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We study the evolution of cooperation in the spatial public goods game with cooperation, defection, 
and pool expulsion as the three competing strategies. Using the Monte Carlo method, we show that the 
evolution of pool expulsion and cooperation can be maintained even if the synergistic effects are not high 
enough to sustain cooperation based on spatial reciprocity alone, and even if the cost of pool expulsion 
is not negligible. Interestingly, pool expellers are protected against, or even prevail over, defectors as 
a result of spatial pattern formation, by means of which vacant sites form an active layer around 
them. Moreover, we observe continuous and discontinuous phase transitions between frozen coexistence, 
stationary coexistence, absorbing states, and oscillatory states in the phase diagrams. Our results indicate 
that pool expulsion might play an important role in the resolution of social dilemmas that unfold in 
groups.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

One of the grand scientific challenges until now concerns the 
question: How did cooperative behavior evolve and how can it 
be maintained in social dilemma situations [1]? While the pris-
oner’s dilemma game represents a standard paradigm for studying 
the evolution of cooperation among selfish individuals, the multi-
player public goods game corresponds to an extension of such a 
two-player game from pairwise interactions to collective interac-
tions [2–5]. In the social dilemma game of public goods [6,7], play-
ers decide simultaneously whether they contribute (i.e., cooperate) 
or not (i.e., defect) to a common pool. The collecting contributions 
are then multiplied by an enhancement factor that takes into ac-
count synergetic effects of cooperation. The resulting public goods 
are finally divided equally among all group members irrespective 
of their strategies. Obviously, rational players should contribute 
nothing if the costs of investment exceed the return of the pub-
lic goods game. However, if nobody invests, the group will fail to 
harvest the benefits resulted from a collaborative investment, and 
the group as a whole may evolve toward the “tragedy of the com-
mons” [8,9]. It has been reported that evolutionary mechanisms 
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such as reputation [10], reward [11–13] and punishment [14–18]
can support contributors to fence off freeriders and thus promote 
cooperation in the public goods game [19–29].

While the fundamental problem of the evolution of cooperation 
has attracted a great deal of interest among scientists from biol-
ogy, economics, mathematics and social sciences, it is also closely 
relevant to physics due to the fascinating collective behavior that 
is exhibited by the resulting complex systems that consist of a 
large number of interacting agents. Particularly, methods of sta-
tistical physics have proved valuable for studying phase transition, 
pattern formation, equilibrium selection, and self-organization in 
evolutionary games on graphs [30–38]. For example, Szabó and 
Hauert found that the phase transitions between one-, two-, and 
three-strategy states either are in the class of directed percolation 
or show interesting analogies to Ising-type models in the spatial 
public goods game with voluntary participation [39]. Wakano et al.
showed that the spatial dynamics of the ecological public goods 
game lead to static or dynamic processes of pattern formation, 
including spatial chaos of ever-changing configurations [40]. Mat-
suzawa and Tanimoto considered a social dilemma structure in dif-
fusible public goods, and revealed a rich diversity of evolutionary 
dynamics including cooperator dominated, extinct and coexistent 
states [41].

Here we explore the spatial dynamics of the public goods game 
with pool expulsion, and contrast the results with those reported 
previously for peer expulsion in the spatial prisoner’s dilemma 
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game [42]. In fact, peer and pool expulsion represent two different 
but complementary kinds of expulsive behavior. Peer expulsion fo-
cuses on the perspective of personal traits: It may happen when 
there exist individual differences (e.g., cooperativeness) [43]. On 
the contrary, pool expulsion is based on the viewpoint of group 
membership: It may be executed if members violate group norms 
(e.g., cooperative norm) [44]. Although large numbers of psycho-
logical studies provide numerous proximate causes of pool ex-
pulsion [45], there is still lack of theoretical explanation on its 
ultimate causes from evolutionary perspective. Furthermore, be-
havioral experiments show that contributions by members in a 
public goods game under threat of collective expulsion rose to 
nearly 100% of endowments [46], which indicates clearly a pos-
itive relationship between pool expulsion and cooperation. Then 
another question naturally arising here is how to understand the 
positive impacts of pool expulsion in the evolution of coopera-
tion in the public goods game. By constructing and studying an 
evolutionary model of the spatial public goods game with pool ex-
pulsion, we show that self-organizing spatiotemporal structures are 
able to maintain pool expulsion and cooperation viable without 
the support of any additional mechanisms. As we show in detail, 
the spatiotemporal dynamics lead to the formation of an active va-
cant layer around pool expellers, which protects them against the 
exploitation of defectors. Besides, the phase diagram for a repre-
sentative value of the enhancement factor also reveals surprisingly 
rich and interesting behavior from the physics point of view.

