

NED

)

xNC wNED

× (1 − x − w − z)N−NED−NC−1 rcNc

N − NC
− δA

= rcx[(1 − z)N−1 − xN−1]
1 − x − z

− δA.

3.2 Equilibria and their stabilities

In order to study the fixed points in the system and do
the stability analysis, we define that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k(x, y, z) = x[(1 − x)(PC − PED)−y(PD−PED)

− z(PEC − PED)],
m(x, y, z) = y[(1 − y)(PD − PED)−x(PC−PED)

− z(PEC − PED)],
h(x, y, z) = z[(1 − z)(PEC − PED)−y(PD−PED)

− x(PC − PED)].

Accordingly, the Jacobian matrix of the system is writ-
ten as

J =
⎡

⎢
⎣

∂k(x,y,z)
∂x

∂k(x,y,z)
∂y

∂k(x,y,z)
∂z

∂m(x,y,z)
∂x

∂m(x,y,z)
∂y

∂m(x,y,z)
∂z

∂h(x,y,z)
∂x

∂h(x,y,z)
∂y

∂h(x,y,z)
∂z

⎤

⎥
⎦ . (29)

Theorem 4 The evolutionary dynamics of four strate-
gies are described in the simplex S4 = {(x, y, z, w) :
x, y, z, w ≥ 0, x+ y+ z+w = 1}, where the four ver-
texes, namely D (y = 1), ED (w = 1), EC (z = 1),
and C (x = 1), are unstable equilibria. Besides, there

exists a boundary equilibrium (0, 0, [ c+δP−δA
rc ] 1

N−1 , 1−
[ c+δP−δA

rc ] 1
N−1 ) on the edge EC–ED, which is unstable

when r < N and rc − c − δP > 0 are satisfied.

Proof (1) For (x, y, z, w) = (0, 0, 0, 1), the Jacobian
is

J =
⎡

⎣
δA − c 0 0

0 δA 0
0 0 δA − c − δP

⎤

⎦ ,

and thus, this fixed point is unstable.
(2) For (x, y, z, w) = (1, 0, 0, 0), the Jacobian is

J =
⎡

⎣
rc(N − 2) + c − δA a12 a13

0 c − rc/N 0
0 0 −δP

⎤

⎦ ,

where a12 = rc(N−1)2/N−δA and a13 = rc(N−
2) + c+ δP − δA; thus, this fixed point is unstable.

(3) For (x, y, z, w) = (0, 1, 0, 0), the Jacobian is

J =
⎡

⎣

rc
N − c 0 0

c−δA − rc/N −δA −(rc − c − δP + δA)

0 0 rc − c − δP

⎤

⎦ ,

and thus, this fixed point is unstable since rc− c−
δP > 0.

(4) For (x, y, z, w) = (0, 0, 1, 0), the Jacobian is

J =
⎡

⎣
δP 0 0
0 −(rc − c − δP ) 0

−(rc − c + δA) −δA −(rc − c − δP + δA)

⎤

⎦ ;

thus, this fixed point is unstable.

(5) For (x, y, z, w) = (0, 0, [ c+δP−δA
rc ] 1

N−1 , 1 −
[ c+δP−δA

rc ] 1
N−1 )

J =
⎡

⎣
δP 0 0
0 δA 0
a31 a32 (N − 1)(1 − z)(c + δP − δA)

⎤

⎦ ,

where a31 = rc[(N − 1)zN−1(1 − z) − z(1 −
z)N−1] − zδP and a32 = (1− z)(N − 1)rczN−1 −
zδA; thus, this fixed point is unstable. ��
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In addition, it is difficult to theoretically determine
the interior equilibrium and its stability, and we do
some numerical calculations for the representative sets
of model parameters in what follows.

3.3 Numerical example

Example 2 As shown in Fig. 2, the four vertices C, D,

EC , and ED, respectively, correspond to the four
homogeneous states inwhich the population consists of
all the cooperators (x = 1), all the defectors (y = 1),
all the prosocial excluders (z = 1), or all the antiso-
cial excluders (w = 1), and each homogeneous state
is unstable (see Theorem 4). On the edge EC–ED,
there exists an unstable boundary equilibrium when
0 < c + δP − δA < rc (Fig. 2c) (also see Appendix
A for theoretical analysis about the boundary faces of
S4). In addition, we find that the population system can
exhibit a heteroclinic circle where cooperative strategy
can coexist with other types of strategies (Fig. 2a, b).

