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We study the phenomenon of stochastic resonance on Newman–Watts small-world networks consisting
of biophysically realistic Hodgkin–Huxley neurons with a tunable intensity of intrinsic noise via voltage-
gated ion channels embedded in neuronal membranes. Importantly thereby, the subthreshold periodic
driving is introduced to a single neuron of the network, thus acting as a pacemaker trying to impose
its rhythm on the whole ensemble. We show that there exists an optimal intensity of intrinsic ion
channel noise by which the outreach of the pacemaker extends optimally across the whole network.
This stochastic resonance phenomenon can be further amplified via fine-tuning of the small-world
network structure, and depends significantly also on the coupling strength among neurons and the
driving frequency of the pacemaker. In particular, we demonstrate that the noise-induced transmission of
weak localized rhythmic activity peaks when the pacemaker frequency matches the intrinsic frequency
of subthreshold oscillations. The implications of our findings for weak signal detection and information
propagation across neural networks are discussed.

© 2009 Elsevier B.V. All rights reserved.
1. Introduction

The dynamics of complex networks has attracted much atten-
tion in recent years [1–4]. Two distinct types of topology; namely
small-world (SW) [5] and scale-free (SF) networks [6], have been
widely used due to their potential in capturing the characteris-
tics of many real-world complex networks. Small-world networks
have been suggested to provide a successful tool to search for con-
nectivity information of both anatomical and functional networks
in the brain, mainly because this topology can support both local
and distributed information processing [7]. Functional connectiv-
ity is defined as temporal correlations between spatially distinct
brain regions [8], and disturbances in the functional connectivity
have been proposed as a major pathophysiological mechanism for
cognitive disorganization [9]. Moreover, SW functional connectivity
has been described in low and high frequency bands of healthy,
resting-state magnetoencephalography (MEG) recordings [10]. Re-
cent studies indicate a disrupted SW functional connectivity orga-
nization in schizophrenia [9,11]. The usefulness of SW measures
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has also been suggested for imaging-based biomarkers to distin-
guish between Alzheimer’s disease and healthy aging [12].

It is also a central topic in theoretical and computational neu-
roscience to understand how neuronal circuitry generates com-
plex patterns of activity. In this context, Lago-Fernandez et al. [13]
showed that SW networks of Hodgkin–Huxley (HH) neurons have
dynamic characteristics of both regular and random networks.
Kwon and Moon [14] investigated the role of different connectiv-
ity regimes on the dynamics of HH neuronal networks, and found
that increasing the network randomness may lead to an enhance-
ment of temporal coherence and spatial synchronization of the
network. In a recent study, we examined the noise-delayed decay
(NDD) phenomenon on a small-world HH network [15]. Notably,
the NDD is related to the noise-induced response delay with re-
spect to the time of the first spike, whereby we showed that the
network structure plays a key role only for intermediate coupling
strengths where the NDD effect decrease, thus improving the sig-
nal detection rate.

Understanding the weak signal detection and information prop-
agation in neuronal networks is of great importance. Noise can
provide improvements in the representation of weak signals
through stochastic resonance [16,17]. Gong et al. [18] studied the
temporal coherence and spatial synchronization of HH neuronal
networks subject to channel noise and subthreshold periodic stim-
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ulus, and found that the temporal coherence is maximal for an
optimal fraction of randomly added shortcuts. We recently ex-
tended this study and showed that the collective temporal co-
herence peaks when the frequency of the subthreshold stimulus
matches that of the intrinsic subthreshold oscillations for the HH
neurons at a given fixed coupling strength and channel noise [19].
Wang et al. [20] also reported similar findings in a spatially ex-
tended network, which is locally modeled by a two-dimensional
Rulkov map [21]. Furthermore, results in [19] also demonstrate a
resonance-like effect depending on cell size, whereby an optimal
size of cells leads to the maximum overall coherence in the sys-
tem. Importantly, these studies consider the dynamics of neuronal
networks on which every constitutive unit is subject to a weak
periodic stimulus.

On the other hand, due to importance of pacemakers in real-
life systems [22–25], it is also of great significance to introduce a
weak periodic pacemaker to only a single element of the network
and study the global outreach of the pacemaker. Therefore, the op-
eration of the pacemakers has already been widely investigated in
excitable systems [26–31], as well as in networks with complex
connection topologies [32–37]. Our aim in this Letter is to extend
the subject by including a more biophysically realistic model of in-
dividual neurons on the network, where the stochastic behavior of
voltage-gated ion channels embedded in neuronal membranes is
modeled depending on the cell size. This will allow relating the
cell size (and thus the level of intrinsic noise) to the outreach of
the pacemaker to other units of the network in a manner that
more closely mimics actual conditions. Although we here use the
same network model as in [19], we emphasize that there each neu-
ron was subjected to a weak periodic driving, whereas presently
only a single neuron is subjected to it, and thus the latter acts as
a pacemaker on the network. Moreover, the measure for stochas-
tic resonance employed presently is not just different from what
was used in [19], but indeed quantifies a different phenomenon.
Note that in [19] only the temporal coherence has been studied,
whereas here we focus explicitly on the stochastic resonance; that
is the presence of a given frequency (not just any frequency as in
temporal coherence) in the output of each neuron. In what follows,
we investigate the global outreach of the pacemaker as a function
of the cell size (thus, ion channel noise), coupling strength as well
as pacemaker frequency and network topology.