2. Public goods game with pool expulsion

In the public goods game with pool expulsion, individuals can 
choose from three different strategies: defection, cooperation and 
pool expulsion. In each public goods game with pool expulsion, 
defectors do not contribute to the common pool but only enjoy 
the public goods produced by cooperative individuals; Cooperators 
contribute c = 1 to the joint venture but do not bear the extra cost 
of pool expulsion; Pool expellers not only make contributions to 
the common pool but also are willing to allocate resources cO E > 0
to construct an expulsion pool for the purpose of collectively ex-
pelling defectors from present sites to any other vacant sites. Here 
pool expellers are challenged by dual social dilemmas: (1) The 
first-order freeriding problem: Cooperative players, who contribute 
to the common pool, seem to fare worse than those who do not 
cooperate; (2) The second-order freeriding problem: Pool expulsion 
seems to be an altruistic act, given that players who cooperate but 
do not contribute to the expulsion pool are better off than the pool 
expellers.

We simulate the spatial public goods game with pool expul-
sion by randomly placing N individuals on a square lattice of 
L × L (≥ N) sites with von Neumann neighborhood (i.e., the degree 
k = 4) and periodic boundary conditions. Each site can be either 
empty or occupied by an individual who is randomly assigned with 
one of the three strategies with equal probability initially. During 
the whole evolutionary process, the population density is kept con-
stant and is given by ρ = N

/
L2. If not all the neighboring sites of 

an individual are empty, the individual can accumulate payoff by 
playing the public goods games with pool expulsion that centered 
on both its neighbors and itself. Otherwise, the individual has no 
chance to play the game, and thus obtains no payoff. In our model, 
each time step includes three stages: the game interaction stage, 
the pool expulsion stage and the strategy update stage. In the game 
interaction stage, all individuals play the public goods game with 
pool expulsion synchronously. Denoting the number of defectors, 
cooperators and pool expellers in a group of size G ∈ [2,k + 1] by 
G D , GC and G O E respectively, the payoff of each type of players 
for a particular public goods game is thus given by
⎧⎪⎨
⎪⎩

P D = r(GC + G O E)/G, (a)

P C = r(GC + G O E)/G − 1, (b)

P O E = r(GC + G O E)/G − 1 − cO E , (c)

(1)

where r ∈ (1, G) denotes the enhancement factor applied to the 
group investment GC + G O E . Here r > 1 takes into account the 
synergistic effects of public cooperation while r < G ensures the 
presence of a social dilemma between personal and group inter-
ests. Then the whole system enters into the pool expulsion stage. In 
a random sequence manner, each defector is selected exactly once 
to be expelled to any other vacant sites, if any, on the square lat-
tice, once there is at least one pool expeller in any one of public 
goods games it participates. Finally, in the strategy update stage, all 
individuals synchronously update their strategies either by imita-
tion or by exploration. With probability 1 − μ, a individual (e.g., 
the one at site i) imitates the strategy of another randomly chosen 
neighbor (e.g., the one at site j), if any, with a probability given by 
the Fermi function

W
(

P j − Pi
) = 1

1 + exp
[− (

P j − Pi
)/

K
] , (2)

where K = 0.1 quantifies the uncertainty by strategy adoptions, 
implying that the strategies of better-performing players are read-
ily adopted, although it is not impossible to adopt the strategy of a 
player that performs worse. Despite capturing one root of humans 
or animals changing their strategies: imitation of fitter behaviors, 
the imitation dynamics ignore the function of innovation: explo-
ration of new strategies different from the ones available in their 
neighborhoods [47–50]. Hence we introduce exploration dynam-
ics into our model: With probability μ, a individual (e.g., the one 
at site i) randomly explores any other available strategies. In our 
study, we mainly focus on the limiting case μ → 0 (i.e., μ = 10−5

in present work), which ensures successful avoidance of the above 
evolutionary system being stuck in artifact stationary (or frozen) 
states where no strategy updating event happens for each individ-
ual on the one hand, and efficient investigation of spatial inter-
actions among defection, cooperation and pool expulsion on the 
other hand [51].

3. Results

The average fractions of all three strategies ρ̄X/ρ (X ∈ D, C, O E) 
on the square lattice are determined in the stationary state af-
ter a sufficient long relaxation time. Depending on the proximity 
to phase transition points, the linear system size is varied from 
L = 500 to 5000, and the relaxation time is varied from 104 to 
3 × 106 time steps to ensure that the statistical error is compara-
ble with the size of the symbols in the figures.