4 Prosocial pool exclusion with second-order
exclusion

4.1 Modeling

Based on the model in Sect. 2, we consider an extended
model including second-order exclusion under which
cooperators (second-order free-riders) will also be
excluded by prosocial excluders. In this scenario, the
expected payoff for cooperators is given by

PC =
N−1∑

NC=0

(
N − 1

NC

)

xNC (1 − x − z)N−NC−1

rc(NC + 1)

N
− c

= (1 − z)N−1 rc(1 − z + Nx − x)

N (1 − z)
− c, (30)

and the expected payoff for defectors is the same to
Eq. (2). But the expected payoff of EC individuals is
changed to

PEC =
N−1∑

NC=0

N−1−NC∑

NEC=0

(
N − 1

NC

)

(
N − 1 − NC

NEC

)

xNC zNEC

× (1 − x − z)N−NC−NEC−1 rc(NC+NEC+1)

NEC+1
− c − δP

= rcx[1 − (1 − z)N−1]
z

+ rc − c − δP . (31)

Accordingly, the dynamical system becomes to
{
ẋ = x[(1 − x)(PC − PEC ) − y(PD − PEC )],
ẏ = y[(1 − y)(PD − PEC ) − x(PC − PEC )],

(32)

where

PC − PEC = (x + y)N−1 rc[x(N − 1)/(x + y) + 1]
N

− rcx[1 − (x + y)N−1]
1 − x − y

− rc + δP ,

(33)

PD − PEC = (x + y)N−1 rc(N − 1)x

N (x + y)

− rcx[1 − (x + y)N−1]
1 − x − y

− rc + c + δP .

(34)

By solving PC = PD , we have (x + y)N−1 rc
N = c.

Obviously, there is no interior equilibrium point for
r < N .

Then, we explore the dynamics on each edge of the
face C − D − EC . On the edge C−EC , we have
y = 0 resulting in ż = z(1 − z)(PEC − PC ) =
z(1− z)[ rc(1−xN−1)

1−x − δP ]. Since rc(1−xN−1)
1−x increases

with increasing x , the evolutionary direction goes from
C to EC when δP < rc. The dynamics on other two
edges C − D and D−EC are same to Sect. 2.

4.2 Equilibria and their stabilities

Based on the above analysis, we know that there exists
only three vertex equilibrium points. In this subsection,
we explore the stability of the three fixed points.

Theorem 5 The dynamical system only has three ver-
tex equilibrium points. In the conditions of r < N and
δP < rc − c, the vertex EC (z = 1) is stable, while
the other two vertices (x = 1 and y = 1) are both
unstable.

Proof (1) For (x, y, z) = (0, 0, 1), the Jacobian is

J =
[
δP − rc 0

0 −rc + c + δP

]

;

123



758 L. Liu et al.

0 800 1600 2400 3200 4000
0.0

0.2

0.4

0.6

0.8

1.0

Fr
eq

ue
nc

y

Time

 D
 ED
 EC
 C

EC

C

ED

D

EDEC EC

C D

EC

(a) (b) (c)

Fig. 2 Evolutionary dynamics of cooperators (C), defectors (D),
excluding cooperators (EC), and excluding defectors (ED) in
the absence of second-order exclusion. In a we show the time
series of the frequencies of four strategies, namely C (green dot
line), D (black line), EC (blue dash line), and ED (red dash dot
line). b The evolutionary trajectories in simplex S4, where open
circles represent unstable fixed points. The four strategies can

coexist in the group. c The replicator dynamics on the bound-
ary faces of the simplex S4. These four strategies can coexist in
the simplex S4 by exhibiting a heteroclinic circle. Initial condi-
tions are: (x, y, z, w) = (0.1, 0.3, 0.3, 0.3). Other parameters
are N = 5, r = 3, c = 1, δP = 0.5, and δA = 0.5. (Color figure
online)

thus, the fixed point is stable since δP < rc and
rc − c − δP > 0.