2. Model and methods

The time evolution of the membrane potential for coupled HH
neurons on a network is given by [18,19]:

Cm
dV i

dt
= −gNam3

i hi(V i − V Na)

− gKn4
i (V i − V K) − gL(V i − V L)

+
∑

j

εi j(V j − V i), (1)

where V i denotes the membrane potential of neuron i = 1,2, . . . , N
(N being the system size), Cm = 1 μF cm−2 is the membrane ca-
pacity, whereas gNa = 120 mS cm−2 and gK = 36 mS cm−2 are
the maximal sodium and potassium conductance, respectively.
The leakage conductance is assumed to be constant, equaling
gL = 0.3 mS cm−2, and V Na = 50 mV, V K = −77 mV and V L =
−54.4 mV are the reversal potentials for the sodium, potassium
and leakage channels, respectively. Moreover, εi j denotes the cou-
pling strength between neurons i and j, whereby we set εi j = ε if
the two are connected or εi j = 0 otherwise. Finally, mi and hi de-
note activation and inactivation variables for the sodium channel
of neuron i, respectively, and the potassium channel includes an
activation variable ni .
In the HH model, activation and inactivation gating variables
mi , ni and hi change over time in response to the membrane po-
tential following first-order differential equations within the limit
of a very large cell size [38]. However, when the population of
ion channels is finite, the stochastic dynamics of voltage-gated ion
channels (or ion channel noise) can have significant implications
on the excitable behavior of neurons [39–44]. The effects of the
channel noise can be modeled with different computational al-
gorithms [45]. In this study, we use the algorithm presented by
Fox [46], both because it is widely used [19,44,47–52] and because
other algorithms can be very time-consuming, especially for larger
cell sizes. In the Fox’s algorithm, variables of stochastic gating dy-
namics are described via the Langevin generalization [46]:

dxi

dt
= αx(1 − xi) − βxxi + ξxi (t), xi = mi,ni,hi, (2)

where αx and βx are rate functions for the gating variable xi . The
probabilistic nature of the channels appears as a source of noise
ξxi (t) in Eq. (2), which is an independent zero mean Gaussian
white noise whose autocorrelation function is given by [27]:

〈
ξm(t)ξm(t′)

〉 = 2αmβm

NNa(αm + βm)
δ(t − t′), (3)

〈
ξh(t)ξh(t′)

〉 = 2αhβh

NNa(αh + βh)
δ(t − t′), (4)

〈
ξn(t)ξn(t′)

〉 = 2αnβn

NK(αn + βn)
δ(t − t′), (5)

where NNa and NK denote the total number of sodium and potas-
sium channels, respectively. The channel numbers are calculated
as NNa = ρNa S and NK = ρK S , where ρNa = 60 μm−2 and ρK =
18 μm−2 are the sodium and potassium channel densities, respec-
tively, whereas S is the membrane cell area. Eqs. (1)–(5) constitute
the stochastic HH network model, where the cell size S determines
the intensity of intrinsic noise. When the cell size is large enough,
stochastic effects of the channel noise are negligible, and thus the
stochastic model approaches the deterministic description.

The network is comprised of identical coupled HH neurons, ini-
tially each having connectivity k = 2, with the system size set to
N = 60. Following the Newman–Watts model [53], we start with
a regular ring and make a random draw of two neurons. Subse-
quently, if they are not already connected, we add a non-directed
link between them. This process is repeated until a total of M new
links have been added, finally resulting in an equivalent network
of adding new edges with a probability p, which is given by [15,
18,19]:

p = 2M

N(N − 1)
. (6)

Localized weak rhythmic activity is introduced in form of a sub-
threshold pacemaker of the form Ir(t) = A sin(ωt), which is added
additively to the middle neuron i = r = 30 in Eq. (1). Here A de-
notes the amplitude of the sinusoidal forcing current, which we set
to 1.0 μA/cm2, whereas ω is the corresponding angular frequency.
Notably, since the degree heterogeneity of small-world networks
follows a Poissonian distribution in the p → 1 limit, the particular
placing of the pacemaker within the network is not of vital impor-
tance [37].

