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Exploiting Ergodicity for the Analysis of Short Time Series
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A new generally applicable method for analyzing short time series that exploits the ergodic
nature of chaotic systems is presented and tested on a simple example. The method can be
integrated into several existing algorithms and should prove valuable for characterizing short
experimental signals.
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The accurate characterization of dynamics
in an experimental time series is fundamental
for understanding the observed behavior of any
natural or arti�cial system. While numerous
methods are available for this task [1], their
accuracy more or less depends on the availability
of long data sets. This requirement often hinders
productive research from experimental data,
especially in �elds where acquisition of long
data sets is impossible due to intrinsic system
properties or lack of non-invasive recording
techniques that destroy the system's dynamics.
Such instances are frequent in biology, especially
at the cellular level [2], and can also be
encountered in economics [3], astronomy [4], as
well as man-made systems in general.

Here we propose a new approach for
analyzing short time series based on ergodicity
of deterministic chaotic systems [5]. We exploit
the fact that an arbitrarily small neighborhood
of every point that forms the chaotic attractor
is repeatedly visited by the trajectory during
the temporal evolution of the system. Consider
the reconstructed phase space vectors in m
dimensions ~yi = [xi, xi+τ , . . . , xi+(m−1)τ ] that
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were obtained from a short scalar time series
xi [6]. If xi is su�ciently short, the trajectory
may occupy only a small portion of the whole
phase space, as shown in Fig. 1(a). In this case,
it is usually impossible to carry out further
analyses. However, ergodicity assures that the
last point of the trajectory, denoted as ~yn, has
an arbitrary close neighbor ~yj , from which the
trajectory continues, possibly further occupying
the available phase space, as shown in Fig.
1(b). It is thereby crucial to note that j isn't
necessarily the n + 1 point in time. Based on this
observation we conclude that several short time
series segments, although not obtained continuous
in time, i.e. from a single experiment, may
still yield a long enough continuous trajectory
in the phase space to allow further analysis.
Since initial conditions in real-life settings are
never know perfectly it is certain that repetitions
of the same experiment will always yield at
least slightly di�erent time series, thus providing
further information about the underlying system.
Obviously, parameter settings of the system must
be kept constant during repetitions so that
stationarity criteria are not violated [7].

Following the above reasoning let us
summarize the algorithm. Suppose we possess
r short time series each occupying n data
points that were obtained from r repetitions
of an experiment. Altogether then s = rn
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FIG. 1. Reconstructed phase space (d = 3, τ =
17) from 50 randomly selected data segments of the
Lorenz system [8], each occupying n = 200 points. The
line connects points from the 3rd [panels (a) and (b)]
and the 18th [panel (b)] segment.

data points are available for further analysis,
which we can simply merge together, one data
segment after another, to form a new time
series xi, where i = 1, 2, . . . , s (provided points
in all data segments were evenly sampled).
This new time series is discontinuous whenever
(i mod n) = 0. To correct this, each time the
traditional embedding procedure [6] encounters
a point xi where [n − (i mod n)] < (m −
1)τ [~yi cannot be formed without xi+(m−1)τ

going through a discontinuity] a search for a
close phase space neighbor, denoted as ~zj =
[xj , xj−τ , . . . , xj−(m−1)τ ], begins that is less than ε
apart from ~zi+t = [xi+t, xi+t−τ , . . . , xi+t−(m−1)τ ],

where t = [n − (i mod n]. Note that a di�erent
letter is used for these delay vectors since they
are formed backwards in time as opposed to ~yi

, whereas t is introduced in order to start the
search algorithm at the last point of each data
segment to minimize data wastage. Moreover, ~zj

is considered as a suitable close neighbor only if
[n− (j mod n)] ≥ [(m− 1)τ − t] so that the point
xj has enough successors within its own data
segment to completely form the un�nished delay
vector ~yi. The `missing' coordinate xi+(m−1)τ of
the delay vector ~yi is, upon �nding a suitable
~zj , replaced by xj−t+(m−1)τ . Successive delay
vectors then have to be formed from xj onwards,
whereby if xj−t+(m−1)τ is introduced as the m-th
delay coordinate of ~yi, then the �rst coordinate
of ~yi+1 (note that delay vectors are numbered
consecutively) must be xj−t+1. This procedure
has to be repeated until as many points of the
whole data set (i = 1, 2, . . . , s) as possible are
used while keeping ε small. In general, a trade o�
between ε (continuity of the �nal `merged' time
series) and the percent of all occupied data points
has to be made. The whole set of data points can
be viewed as a labyrinth. However, the catch lies
not simply in coming from one end to the other,
but rather to do so in an as continuous manner
as possible, whereby none of the points should
be used more than m times, i.e. each time as a
di�erent delay coordinate. At the end, one obtains
a continuous long set of delay vectors ~yi, i.e. a
continuous trajectory in the phase space, where
the time course of a delay coordinate represents
a new continuous time series that has exactly the
same properties as each individual data segment,
and is due to its extended length suitable for
further analysis.