(2) For (x, y, z) = (1, 0, 0), the Jacobian is

J =
[
rc(N−1)−δP rc(N−1)−δP−c+rc/N

0 c−rc/N

]

;

thus, the fixed point is unstable since rc(N − 1) −
δP > 0 and r < N .

(3) For (x, y, z) = (0, 1, 0), the Jacobian is

J =
[

rc/N − c 0
rc − δP − rc/N rc − c − δP

]

;

thus, the fixed point is unstable since rc−c−δP >

0. ��

4.3 Numerical example

Example 3 As shown in Fig. 3, in the presence of
second-order prosocial exclusion, the population sys-
tem will end up with a homogeneous state of all
EC individuals, which is consistent with Theorem 5.
Indeed, in this scenario the C − D−EC cycle can
be broken easily in the cooperative state. Without
second-order exclusion, prosocial pool excluders are
invaded by cooperators, but prosocial pool excluders
who exclude cooperators are protected from such an
invasion. The competitions between other strategies are

same as Fig. 1, that is, cooperators are invaded by defec-
tors, and excluders invade defectors.

5 Antisocial pool exclusion with second-order
exclusion

5.1 Modeling

In this section, we investigate the dynamics of the four
strategies in the scenario of second-order exclusion
where excluders fully exclude their respective non-
excluding types. That is, prosocial excluders exclude
cooperators, defectors, and antisocial excluders, while
antisocial excluders exclude cooperators, prosocial
excluders, and defectors. Thus, when some EC and
ED players are selected simultaneously in the same
group, all participants are supposed to be excluded from
the group and no one receives the benefits of the PGG.

Accordingly, the expected payoffs of defectors,
cooperators, prosocial excluders, and antisocial
excluders can be, respectively, given as

PD =
N−1∑

NC=0

(
N − 1

NC

)

xNC (1 − x − w − z)N−NC−1

rcNC

N

= (1 − w − z)N−1 rcx(N − 1)

N (1 − w − z)
, (35)
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Fig. 3 Evolutionary dynamics of prosocial pool exclusion with
second-order exclusion. a Time courses of the frequencies of
three strategiesC (cooperators, black dot line), D (defectors, red
solid line), and EC (excluding cooperators, blue dash dot line).

b Evolutionary trajectories in C − D−EC simplex. When con-
sidering second-order exclusion, the trajectory converges to the
homogeneous state of all prosocial pool excluders. Parameters
are same as Fig. 1. (Color figure online)

PC =
N−1∑

NC=0

(
N − 1

NC

)

xNC (1 − x − w − z)N−NC−1

rc(NC + 1)

N
− c

= (1 − w − z)N−1[ rcx(N − 1)

N (1 − w − z)
+ rc

N
] − c,

(36)

PEC =
N−1∑

NEC=0

N−1−NEC∑

NC=0

(
N − 1

NEC

)(
N − 1 − NEC

NC

)

× xNC zNEC (1 − x − w − z)N−NC−NEC−1

× rc(NC + NEC + 1)

NEC + 1
− c − δP

= rc(1 − w)N−1 x + z

z
− (1 − w − z)N−1 rcx

z
− c − δP , (37)

and

PED =
N−1∑

NED=0

N−1−NED∑

ND=0

(
N − 1

NED

)(
N − 1 − NED

ND

)

× xN−NED−ND−1(1 − x − y − z)NED yND

× rc(N − NED − ND − 1)

NED + 1
− δA

= rcx[(1 − z)N−1 − (x + y)N−1]
1 − x − y − z

− δA. (38)

5.2 Equilibria and their stabilities

We know that PC < PD; thus, there is no interior equi-
librium in the simplex S4. The dynamics on each edge
and each face of S4 are presented in Appendix B. Then,
we investigate the stability of the four vertex equilibria
and the boundary fixed points.

Theorem 6 In the condition of r < N and δP <

rc − c, the vertex EC (z = 1) is stable, while the
other three vertex fixed points (x = 1, y = 1, and
w = 1) and the boundary fixed point ((x, y, z, w) =
(0, 0, [ c+δP−δA

rc ] 1
N−1 , 1−[ c+δP−δA

rc ] 1
N−1 )) are unstable.

