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Abstract

In the present paper, we investigate the blast induced ground motion recorded at the limestone quarry ‘‘Suva Vrela’’ near
Kosjerić, which is located in the western part of Serbia. We examine the recorded signals by means of surrogate data
methods and a determinism test, in order to determine whether the recorded ground velocity is stochastic or deterministic
in nature. Longitudinal, transversal and the vertical ground motion component are analyzed at three monitoring points that
are located at different distances from the blasting source. The analysis reveals that the recordings belong to a class of
stationary linear stochastic processes with Gaussian inputs, which could be distorted by a monotonic, instantaneous, time-
independent nonlinear function. Low determinism factors obtained with the determinism test further confirm the stochastic
nature of the recordings. Guided by the outcome of time series analysis, we propose an improved prediction model for the
peak particle velocity based on a neural network. We show that, while conventional predictors fail to provide acceptable
prediction accuracy, the neural network model with four main blast parameters as input, namely total charge, maximum
charge per delay, distance from the blasting source to the measuring point, and hole depth, delivers significantly more
accurate predictions that may be applicable on site. We also perform a sensitivity analysis, which reveals that the distance
from the blasting source has the strongest influence on the final value of the peak particle velocity. This is in full agreement
with previous observations and theory, thus additionally validating our methodology and main conclusions.
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Introduction

Blasting is commonly performed for hard rock excavation

activities, especially in mining and quarrying, but also in tunnel,

subway, highways and dam construction [1]. When an explosive

charge detonates in a blast hole, the seismic waves transmitted to

the surrounding rock set up a ground motion [2], which can be

strong enough to cause damage to buildings and other man-made

structures [3]. As ground motion directly affects structural

responses, it is very important to study its characteristics in order

to assess the effects of ground vibrations on structures more

reliably [4–5].

Common practice uses peak particle velocity (PPV) to predict

structural responses [6]. For example, severe damage will occur if

PPV exceeds 6 or 23 cm/s for structures located on soil or rock

site, respectively. Some other criteria that relate the structural

response and damage to both PPV and dominant ground motion

frequency, give allowable PPV as frequency dependent [7–8]. In

practice, the value of PPV is usually estimated using various

empirical ground motion attenuation relations [4,9–10]. These

equations are of great interests for field engineers, since they

enable them to predict the maximum ground vibration, depending

on the number of parameters like maximum charge per delay or

distance from the blasting source [2,6,11–14]. However, in spite of

the existing and widely used deterministic engineering models of

blast-induced ground motion, there is still lack of direct

experimental evidence confirming its stochastic or deterministic

nature.

In this paper, our aim is to examine the nature of the behavior

of the blasting induced ground motion by applying methods of

nonlinear time series analysis [15]. In particular, we first wish to

determine whether it is deterministic or stochastic, as this imposes

critical guidelines for further analysis. In [16] it was shown that

earthquake ground motion recorded during the Kraljevo M5.4

earthquake in Serbia was stochastic, in particular belonging to a

class of linear stationary stochastic processes with Gaussian inputs

or perhaps distorted by a monotonic, instantaneous, time-

independent nonlinear function. However, because of the high

frequency contents and rapid attenuation, near field blast

motion spatially varies more significantly than earthquake

ground motion [17], and so it is justified to examine this type of

ground motion independently from earthquake induced vibra-

tions. We note that the dynamics of ground motion induced by

blasting has not yet been investigated by means of nonlinear time

series analysis, even though this analysis was successfully applied in

many other fields of research [18], including Earth and

geophysical sciences [19–21]. These studies have proven that
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nonlinear time series analysis methods have vast potential in

studying various types of experimentally recorded time series.

Besides the analysis of possible stochastic or deterministic nature

of the recorded ground vibrations, we also develop a prediction

model of PPV for the specific case study. Even though there are

already many ground motion predictors, which could give a

reasonable prediction of PPV, there is a justified need for updating

the existing models by including PPV values of new recordings.