For each set of ε, p, S and ω the temporal output of each
neuron given by V i(t) is recorded for T = 1000 periods of the
pacemaker, and then the collective temporal behavior of the net-
work is measured by calculating the average membrane potential
V avg(t) = N−1 ∑

i=1,...,N V i(t) corresponding to the mean field of a
random network. The correlation of each series with the frequency
of the pacemaker ω = 2π/tr is computed via the Fourier coeffi-
cients Q = √

R2 + S2 according to [54]:
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R = 2

T tr

tr T∫

0

V avg(t) sin(ωt)dt, (7)

S = 2

T tr

tr T∫

0

V avg(t) cos(ωt)dt. (8)

Since the Fourier coefficients are proportional to the square of
the spectral power amplification [55], we presently use Q as the
measure for stochastic resonance. In addition, we also evaluate Q i
separately for each neuron, whereby V avg(t) in Eqs. (7) and (8) is
replaced by V i(t). Below presented results were obtained by av-
eraging Q and Q i over 50 different realizations of the underlying
network structure for each p.

3. Results and discussion

In what follows, we will systemically analyze effects of different
ε, p, S and ω on the transmission of localized rhythmic activity via
Q and Q i . First, we examine the dependence of Q i on S and i for
different p with fixed values for the coupling strength (ε = 0.05)
and the angular frequency of the pacemaker (ω = 0.3 ms−1). Fig. 1
features the resulting color-contour plots for increasing values of p
from top to bottom. It is evident that there exists an optimal cell
size by which Q i across the whole network are maximal, indicat-
ing the existence of pacemaker-driven stochastic resonance. It can
also be inferred that the optimal outreach of the localized rhyth-
mic activity across all neurons is warranted by p = 0.1, indicating
the ability of fine-tuning of the network structure via p to opti-
mize the phenomenon of stochastic resonance.

To gain more insights into the dependence of the outreach of
the pacemaker on ε and p, we calculate the dependence of Q on
p by three different coupling strengths ε, with a fixed cell size
S = 6 μm2. Results are presented in Fig. 2. Evidently, Q exhibits a
resonance-like behavior with respect to p at the fixed value of the
channel noise strength, thus indicating the existence of an optimal
small-world topology for the transmission of localized rhythmic
activity. Notably, similar results were recently obtained for a noisy
array of overdamped bistable oscillators [37]. At the fixed value
of the channel noise strength equaling S = 6 μm2, we found that
the value of p which gives the maximal Q decreases when the
coupling strength increases. Thus, as the coupling increases the
peak Q is obtained for fewer added shortcuts, or equivalently, by
a lower value of p. This finding is consistent with our previous
results [19], although the latter were related to the collective tem-
poral regularity whereby we used the same network model. Wang
et al. [56] also found that the optimal p value for the temporal
coherence of the system decreases when the coupling strength is
increased by using the same network topology. Although Perc [35]
found that there exists an optimal value of the coupling strength
for which the network structure plays a key role for the trans-
mission of localized rhythmic activity by using the Watts–Strogatz
network model based on the Rulkov map [21], the currently in-
vestigated network model does not reveal such a property for the
transmission of localized rhythmic activity. The qualitative differ-
ence may be a consequence of the different initial connectivity
of neurons (k = 6 in [21]), or the different scaling of the clus-
tering coefficient in dependence on p for the Watts–Strogatz and
the presently used small-world topology. Moreover, we found that
the maximal Q decreases as the coupling strength increases (see
Fig. 2), which however, is consistent with the results by Perc and
Gosak [37] for a diffusive network (see their Fig. 4). On the other
hand, stronger coupling strength contributes to a higher value of
Q in regular network (in the limit p → 0).

Next, we present the dependence of Q i=30 and Q on the ion
channel noise strength S for a fixed value of the coupling strength
Fig. 1. Color-coded Q i in dependence on S and i for different p and a fixed cou-
pling strength ε = 0.05. In all panels the pacemaker has been introduced to the
middle oscillator i = r = 30 and the color profile is linear, blue marking minimal
and red maximal values of Q i . The intervals of Q i are the same in all panels, span-
ning from Q i = 0.0 (blue) to Q i = 4.5 (red). Note that the overall maximum of Q i

(obtained by i = r = 30) decreases continuously as p increases, yet the optimal out-
reach across all units is warranted by p = 0.1. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this Let-
ter.)