Proof (1) For (x, y, z, w) = (0, 0, 0, 1), the Jacobian
is

J =
⎡

⎣
δA − c 0 0

0 δA 0
0 0 δA − c − δP

⎤

⎦ ;

thus, this fixed point is unstable.
(2) For (x, y, z, w) = (1, 0, 0, 0), the Jacobian is

J=
⎡

⎣
rc(N − 2) + c − δA a12 a13

0 c − rc
N 0

0 0 rc(N − 1)−δP

⎤

⎦ ,

where a12 = rc(N − 1)(1 − 1
N ) − δA and a13 =

c− rc+ δP − δA; thus, this fixed point is unstable.
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Fig. 4 Evolutionary dynamics of cooperators, defectors, exclud-
ing cooperators, and excluding defectors in the presence of
second-order exclusion. a The time series of frequencies of four
strategiesC (green dot line), D (black line), EC (blue dash line),
and ED (red dash dot line). bThe evolutionary trajectories in the

C − D−ED–EC simplex, where filled circles represent stable
fixed points and open circles represent unstable fixed points. c
The replicator dynamics on the boundary faces of the simplex S4.
Parameters are N = 5, r = 3, c = 1, δP = 0.5, and δA = 0.5.
(Color figure online)

(3) For (x, y, z, w) = (0, 1, 0, 0), the Jacobian is

J =
⎡

⎣

rc
N − c 0 0

c − δA − rc
N −δA −(rc − c − δP + δA)

0 0 rc − c − δP

⎤

⎦ ;

thus, this fixed point is unstable.
(4) For (x, y, z, w) = (0, 0, 1, 0), the Jacobian is

J =
⎡

⎣
−rc + δP 0 0

0 −(rc − c − δP ) 0
c − δA −δA −(rc − c − δP + δA)

⎤

⎦ ;

thus, this fixed point is stable.

(5) For (x, y, z, w) = (0, 0, [ c+δP−δA
rc ] 1

N−1 ,

1 − [ c+δP−δA
rc ] 1

N−1 ), the Jacobian is

J =
⎡

⎣
δA − c 0 0

0 δA 0
a31 a32 rc(N − 1)zN−1(1 − z)

⎤

⎦ ,

where a31 = rcz(1 − z)[NzN−2 − (1 − z)N−2] −
z(δA − c) and a32 = rc(N −1)(1− z)zN−1 − zδA;
thus, this fixed point is unstable. ��

5.3 Numerical example

Example 4 As shown in Fig. 4, when second-order
exclusion for prosocial and antisocial exclusion is con-
sidered, EC is the only stable fixed point. Figure 4 also

suggests that the excluding cooperator strategy is the
most advantaged control strategy, which can dominate
the whole population. Accordingly, the other three ver-
tices and the boundary fixed point are unstable, and
there are no other equilibria in the interior of S4.

6 Conclusions

In this study, we have introduced two forms of con-
trol strategies for pool exclusion, that is, prosocial pool
exclusion and antisocial pool exclusion, into a popu-
lation of agents who play the public goods game, and
then study the evolutionary dynamics of cooperation by
means of replicator equations with the control strate-
gies of pool exclusion. Our study is different from pre-
vious studies, which can be reflected in the following
two aspects. First, we consider that pool excluders con-
tributed a constant cost to a central control authority to
expel individuals. Second, we incorporate the antiso-
cial exclusion into the public goods game for the first
time and study its control effects on public cooperation
in infinite well-mixed populations.

Wehave shown that prosocial pool excluders can sta-
bilize the coexistence of cooperators and defectors by
forming periodic oscillations in the absence of second-
order prosocial pool exclusion. However, in the pres-
ence of second-order exclusion, the periodic oscilla-
tions disappear, and the population system which con-
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sists of these three strategies will end up with a homo-
geneous state in which all play EC .

Next we have explored the evolution of antisocial
pool exclusion and found that the population system
can exhibit a heteroclinic circle where cooperative
strategy can coexist with other types of strategies in
the absence of second-order exclusion. Lastly, we have
explored the competition among these four strategies
when considering second-order exclusion.We find that
excluding cooperators will occupy the whole popula-
tion, regardless of the initial conditions.