Here, the prediction model is developed for the measurements of

ground vibrations induced by blasting performed at limestone

quarry ‘‘Suva Vrela’’ near Kosjerić, which is located in the western

part of Serbia. The blasting was performed at five blasting

locations, with a total of 426 blast holes, and with maximum 176–

207 kg charge per delay. The explosive charge was detonated with

a delay of 25 ms between each interval of blasting. The ground

vibrations were measured at 13 monitoring points, placed at

different distances from the blasting source. For the purpose of

examining the possible presence of stochasticity in the recorded

signal, we chose recordings at a single blasting location and three

different measuring points. For every recording, we analyze all

three components of the recorded velocity, namely the longitudi-

nal, transversal and the vertical component. For the development

of a reliable prediction model, however, we use a total number of

33 blast vibration records.

We chose limestone as a representative rock unit for investigat-

ing ground vibrations because it is the most common rock type in

Serbian quarries, and also because limestone is the predominantly

used rock type for civil engineering purposes. Moreover, blast-

induced vibrations in limestone have been frequently investigated

before, so that there is ample chance for comparing our findings

with previous research. Kahriman [22] established an empirical

relationship (with correlation coefficient r = 0.92) for the prediction

of PPV at a limestone quarry in Istanbul, based on a scaled

distance. Ozkahraman [23] applied a Kuznetsov equation to

predict the mean fragment size from blasting limestone at Goltas

quarry in Turkey. Kesimal et al. [24] investigated the impact of

blast-induced ground motion on slope stability at Arakli-Tasonu

limestone quarry in Trabzon (Turkey). Afeni and Osasan [25]

studied the level of noise generated ground vibrations induced

during blasting operations at the Ewekoro limestone quarry in

Nigeria, and their effect on residential structures within villages

near the quarry. Mohamed [26] developed an artificial neural

network (ANN) model for PPV prediction in a limestone quarry in

Egypt, by analyzing the predictive power of ANN with a different

Table 1. Main technical characteristics of blasting boreholes at one mine location at ‘‘Suva Vrela’’ quarry. Data recorded at this site
are used for surrogate data analysis.*

Borehole No. Depth (m) Amount of explosive (kg) Borehole No. Depth (m) Amount of explosive (kg)

1 19 53 11 17 48

2 19 62 12 17 52

3 19 57 13 17 58

4 19 50 14 18 56

5 19 30 15 18 53

6 19 58 16 18 59

7 19 44 1h 1 2

8 19 58 2h 1 1

9 19 25 3h 3 7

10 17 35 4h 3 7

*Boreholes with index h are horizontal.
doi:10.1371/journal.pone.0082056.t001

Figure 1. Distribution of blasting boreholes and the scheme of detonation order. There are four intervals of blasting, with delayed firing of
25 ms between each interval. Data recorded at this site are used for surrogate data analysis.
doi:10.1371/journal.pone.0082056.g001
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number of input units. Mohammadnejad et al. [27] used artificial

neural networks and support vector machine for the prediction of

blast-induced vibrations in two limestone quarries, obtaining

rather high coefficient of determination (R2 = 0.944).

Hence, the aim of our research is twofold: firstly, we want to

confirm or reject the hypothesis that the strong ground motion is

essentially stochastic and, secondly, we want to develop a site-

specific prediction model of peak particle velocity (PPV). As we

will show, by proving that the recorded signal is nondetermin-

istic by nature, we turn to a single parameter of the recorded

signal (the PPV) and use it to arrive at a reliable prediction

model.

The setup of this paper is as follows. Section 2 provides a brief

description of applied methodology and test procedures, including

the blasting equipment, and the corresponding field work. In

section 3, we perform surrogate data analysis, by testing the three

null hypotheses on the stochastic nature of recorded blast-induced

ground velocity. Next, we conduct a determinism test on the basis

of the optimal embedding delay and the minimum embedding

dimension, as determined for the examined time series. In section

5, we use existing conventional predictors, and evaluate their

predictive power for the recorded PPV, after which we suggest a

new model by using an artificial neural network approach. In the

final section we summarize the main results and outline their

possible implications, as well as give suggestions for further

research.