Before presenting the main results, let us briefly analyze the 
evolutionary outcomes in a well-mixed population with an infinite 
size. In the absence of a limited interaction range, the mean-field 
dynamics of the public goods game with pool expulsion can be 
described by the following differential equation set:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ρD
∂t = − (1 − μ)

[
ρDρO E tanh

(
P̄ O E− P̄ D

2K

)

+ρDρC tanh
(

P̄C − P̄ D
2K

)]
+ μ

(
ρO E+ρC

2 − ρD

)
, (a)

∂ρC
∂t = − (1 − μ)

[
ρCρO E tanh

(
P̄ O E − P̄C

2K

)

+ρCρD tanh
(

P̄ D− P̄C
2K

)]
+ μ

(
ρO E+ρD

2 − ρC

)
, (b)

∂ρO E
∂t = − (1 − μ)

[
ρO EρC tanh

(
P̄C − P̄ O E

2K

)

+ρO EρD tanh
(

P̄ D− P̄ O E
2K

)]
+ μ

(
ρC +ρD

2 − ρO E

)
, (c)

(3)
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Fig. 1. (Color online.) Full ρ - cO E phase diagram of the spatial public goods game 
with pool expulsion for the enhancement factor r = 2.5, where cooperators can-
not survive solely due to spatial reciprocity [30]. Solid blue lines denote continuous 
phase transitions, while dotted red lines denote discontinuous phase transitions. 
Note that the dashed black line at ρ = 0.5 represents the phase boundary between 
the dynamical state [i.e., (O E + C + D)D ] and the frozen state [i.e., (O E + C + D)F ]. 
Herein, due to the presence of exploration events (i.e., μ = 10−5), we say one strat-
egy (e.g., X ∈ D, C, O E) dies out if and only if ρX = 0 for at least one time step 
during the whole evolutionary process as well as its mean faction in the stationary 
state ρ̄X < 1/N . Here the mean fractions of all three strategies ρ̄X are evaluated 
over 104 time steps once the spatial system evolves into the stationary state. Two 
representative cross sections of this phase diagram is presented in Fig. 2.

where ρX (X ∈ D, C, O E) represents the density of players (i.e., ρD

of defectors, ρC of cooperators and ρO E = ρ − ρD − ρC of pool 
expellers), and P̄ X (X ∈ D, C, O E) denotes the average payoff for 
players (i.e., P̄ D for defectors, P̄ C for cooperators and P̄ O E for pool 
expellers):
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

P̄ D = r
G

ρO EρD+ρρC
ρ(ρ−ρO E )

(G − 1) , (a)

P̄ C = r
G

[
ρO EρD+ρρC
ρ(ρ−ρO E )

(G − 1) + 1
]
− 1, (b)

P̄ O E = r
G

[
ρO EρD+ρρC
ρ(ρ−ρO E )

(G − 1) + 1
]
− 1 − cO E . (c)

(4)

According to Eq. (4), ρC and ρO E tend to zero in the limit μ → 0
for arbitrary value of K as P̄ D > P̄ C > P̄ O E . In short, both coop-
erators and pool expellers become extinct in the system with an 
infinite range of interaction.

In what follows, we aim to study spatial dynamics of the pub-
lic goods game with pool expulsion including phase separation of 
the spatial public goods game with pool expulsion as well as illu-
mination of pattern formation mechanisms.

3.1. Phase diagram

Representative phase diagram for the enhancement factor r =
2.5, where cooperators can no longer survive solely due to spa-
tial reciprocity (see App. A), is presented in Fig. 1. At such a low 
value of r, pool expellers are able to sustain or even prevail in 
the diluted lattice (i.e., ρ < 1) even if the cost of pool expulsion 
cO E > 0. If the cost of pool expulsion 0.08 > cO E > 0.0015 is mod-
erate, the absorbing state D at population density ρ = 1 first gives 
way to the oscillatory phase (O E + C + D)O , subsequently to the 
dynamical and mixed state (O E + D)D via a discontinuous phase 
transition, then to the dynamical and mixed state (O E + C + D)D
by a continuous phase transition and finally to the mixed and 
frozen state (O E + C + D)F as the population density ρ decreases 
from 1 to 0. Moreover, while the sufficiently low cost of pool ex-
pulsion 0.0015 > cO E > 0 leads to the disappear of the (O E + D)D
Fig. 2. (Color online.) Cross sections of the phase diagram depicted in Fig. 1, as ob-
tained for the enhancement factor r = 2.5. Depicted are stationary fractions of the 
three competing strategies in dependence on (a) the population density ρ when 
the cost of pool expulsion cO E = 0.01 and (b) the cost of pool expulsion cO E when 
the population density ρ = 0.96. We note that there are two different types of 
phase transition in Fig. 2(a): the continuous phase transition from (O E + C + D)D
to (O E + D)D and the discontinuous phase transition from (O E + C + D)O to 
(O E + D)D . Here the stationary fractions of all three strategies ρ̄X (X ∈ D, C, O E) 
are averaged over 104 time steps after the evolutionary system enters into the 
steady state.

phase, the adequately high cost of pool expulsion cO E > 0.08 re-
sults in the absence of the (O E + C + D)O phase in comparison 
with the case for the moderate cost of pool expulsion.