In closing, we stress that pool exclusion strategies
allow cooperation to persist even when antisocial pool
exclusion is taken into account. This is in stark contrast
to the effects induced by antisocial punishment. More
specifically, in the framework of prosocial pool pun-
ishment, full defection is the only global stable state
[70]. While when antisocial pool punishment is fur-
ther considered, both theoretical studies and behavioral
experiments demonstrate that selection favors substan-
tial levels of antisocial punishment [48,49]. Although
the presence of antisocial exclusion can still inhibit
cooperation, the destructive effect of antisocial exclu-
sion on cooperation is weaker than that of antisocial
punishment. Therefore, we can conclude that proso-
cial pool exclusion is always a more effective control
mechanism to curb free-riders than punishment.

Acknowledgements This researchwas supportedby theNatio-
nal Natural Science Foundation of China (Grant No. 61503062)
and by the Slovenian Research Agency (Grant Nos. J1-7009,
J4-9302, J1-9112 and P1-0403).

Compliance with ethical standards

Conflict of interest The authors declare that no competing inter-
est exist.

Appendixes

Appendix A

In order to explore the evolutionary dynamics of S4,
whichwe discuss in Sect. 3, we first study the dynamics
of each edge of S4.

On the edge D−ED (x + z = 0 and y + w = 1),
we have ẏ = y(1− y)(PD − PED) = y(1− y)δA > 0,
and thus, the direction of the dynamics goes from ED
to D.

On the edge C−EC (y + w = 0 and x + z = 1),
we have ẋ = x(1− x)(PC − PEC ) = x(1− x)δP > 0;
therefore, the direction of the evolution goes from EC
to C .

On the edge C − D (z + w = 0 and x + y = 1), we
have ẏ = y(1−y)(PD−PC ) = −y(1−y)( rcN −c) > 0;
therefore, the direction of the evolution goes from C to
D.

On the edge C−ED (z + y = 0 and x + w = 1),
we have ẇ = w(1 − w)(PED − PC ) = w(1 −
w){ rc[1−w−(1−w)N−1]

w
− δA + c}; therefore, when the

antisocial exclusion cost is less than the cost of coop-
eration, namely δA < c, the direction of the evolution
goes from C to ED.

On the edge D−EC (x +w = 0 and y+ z = 1), we
have ż = z(1−z)(PEC−PD) = z(1−z)(rc−c−δP ) >

0, and thus, the direction of the dynamics goes from D
to EC .

On the edge ED−EC (x+y = 0 andw+z = 1),we
have ẇ = w(1−w)(PED − PEC ) = w(1−w)[−δA +
c+δP−(1−w)N−1rc]; thus, there exist an equilibrium,

namely w = 1 − [ c+δP−δA
rc ] 1

N−1 .
Next, we investigate the evolutionary dynamics of

each face. We have discussed the dynamics on the face
C − D−EC in Sect. 2, and the three strategies can
coexist in the population.

On the faceC−D−ED (z = 0 and x+ y+w = 1),
we have

PC =
N−1∑

NC=0

(
N − 1

NC

)

xNC (1 − x − w)N−NC−1

× rc(NC + 1)

N
− c

= (1 − w)N−1 rc

N

1 − w + (N − 1)x

1 − w
− c,

PED =
N−1∑

NC=0

(
N − 1

NC

)

xNC (1 − x)N−NC−1 rcNC

N − NC
− δA

= rcx(1 − xN−1)

1 − x
− δA,

PD =
N−1∑

NC=0

(
N − 1

NC

)

xNC (1 − x − w)N−NC−1 rcNC

N

+
N−1∑

NC=0

N−NC−1∑

NED=1

(
N − 1

NC

)(
N − NC − 1

NED

)

xNC wNED

× (1 − x − w)N−NED−NC−1 rcNc

N − NC

= (1 − w)N−1 rc

N

(N − 1)x

1 − w
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+ rcx[(1 − w − x)+wxN−1−(1 − w)N−1(1 − x)]
(1 − x)(1 − w − x)

.