Methods

1. Field work
As noted above, for the purpose of conducting the surrogate

data analysis, we examine recorded blast-induced ground motion

at a single blasting location and 3 measuring points. The limestone

quarry at ‘‘Suva Vrela’’ near Kosjerić, where the blasting was

performed, is a permanently operating surface excavation site for

extracting limestone, and it has been active for many years.

Blasting is part of daily routine operations. No specific permissions

were therefore required for the blasting studied in our paper. We

also confirm that the field studies did not involve endangered or

protected species. The blasting was performed in a single row, with

16 inclined and 4 horizontal boreholes. First 16 boreholes are

inclined, in order to be parallel with the free face of quarry, while

the last four boreholes are horizontal, in order to blast away the

remnants of the rock that may be broken down by the preceding

blasting. The distance between the inclined boreholes was 1.9–

2.2 m, with depth between 17 and 19 m, while the length of

horizontal boreholes was 1–3.5 m. The amount of explosives was

in the range 30–62 kg for the inclined boreholes, and 1–7 kg for

horizontal boreholes (Table 1). Four intervals of blasting were

performed, with time delay between each interval of 25 ms, in

order to avoid large rock disturbances caused by immediate

explosion in all boreholes (Figure 1).

The velocity of ground oscillation induced by blasting was

measured by mobile seismograph of Vibralok type, with frequency

range 2–250 Hz, sampling of 1000 Hz and trigger levels of 0.1–

200 mm/s. The measuring was performed at three points, located

at different distances from the blasting source (Table 2). Time

series of blast induced ground velocities are given in Figure 2.

2. Analysis of stochasticity
Surrogate data analysis is performed by testing the three null

hypotheses that the observed data belong to some class of linear

systems: (a) data are independent random numbers drawn from

some fixed but unknown distribution; (b) data originate from a

stationary linear stochastic process with Gaussian inputs and (c)

data originate from a stationary Gaussian linear process that has

been distorted by a monotonic, instantaneous, time-independent

nonlinear function [28]. In this paper, the surrogates are generated

by using Matlab toolkit MATS [29], while the zeroth-order

prediction error e is calculated according to the algorithm in C

suggested by Kantz and Schreiber [15].

The results of the surrogate data analysis are further confirmed

by applying the determinism test [30], which is based on the

assumption that if the time series originated from a deterministic

system, the obtained vector field should consist solely of vectors

that have unit length, indicating the average length of all

directional vectors k to be equal to 1. On the other hand, for a

completely random system, k<0 [31].

For calculating the optimal embedding delay, we use average

mutual information method [32], which utilizes the first local

minimum of mutual information as optimal embedding delay. In

order to determine the minimal required embedding dimension m,

we use the procedure suggested in [33] that identifies the number

of ‘‘false nearest neighbors’’, points that appear to be the nearest

neighbors because the embedding space is too small. We use the

criterion which utilizes the fact that the normalized distance

between the embedding coordinates of two presumably neighbor-

ing points is larger than a given threshold (Rtr), if these two points

are false neighbors. According to Kennel et al. [33], the value of

Rtr = 10 proves to be a good choice for most data sets.

3. Prediction models
Prediction models are evaluated using the existing conventional

predictors [2,6,11–14] and ANN approach. Various conventional

predictors proposed by different researchers are given in Table 3

[2,6,11–14]. In present paper, we use feed-forward multi-layer

perceptron, frequently applied for modeling the blast-induced

vibrations [34,35]. This type of neural network usually consists

of three layers: input, hidden and output layer. Among

various algorithms available for training ANN, we used the

Table 2. Recorded ground velocity at three different distances from the blasting source for the borehole distribution given in
Figure 1 and Table 1. *

Measuring point
Distance from the
blasting source (m)

Total amount of explosive
per interval (kg) PPVV (mm/s) PPVT (mm/s) PPVL (mm/s)

MM-1 546.191 182 1.123 1.990 1.670

MM-2 808.038 182 0.134 0.517 0.400

MM-3 1063.985 182 0.574 0.645 0.580

*Indices V, T and L stand for vertical, transversal and longitudinal component, respectively.
doi:10.1371/journal.pone.0082056.t002

Stochastic Ground Vibrations Induced by Blasting
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back-propagation training rule optimized by Broyden–Fletcher–

Goldfarb–Shannon (BFGS) algorithm, which is considered to be

one of the best of quasi-Newtons technique, that is error tolerant,

yields good solutions and converges in a small number of iterations

[36]. The computational advantage of BFGS over back-propaga-

tion especially holds for small to moderate sized problems [37],

which is the case in present analysis [34,35,38].