(ε = 0.05) by different p in Fig. 3. Results for both the collective
network behavior (Q ) and the pacemaker-driven neuron (Q i=30)
indicate that there exists a certain range of S values for each par-
ticular p, by which the corresponding intrinsic noise is able to
optimally assist the pacemaker in driving the neuronal network.
In particular, as p increases the peaks of Q i=30 and Q are ob-
tained for slightly smaller patch areas, i.e. larger noise intensities
(Fig. 3). Since the pacemaker-driven neuron exhibits the most cor-
related response with respect to the subthreshold periodic forcing,
its maximal Q i=30 is larger than that for the rest of the net-
work [37]. The optimal noise level corresponds to a cell size of
around 4–6 μm2 regardless of the position of the neuron within
the network, or the consideration of the collective network re-
sponse or the response of solely the pacemaker-driven neuron.
Although presently only a single neuron is subjected to the weak
periodic driving, this finding is also consistent with our previous
work [19] (there every neuron was subjected to the driving) where
the optimal noise level for the collective temporal coherence of an
identical neuronal network was found to equal around 4–6 μm2.
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Fig. 2. The dependence of Q on p for three different coupling strengths ε, obtained
by a fixed patch area equaling S = 6 μm2.

(a)

(b)

Fig. 3. The dependence of Q i=30 [panel (a)] and Q [panel (b)] on the patch area S
for four different values of p, obtained by a fixed coupling strength ε = 0.05.

Fig. 4. The dependence of Q on S for three different coupling strengths ε, obtained
by p = 0.1.

Importantly, however, the maximal Q is obtained when both
the cell size and the fraction of random shortcuts have optimal val-
ues (S = 6 μm2, p = 0.1). Therefore, we further investigate how the
maximal Q changes with the coupling strength and cell size when
p is equal to 0.1. Obtained results of this analysis are presented
in Fig. 4. Evidently, the maximal Q decreases with increasing ε,
and at the same time smaller and smaller cell sizes are needed to
evoke the optimal response. This is in agreement with the results
by Perc and Gosak [37], who also reported that the optimal noise
strength increases continuously with increasing ε (and accordingly
the maximally attainable Q i decrease), although the latter result
was obtained only for a pacemaker-driven network of overdamped
oscillators, but not for a realistic neuron model.

Thus far, the pacemaker frequency was chosen equal to ω =
0.3 ms−1 (or f ≈ 50 Hz), corresponding to the frequency of in-
trinsic subthreshold oscillations of HH neurons [57]. Due to the
importance of frequency tuning in weak signal detection and trans-
mission [17,57–60], we investigate the impact of different driving
frequencies on the global outreach of the pacemaker. We calcu-
late the dependence of Q on p by different pacemaker frequencies
ω with fixed values for the coupling strength (ε = 0.05) and cell
size (S = 6 μm2). Fig. 5 features obtained results. It can be ob-
served that Q exhibits a resonance-like behavior with respect to
p only for ω = 0.3 ms−1,ω = 0.6 ms−1 and ω = 0.9 ms−1, but
not for other values of the driving frequency. Notably though, the
second and third harmonics of the intrinsic oscillations, given by
ω = 0.6 ms−1 and ω = 0.9 ms−1, already results in a substan-
tially lower peak of Q . Moreover, values of Q for driving frequen-
cies that are different from the intrinsic HH frequency, or their
higher harmonics, are virtually independent of the network topol-
ogy. Thus, we conclude that the global outreach of the pacemaker
peaks when the pacemaker frequency matches that of the intrinsic
subthreshold oscillations of the individual network elements. In a
recent study we showed that the collective temporal coherence of
a stochastic small-world HH neuronal network, which is globally
driven by a weak periodic driving, also peaks when the frequency
of the external stimulus matches the intrinsic frequency of consti-
tutive units of the network [19]. Both results therefore suggest that
the network rhythmicity reflects a direct coupling between oscilla-
tory properties of individual network elements [61,62]. Our results
also answer in part the question, as to what extent the pacemaker
is able to induce a synchronous response of the network with a
frequency different from the intrinsic noise-induced one [30].
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Fig. 5. The dependence of Q on p for nine different values of ω, obtained by a fixed
patch area S = 6 μm2 and coupling strength ε = 0.05.

The study of pacemaker activity is vital for several biological
systems, and thus it certainly deserves separate attention. Prob-
ably the most prominent organ that has pacemaker cells is the
human heart [63]; but also many arteries and arterioles, exhibit
localized rhythmical contractions that are synchronous over con-
siderable distances [64]. A well-known network of pacemaker cells
are also the so-called interstitial cells of Cajal (ICC), which regulate
the contractility of many smooth muscle cells in several organs,
particularly in the gastrointestinal tract [65] and the urethra [66].
Recently, non-contractile cells closely resembling ICC were identi-
fied also in the wall of portal veins and mesenteric arteries [67].
Moreover, it should be noted that pacemakers are not characteris-
tic only for whole organs or tissue, but may also be encountered
in larger cells like eggs, where cortical endoplasmic reticulum rich
clusters act as pacemaker sites dedicated to the initiation of global
calcium waves which then propagate throughout the egg [68]. In
this context, we hope this study will spawn new research related
to the noise-supported detection and transmission of weak local-
ized rhythmic activity across complex networks.
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