We know that PC < PD is satisfied, and thus, there is
no interior fixed point. In addition, the stability of three
boundary points can be described as follow.

(1) For (x, y, w) = (0, 0, 1), the Jacobian is

J =
[−c + δA 0

0 δA

]

;

thus, the fixed point is unstable.
(2) For (x, y, w) = (1, 0, 0), the Jacobian is

J =
[
rc(N − 2) + c − δA rc(N − 2) − δA + rc

N
0 c − rc

N

]

;

thus, the fixed point is unstable.
(3) For (x, y, w) = (0, 1, 0), the Jacobian is

J =
[ rc

N − c 0
− rc

N + c − δA −δA

]

;

thus, the fixed point is stable.

On the face D−EC–ED (x = 0 and y+z+w = 1),
the expected payoffs for these three strategies can be
given by

PEC =
N−1∑

NEC=0

(
N − 1

NEC

)

zNEC (1 − z − w)N−NEC−1rc

− c − δP ,

= (1 − w)N−1rc − c − δP (39)

PD = 0, (40)

PED = −δA. (41)

Based on the above payoff expressions, we know that
there is no interior fixed point. Furthermore, the stabil-
ity of three boundary equilibria can be given as follows.

(1) For (y, z, w) = (0, 0, 1), the Jacobian is

J =
[
δA 0
0 δA − c − δP

]

;

thus, this equilibrium is unstable.

(2) For (y, z, w) = (0, 1, 0), the Jacobian is

J =
[−rc + c + δP 0

−δA −rc + c + δP − δA

]

;

thus, this equilibrium is stable.
(3) For (y, z, w) = (1, 0, 0), the Jacobian is

J =
[−δA −(rc − c − δP + δA)

0 rc − c − δP

]

;

thus, this equilibrium is unstable.

(4) For (y, z, w) = (0, [ c+δP−δA
rc ] 1

N−1 ,

1 − [ c+δP−δA
rc ] 1

N−1 ), the Jacobian is

J =
[

δA 0
a21 (1 − z)(N − 1)zN−1rc

]

,

where a21 = (1 − z)(N − 1)zN−1rc − zδA; thus,
this equilibrium is unstable.

On the face ED–C–EC (y = 0 and x+ z+w = 1),
the expected payoffs for these three strategies can be
described by

PEC =
N−1∑

NEC=0

(
N − 1

NEC

)

zNEC (1 − z − w)N−NEC−1rc

− c − δP

= (1 − w)N−1rc − c − δP , (42)

PC = (1 − w)N−1rc − c, (43)

PED =
N−1∑

NED=0

(
N − 1

NED

)

xN−NED−1(1 − z − x)NED

× rc(N − NED − 1)

NED + 1
− δA

= rcx[(1 − z)N−1 − xN−1]
1 − x − z

− δA, (44)

Based on the payoff expressions, we can get that
PC > PEC . Therefore, there is no interior fixed point
in S3. And the stability of three boundary fixed points
can be described as follows.

(1) For (x, z, w) = (0, 0, 1), the Jacobian is

J =
[
δA − c 0

0 δA − c − δP

]

;

thus, this equilibrium is stable,
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(2) For (x, z, w) = (0, 1, 0), the Jacobian is

J =
[

δP 0
−(rc − c + δA) −(rc − c − δP + δA)

]

;

thus, this equilibrium is unstable.
(3) for (x, z, w) = (1, 0, 0), the Jacobian is

J =
[
rc(N − 2) + c − δA a12

0 −δP

]

,

where a12 = rc(N − 2) + c + δP − δA, and thus,
this equilibrium is unstable.

(4) For (x, z, w) = (0, [ c+δP−δA
rc ] 1

N−1 , 1 −
[ c+δP−δA

rc ] 1
N−1 ), the Jacobian is

J =
[
δP 0
a21 rc(N − 1)(1 − z)zN−1

]

,

where a21 = rcz(1 − z)[(N − 1)zN−2 − (1 −
z)N−2] − zδP ; thus, this equilibrium is unstable.

Appendix B

Then, we explore the evolutionary dynamics of S4,
which we discuss in Sect. 5.