Performances of different predictor models were estimated using

standard statistical evaluation criteria given in Table 4 [39].

Results and Discussion

1. Surrogate data analysis
The testing of the first null hypothesis is performed in the

following way. We generate 20 surrogates by randomly shuffling

the data (without repetition), thus yielding surrogates with exactly

the same distribution yet independent construction. Then, in order

to compare the original data and generated surrogates, we

calculate the zeroth-order prediction error e [28]. If the zeroth-

order prediction error for the original recordings (e0) is smaller in

Figure 2. Longitudinal, transversal and vertical component of velocity time histories recorded at measuring points MM-1, MM-2
and MM-3.
doi:10.1371/journal.pone.0082056.g002
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comparison to the calculated error for surrogate data (e), then a

null hypothesis can be rejected. On the other hand, if e0.e at any

instance of the test, the null hypothesis is confirmed. Usually, more

than one wrong result out of 20 is not considered acceptable [40].

In all cases, e0 is smaller than e which allows us to reject the null

hypothesis, with significance level of 95%.

For purpose of testing the second null hypothesis, we employ the

phase randomization analysis [41]. The results are shown in

Figure 3. Obviously, we could not reject the null hypothesis (at

95% significance level) since e0.e for all the tested surrogates.

In order to test the third null hypothesis, we calculate the

amplitude adjusted Fourier-transformed (AAFT) surrogates [41].

As in the previous case, we generated 20 surrogates for each of the

observed cases and calculated prediction error e. Interesting results

appear for the vertical velocity component at MM-2, and for the

longitudinal and transversal velocity component at MM-3, where

e0.e for prediction steps n.4 (Figure 4). This kind of prediction

behavior could result from the very nature of the applied method

itself, since the generation of amplitude adjusted surrogates results

in changes to the power spectrum of the final surrogate, which

further causes the power spectrum whitening of the original data

[42].

In order to exclude the possible influence of the method itself on

the final result, AAFT method could be further improved by

performing a series of iterations in which the power spectrum of

AAFT surrogate is adjusted back to that of the original data before

the distribution is rescaled back to the original distribution

(iterated AAFT method). This is obtained by adjusting back the

amplitudes of the Fourier transformed AAFT surrogates to the

Fourier transformed surrogates of the rescaled original data. The

obtained surrogates are then inverse Fourier transformed and

rescaled back to the original data distribution by sorting the

original data according to the ranking of the Fourier-transformed

surrogate [42]. These two steps are iterated for several times (in

our case 500), until the whitening of the power spectrum becomes

sufficiently small. As in the previous cases, we generated 20 such

surrogates and calculated zeroth-order prediction error e (Figure 5).

It is clear that in case of vertical velocity component measured at

MM-3, e0 is well within e for several surrogates, so the null

hypothesis could be rejected. In all other cases, e0.e, so we could

not reject the null hypothesis.

2. Determinism test
In order to apply this test, the observed scalar series are

embedded into the appropriate phase space according to Takens

[43]. The values of optimal embedding delays are:

– t = 46, t = 35 and t = 49 for longitudinal, transversal

and vertical component of velocity recordings at MM-1,

respectively,

– t = 43, t = 44 and t = 38 for longitudinal, transversal

and vertical component of velocity recordings at MM-2,

respectively,

– t = 56, t = 59 and t = 129 for longitudinal, transversal

and vertical component of velocity recordings at MM-3,

respectively.

On the other hand, the results of false nearest neighbor

technique showed that fraction of false nearest neighbors rises with

the increase of embedding dimension, which could indicate high

level of stochasticity in the input data.