Note that although the above procedure
assumes that proper embedding parameters m
and τ are known, this must not be the case
in general. The algorithm can be integrated
directly into existing methods for determining
proper embedding parameters [9], whereby those
m and τ that are being considered as suitable
are used for calculations. In fact, the algorithm
can be integrated into any existing methods that
incorporate time operations of the form xa →
xa+b .
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An excellent tool for optimizing the outcome
of the presented algorithm is the determinism
test introduced by Kaplan and Glass [10]. The
test measures average directional vectors in a
coarse-grained m-dimensional embedding space.
If xj−t+(m−1)τ is not a suitable replacement for
xi+(m−1)τ , either because ‖ ~zj − ~zi+t ‖ is too
large, or the trajectory doesn't evolve further
in the same direction, the norm of the average
directional vector of all passes through the box
that occupies the emergent discontinuity will be
smaller than unity (if each pass is treated as a unit
vector). Thus, we may introduce the weighted
average of all lengths of average directional
vectors Λ (de�ned as in [10]) as the crucial
quantity that, for an optimal execution of the
algorithm, has to be maximal. Of course Λ need
not be exactly 1, since the time series itself may
be burdened with measurement error or may
even origin from a stochastic system. The coarse
grained �ow of the phase space that was merged
together from 50 data segments of the Lorenz
system, after the application of the algorithm
with εmax = 0.7 (approximately 1/10 of the
standard deviation of data), is presented in Fig.
2. It can be observed that basically all vectors are
of unit length. Accordingly Λ = 0.99. Since we
demonstrate our results on a numerical example
(the input data segments are noise-free) this high
Λ is not surprising and con�rms the successfulness
of our algorithm.

As a �nal stringent test, we calculate
Lyapunov exponents of the newly obtained
phase space by approximating the �ow with
radial basis function as advocated in [11]. The
obtained results presented in Fig. 3 show excellent
agreement with accurate values obtained with the
help of di�erential equations. Noteworthy, similar
results were also obtained by using polynomial
basis functions [12].

The method introduced in this Letter is
set out to enable time series analysis of very
short data segments by exploiting phase space
ergodicity of chaotic systems. Thereby, the fact
that an arbitrarily small neighborhood of every
point of the chaotic attractor is repeatedly visited
by the trajectory during the temporal evolution
of the system is exploited. Although throughout
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FIG. 2. Directional �ow of the merged phase space
that was coarse grained into a 30× 30× 30 grid. The
length of arrows is equal to the vector norm in 3D,
whereas directions correspond to projections onto the
xi − xi+τ plane.
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FIG. 3. Lyapunov exponents of the merged phase
space shown in Fig. 2. Thin straight lines indicate
accurate values. Thick lines depict the convergence
of the maximal, middle and the lowest Lyapunov
exponent from top to bottom.

the Letter stress is put on deterministic chaotic
systems, which should de�nitely not be assumed
ad hoc when attempting analysis of experimental
time series, the method can be implemented
on any data sets. As always, the outcome
of the method has to be veri�ed by known
determinism [11, 13] and stationarity [7] tests
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so the time series can be deemed suitable for
further analysis. An obvious weak point of the
method is that it assumes multiple short time
series being at hand prior to implementation.
Although conclusions drawn from an experiment
are valid only if the experiment can be repeated
and conclusions veri�ed, this is a rather poor
argument if the experiment is costly or otherwise
di�cult to repeat, as are for example certain
medical conditions like rarely occurring heart
arrhythmia or epileptic seizures. Nevertheless,
there exist several experimental situations that
are currently being studied predominantly
with mathematical modeling and numerical
simulations, as for example e�ects of di�erent

hormones on intracellular calcium oscillations
[14], for which the approach advocated in this
paper may be especially useful.
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