On the edge C−EC (y + w = 0 and x + z =
1), we have ż = z(1 − z)(PEC − PC ) = z(1 −
z){ rc[1−(1−z)N−1]

z − δP } since 1−(1−z)N−1

z decreases
with increasing z. Thus, there is not interior equilib-
rium for δP < rc. As a result, the direction of the
evolution goes from C to EC . The dynamics of other
edges of simplex S4 are same to those in Sect. 3.

Next, we investigate the evolutionary dynamics on
each face. We have discussed the situation on the face
C − D−EC in Sect. 4. Then, on the face C − D−ED
(z = 0 and x + y + w = 1), the expected payoffs for
these three strategies can be given as

PC =
N−1∑

NC=0

(
N − 1

NC

)

xNC (1 − x − w)N−NC−1

× rc(NC + 1)

N
− c

= (1 − w)N−1 rc[(N − 1)x + (1 − w)]
N (1 − w)

− c, (45)

PD =
N−1∑

NC=0

(
N − 1

NC

)

xNC (1 − x − w)N−NC−1 rcNC

N

= (1 − w)N−1 rc(N − 1)x

N (1 − w)
, and (46)

PED =
N−1∑

NED=0

N−1−NED∑

ND=0

(
N − 1

NED

)(
N − 1 − NED

ND

)

× xN−NED−ND−1(1 − x − y)NED yND

× rc(N − NED − ND − 1)

NED + 1
− δA

= rcx[1 − (x + y)N−1]
1 − x − y

− δA. (47)

Since PD > PC , there is no interior point. And the
stability of three boundary points can be described as
follows

(1) For (x, y, w) = (0, 0, 1), the Jacobian is

J =
[−c + δA 0

0 δA

]

;

thus, this fixed point is unstable.
(2) For (x, y, w) = (1, 0, 0), the Jacobian is

J =
[
rc(N − 2) + c − δA rc(N − 2) − δA + rc

N
0 c − rc

N

]

;

thus, the fixed point is unstable.
(3) For (x, y, w) = (0, 1, 0), the Jacobian is

J =
[ rc

N − c 0
− rc

N + c − δA −δA

]

;

thus, this fixed point is stable.

The dynamic on the face D−EC–ED is the same to
those in the situation without second-order exclusion.
On the face C−EC–ED (y = 0 and x + z + w = 1),
the expected payoffs of these three strategies can be
given by

PC = (1 − z − w)N−1rc − c, (48)

PEC =
N−1∑

NC=0

(
N − 1

NC

)

xNC (1 − x − w)N−NC−1

rcN

N − NC
− c − δP ,

= rc[(1 − w)N − (1 − w − z)N ]
z

− c − δP ,

(49)

123



764 L. Liu et al.

PED =
N−1∑

NED=0

(
N − 1

NED

)

(1 − z − w)N−NED−1wNED

× rc(N − NED − 1)

NED + 1
− δA,

= rcx[(1 − z)N−1 − xN−1]
w

− δA. (50)

Solving PC = PED yieldsw= rcx(1−z)[(1−z)N−2−xN−2]
δA−c ;

therefore, there is not interior fixed point for δA < c.
In addition, the stability of these four boundary points
can be described as follows.

(1) For (x, z, w) = (0, 0, 1), the Jacobian is

J =
[−c + δA 0

0 δA − c − δP

]

;

thus, this fixed point is stable.
(2) For (x, z, w) = (1, 0, 0), the Jacobian is

J =
[
rc(N − 2) + c − δA −(rc − c + δA − δP )

0 rc(N − 1) − δP

]

;

thus, this fixed point is unstable.
(3) For (x, z, w) = (0, 1, 0), the Jacobian is

J =
[−rc + δP 0

c − δA −(rc − c − δP + δA)

]

;

thus, this fixed point is stable.

(4) For (x, z, w) = (0, [ c+δP−δA
rc ] 1

N−1 , 1 −
[ c+δP−δA

rc ] 1
N−1 ), the Jacobian is

J =
[
δA − c 0
a21 rczN−1(1 − z)(N − 1)

]

,

where a21 = rcz(1− z)[NzN−2 − (1− z)N−2]−
z(δA − c); thus, this equilibrium is unstable.
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