For the purpose of employing the determinism test, we

examined velocity recordings for different values of embedding

dimension, since embedding dimension is needed as input

parameter for deterministic test (Figure 6). In order to calculate

the determinism factor k, we included only those boxes visited at

least one time by the trajectory. As apparent from Figure 6, the

value of determinism factor k is in the range 0.4–0.81, indicating

the absence of determinism in observed ground motion.

3. Prediction models
3.1. Prediction of PPV using conventional

predictors. Since we established the fact that the recorded

ground motion is nondeterministic by nature, and, consequently,

impossible to predict, we turn to common empirical attenuation

equations, which represent prediction models for PPV as a

function of scaled distance [5]. These equations are developed on

the basis of the assumption that the total energy of the ground

motion generated by blasting varies directly with the weight of

detonated explosives and that it is inversely proportional to the

square distance from blasting point. These empirical models often

proved as a reliable choice for PPV prediction, even though

ground motion data scatter significantly. Also, some of the existing

vibration standards for preventing the structural safety use scaled

distance as a damage criterion [44].

Table 3. Different conventional predictors.*

Conventional predictor Equation

Duvall-Petkof (USBM) (1959)
v~K R=

ffiffiffiffiffiffiffiffiffiffiffi
Qmax

ph i{B

Langefors-Kihlstrom (1963)
v~K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Qmax=R2=3ð Þ

q� �B

General predictor (1964) v~KR{B Qmaxð ÞA

Ambraseys-Hendron (1968)
v~K R=

ffiffiffiffiffiffiffiffiffiffiffi
Qmax

3
ph i{B

CMRI (1993)
v~nzK R=

ffiffiffiffiffiffiffiffiffiffiffi
Qmax

ph i{1

*v is the peak particle velocity (PPV) in mm/s, Qmax is the maximum charge per
delay, in kg, R is the distance between the blasting source and measuring point,
in meters, and K, B, A, and n are site constants.
doi:10.1371/journal.pone.0082056.t003

Table 4. Statistical error parameters used for models’
evaluation. *

Statistical
parameter Equation

Mean absolute
percentage error MAPE~

1

n
|

Xn

i~1

ti{xi

ti

����
����

" #
|100

Root mean
square error RMSE~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
|
Xn

i~1

ti{xið Þ2
��� ���

s

Variance absolute
relative error VARE~

1

n
|

Xn

i~1

ti{xi

ti

����
����{mean

ti{xi

ti

����
����
2

 !" #
|100

Median absolute
error

MEDAE~median ti{xið Þ

Variance account
for

VAF~ 1{
var ti{xið Þ

var(ti)

� �
|100

*ti represents measured value of PPV, while xi denotes predicted value of PPV.
doi:10.1371/journal.pone.0082056.t004
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In present analysis, the site constants were determined from the

multiple regression analysis of the previously mentioned 33

recordings (Figure 7 and Table 5). The relationship between

measured and predicted PPV by conventional predictor equations

is given in Figure 8. As it can be seen, in case of using conventional

predictors for estimating PPV, coefficient of determination (R2) is

varying between 0.54 (CMRI) and 0.66 (General predictor).
3.2. Prediction of PPV using the artificial neural network

approach. Preceding analysis showed that conventional meth-

ods cannot give accurate prediction of PPV, which could be

explained by the fact that these models are approximate, treating

blast induced ground vibrations in dependence only on maximum

Figure 3. Surrogate data test for the second null hypothesis. Zeroth-order prediction error for the ground velocity recordings at the following
measuring points: (a) MM-1 (L, T and V), (b) MM-2 (L, T and V), (c) MM-3 (L, T and V). In all the examined cases, e0.e, so the null hypothesis cannot be
rejected in neither of the examined velocity recordings. Red line denotes the zeroth-order prediction for the original time series (e0), and black lines
denote zeroth-order prediction for the surrogates (e). Abbreviations L, T and V stand for longitudinal, transversal and vertical component of the
recorded ground velocity, respectively.
doi:10.1371/journal.pone.0082056.g003

Stochastic Ground Vibrations Induced by Blasting
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charge per delay or distance to the blasting source, neglecting a

number of other influential parameters, like total charge,

stemming, hole depth, physical-mechanical properties of rock

mass or explosive characteristics [34]. Since the number of

affecting parameters is large and the relations among them could

be very complex and often unknown, empirical methods may not

be always suitable for accurate prediction of PPV. Also, the

existing empirical attenuation relations often result from one-

location database, and cannot predict PPV value with satisfying

accuracy at other blasting locations, mainly due to heterogeneous

and anisotropic rock mass properties. In order to overcome these

obstacles of conventional predictors, artificial neural network

approach (ANN) is frequently implemented, mainly because of its

ability to deal with large number of different patterns, to learn by

Figure 4. Surrogate data test for the third null hypothesis (AAFT). Zeroth-order prediction error for the ground velocity recordings at the
following measuring points: (a) MM-1 (L, T and V), (b) MM-2 (L, T and V), (c) MM-3 (L, T and V). It is clear that e0.e for the vertical velocity component
at MM-2, and for the longitudinal and transversal velocity component at MM-3, for prediction steps n.4. In all the other cases, e0,e, allowing us to
reject the null hypothesis. Red line denotes the zeroth-order prediction for the original time series, and black lines denote zeroth-order prediction for
the surrogates.
doi:10.1371/journal.pone.0082056.g004

Stochastic Ground Vibrations Induced by Blasting
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examples and to detect similarities in inputs, even though they

may have never been known previously.

ANN has been successively used in the area of blast-induced

vibrations so far. Khandelwal and Singh [45] predicted the PPV

by ANN, taking into consideration the distance from the blast face

to measuring point and explosive charge per delay. They

compared their findings with the commonly used vibration

predictors and their results were more accurate by ANN

prediction as compared to vibration predictor equations. Khan-

delwal and Singh [34] developed a three-layer feed-forward back-

propagation neural network for predicting the PPV and frequency

and obtained a much higher coefficient of determination

(R2 = 0.98) in comparison to the conventional predictors

(R2 = 0.13–0.54). Monjezi et al. [35] also developed a feed-forward

back-propagation neural network model, with 4 input parameters,

two hidden layers and one output parameter (PPV). The accuracy

Figure 5. Surrogate data test for the third null hypothesis (iterated AAFT surrogates). Zeroth-order prediction error for the ground
velocity recordings at the following measuring points: (a) MM-1 (L, T and V), (b) MM-2 (L, T and V), (c) MM-3 (L, T and V). In all the examined cases,
except for the vertical velocity component at MM-3, e0.e, so the null hypothesis could not be rejected for all of the examined velocity recordings. Red
line denotes the zeroth-order prediction for the original time series, and black lines denote zeroth-order prediction for the surrogates.
doi:10.1371/journal.pone.0082056.g005

Stochastic Ground Vibrations Induced by Blasting
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of prediction by using ANN was much higher (R2 = 0.95) in

comparison to the conventional predictors or mutlivariate

regression analysis (R2 = 0.38–0.80). In present paper, we use

identical approach as in [40], including average hole depth as an

additional input unit (Table 6).

Before we proceed to further analysis, one should note that

development of ANN model for small data sets is not an exception.

Mohamadnejad, et al. [27] also examined small data set (37) using

support vector machine algorithm and regression neural network,

obtaining rather high prediction accuracy (R2 = 0.92). Moreover,

Monjezi et al. [39] developed a four-layer feed-forward back-

propagation neural network, using only 20 data sets. In this case,

high prediction accuracy was also obtained (R2 = 0.927).

In order to develop a valid ANN model for PPV prediction,

input data have to be preprocessed, due to their different nature

and unit. Regarding this, all the input and output parameters were

scaled between 0 and 1. This was done to utilize the most sensitive

part of neuron and since output neuron being sigmoid can only

give output between 0 and 1 [35]. The scaling of output parameter

was done in the following way:

sc~
max{unsc

max{min

where sc and unsc stand for the scaled and unscaled values, and max

and min represent the maximum and minimum value of the

parameter, respectively.

Figure 6. Determinism test for velocity recordings at measuring points: a) MM-1, b) MM-2 and c) MM-3. Squares, circles and triangles
denote longitudinal, transversal and vertical component of the velocity, respectively. The values of determinism factor k are given for the embedding
dimension in range m = 2–10. It is evident that k#0,81, indicating the absence of deterministic behavior.
doi:10.1371/journal.pone.0082056.g006

Figure 7. Resultant PPV versus scaled-distance relationship for different conventional predictors: (a) USBM, (b) Langefors-
Kihlstrom, (c) General predictor, (d) Ambraseys-Hendron, (e) CMRI. Note that coefficients A and B for General predictor were determined
using multiple regression approach.
doi:10.1371/journal.pone.0082056.g007

Stochastic Ground Vibrations Induced by Blasting
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After analyzing several cases of networks with various numbers

of hidden layers and hidden neurons, the most precise model for

PPV prediction was obtained by neural network with one hidden

layer and one hidden unit. The learning rate (0.1) and momentum

coefficient (0.9) were chosen by trial and error, leading to the

minimum prediction error [26,46]. The total data set comprising

33 points has been divided as follows: 65% of the data for training,

and 35% for testing and validation, that were not used for training.

In other words, training of the network was carried out using 22

cases and testing and validation of the network was performed

using 11 different cases.

In order to evaluate the model performance, we determined the

correlation between the predicted and real measured values of

PPV. High value of coefficient of determination (R2 = 0.94)

demonstrates good performance of the proposed network

(Figure 9). The lowest Mean Squared Error (MSE = 0.4489) was

obtained after 2500 epochs of training.

The performed analysis could be further expanded, by

inspecting the impact of each input parameter separately on the

final value of PPV. This could be achieved by applying sensitivity

analysis, which represents a method that enables us to determine

the effectiveness of each input unit on the final value of output

parameter [39]. Global sensitivity analysis, which was carried out

Table 5. Calculated values of site constants for conventional
predictors.

Equation K B A n

Duvall-Petkof (USBM) (1959) 2843 1.93 / /

Langefors-Kihlstrom (1963) 0.11 5.90 / /

General predictor (1964) 15.84 2.84 3.08 /

Ambraseys-Hendron (1968) 13227 1.90 / /

CMRI (1993) 187.76 / / 22.10

doi:10.1371/journal.pone.0082056.t005

Figure 8. Measured PPV vs. predicted PPV by conventional predictors: (a) USBM, (b) Langefors-Kihlstrom, (c) General predictor, (d)
Ambraseys-Hendron, (e) CMRI. It is clear that each of the predictor gives rather low coefficient of determination, in the range
R2 = 0.54–0.66.
doi:10.1371/journal.pone.0082056.g008

Table 6. Input-output parameters for the ANN training and
their range.

Type of data Parameter Range

Input unit 1 Total charge, Qt (kg) 815–4675

Input unit 2 Maximum charge per delay, Qi (kg) 176–247

Input unit 3 Distance from blasting source (m) 521.552–1077.28

Input unit 4 Average hole depth (m) 8.25–18

Output unit Peak particle velocity (mm/s) 0.381–4.728

doi:10.1371/journal.pone.0082056.t006
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for all the input parameters, indicated that the distance from

blasting source has the strongest impact on the PPV value

(Figure 10), corresponding well with the previous research on this

topic [34–35,39]. We note that the impact of other factors (total

charge, maximum charge per delay and average hole depth) was

not evaluated in detail.

3.3. Evaluation of the models’ performance. If we

compare the values of PPV predicted by different methods

(conventional predictors and ANN), it is clear that prediction by

ANN is closer to the measured PPV, whereas predictions by

conventional predictors have wide variation (Figure 11).

Calculated statistical errors are given in Table 7. It is clear that

ANN has the lowest values of MAPE, VARE, MEDAE and

RMSE, while it has the highest value of VAF, in comparison to

conventional predictors.

Conclusions

There is a justified need for updating the attenuation equations

by including PPV values of new shot records into analysis data,

due to complexity of the geological and technological parameters

that affect blasting. Apparently, the available empirical attenuation

equations, proposed on the basis of measured ground motion at

one site, are not accurate enough to predict the ground vibration

level at other locations. Therefore, it is important to include new

data in the analysis, in order to develop an appropriate attenuation

model. In this case, the performed analysis of the blast induced

ground vibrations at limestone quarry ‘‘Suva Vrela’’ resulted in

the following:

– we showed that the ground vibrations due to blasting are

stochastic in nature. More precisely, they belong to class of

stationary linear stochastic processes with Gaussian inputs,

which could be distorted by a monotonic, instantaneous, time-

independent nonlinear function. The basic method used in this

paper, in search for possible stochastic behavior, was surrogate

data analysis [15,40–42]. Testing of the three null hypotheses

indicates the stochasticity as an important factor in blast

induced ground motion. The results of surrogate data analysis

were further confirmed by the application of a determinism test

[30]. Rather low values of the determinism factor (k,0.81)

indicate the possible absence of determinism in the recorded

ground motion. In this way we proved that the recorded signal

does not belong to deterministic systems and, hence, cannot be

simulated or predicted by using theoretical or empirical

formulas;

Figure 9. Measured PPV vs. predicted PPV by ANN predictor,
with high coefficient of determination (R2 = 0.94).
doi:10.1371/journal.pone.0082056.g009

Figure 10. Global sensitivity analysis of input parameters.
doi:10.1371/journal.pone.0082056.g010

Figure 11. Comparison of predicted PPV by different predic-
tors. Abbreviations AH, GP and LK stand for Ambraseys-
Hendron, General Predictor and Langefors-Kihlstrom, respec-
tively.
doi:10.1371/journal.pone.0082056.g011

Table 7. Performances of different models for predicting PPV
using statistical error parameters given in Table 4.

Model MAPE VARE MEDAE VAF RMSE

Duvall-Petkof (USBM) (1959) 50.2 47.62 0.31 65.5 0.96

Langefors-Kihlstrom (1963) 45.19 43.09 0.36 60.56 0.99

General predictor (1964) 50.87 48.29 0.55 0.38 0.94

Ambraseys-Hendron (1968) 50.83 48.15 0.30 65.41 0.96

Singh-Roy (CMRI) (1993) 65.75 61.47 0.43 73.87 0.99

ANN 35.29 33.61 0.22 81.60 0.67

doi:10.1371/journal.pone.0082056.t007
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– we developed a site-specific prediction model of PPV. After we

had shown that conventional predictors cannot give a

satisfactory level of prediction accuracy (R2 = 0.54–0.66), we

chose to train a neural network, and obtained very high level of

prediction accuracy (R2 = 0.94), with satisfying level of

statistical errors, in comparison to the conventional predictors.

Furthermore, global sensitivity analysis showed that distance

from blasting source (R) has the strongest impact on the final

value of PPV in comparison to the other three input

parameters.

Hence, there are two main conclusions of our analysis. Firstly,

our investigation strongly suggests that blast induced ground

motion represents a linear stochastic process, which corresponds

well with the results of our previous work on earthquake ground

motion [16]. Secondly, we developed a prediction model with high

accuracy, which is the first known ANN model for the blast-

induced ground vibration recorded in Serbia.

However, we have to emphasize that the results of this analysis

are valid only for the blast induced ground velocity recorded at the

limestone quarry ‘‘Suva Vrela’’ near Kosjerić in western part of

Serbia. The question of possible determinism in blast induced

ground vibrations still remains open for different rock masses

(igneous, metamorphic or some other sedimentary) and for

different blast parameters (maximum charge per delay, hole

depth, explosive characteristics, etc). Moreover, various geotech-

nical parameters (compressive and tensile strength, Young’s

modulus, Poisson ratio, etc) could considerably affect the blast

induced ground motion even within the same rock unit. It would

be interesting to investigate possible stochastic nature of ground

motion in different surroundings and by varying blast parameters.

Only in that way, by comparing these events, and, in the same

time, by opposing the results of the research in different areas,

could the general nature of the blast induced ground motion be

determined.
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