Fig. 2 shows two characteristic cross sections of the phase dia-
gram presented in Fig. 1. The process depicted in Fig. 2(a) is con-
siderably interesting. When the population density ρ ∈ (0,0.5], the 
average fractions of the three strategies are all equal to 1/3. Fur-
ther increment of the population density ρ leads to the decrease 
of the average fractions of strategies C and O E , which results 
from the increasing contacts among players. Note that the sparse 
interaction structure in this case disables cooperators and pool ex-
pellers to form compact clusters, and thus makes the mechanism 
of spatial reciprocity absent [52]. Once the second-order freeriders 
are eliminated from the system, pool expellers can resist against 
defectors and even spread at the cost of defectors, which in turn 
introduces the emergence of cooperators. Finally, defectors wipe 
out cooperators and pool expellers if the population density ρ = 1. 
More interestingly, there also reveals from Fig. 2(a) two qualita-
tively different manners for the (O E + C + D)D dynamical coexis-
tence phase as well as the (O E + C + D)O oscillatory coexistence 
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phase to give way to the (O E + D)D phase. For the phase tran-
sition from (O E + C + D)D to (O E + D)D , the average fraction of 
cooperators ρ̄C /ρ decays gradually to zero. For the phase transi-
tion from (O E + C + D)O to (O E + D)D , however, the termination 
of the (O E + C + D)O phase is due to the sudden vanish of coop-
erators. Fig. 2(b) shows the average fractions of the three strategies 
as a function of the cost of pool expulsion cO E for the population 
density ρ = 0.96, which reveals a relatively straightforward pro-
cess. Here, the average fraction of strategy D increases because of 
the increment of the cost of pool expulsion cO E . For the cost of 
pool expulsion cO E → 0, pool expellers win over both defectors 
and cooperators, and thus prevail in the population. If the cost of 
pool expulsion cO E > 0.037, on the other hand, cooperators disap-
pear in a discontinuous manner, and defectors dominate the spatial 
system.

3.2. Pattern formation

For the spatial public goods game with pool expulsion, it is im-
portant to notice that there exists a maximal population density 
ρT = 0.5, in the case of which the spatial configurations are able 
to satisfy the condition that no individuals are located in their 
respective neighborhood. Below such a critical threshold of the 
population density ρ ≤ ρT , the above evolutionary system with 
the presence of mutation will eventually converge into separat-
ing states wherein all individuals are separated from each other 
by vacant sites. Once evolving into separating states (e.g., at time 
step ttr ), the whole population is solely governed by random ex-
ploration of strategies:

⎧⎪⎪⎨
⎪⎪⎩

∂ρD
∂(t−ttr)

= μ
2 (ρ − 3ρD) , (a)

∂ρC
∂(t−ttr)

= μ
2 (ρ − 3ρC ) , (b)

∂ρO E
∂(t−ttr)

= μ
2 (ρ − 3ρO E) , (b)

(5)

which leads to the following solutions of above ordinary differen-
tial equations:

⎧⎪⎪⎨
⎪⎪⎩

ρD (t − ttr) = ρ
3 − ρ−3ρD (ttr)

3e3μ(t−ttr )/2 if t ≥ ttr, (a)

ρC (t − ttr) = ρ
3 − ρ−3ρC (ttr)

3e3μ(t−ttr )/2 if t ≥ ttr, (b)

ρO E (t − ttr) = ρ
3 − ρ−3ρO E (ttr)

3e3μ(t−ttr )/2 if t ≥ ttr, (c)

(6)

where ρD (t), ρC (t) and ρO E (t) denotes the density of defectors, 
cooperators and pool expellers at time step t , respectively. From 
above ordinary differential equations, we can obtain the stationary 
state of the spatial system in the limit t → ∞:

ρD = ρC = ρO E = ρ

3
. (7)

Note that the analytical results above are robust against the 
variation of the enhancement factor r and the cost of pool expul-
sion c as long as both the exploration rate μ > 0 and the popu-
lation density ρ ≤ 0.5 are satisfied. Particularly, if the population 
density ρ = 0.5, the structured population as a whole produces 
the spatial ordering by displaying a stable checkerboard pattern 
as every site is in exactly opposite states (‘occupied’ versus ‘emp-
ty’) in comparison with its all neighbors (see Fig. 3). A similar 
phenomenon is firstly explored in magnetic models where many 
interesting spin-glass phenomena may arise, and is also well inves-
tigated in spatial models of evolutionary games where each player 
can choose the opposite strategy of all neighbors [53].

Lastly, it still requires to clarify the mechanism of pattern 
formations for the (O E + C + D)O oscillatory coexistence phase. 
Fig. 4(a) shows the fraction of each strategy as a function of time 
Fig. 3. The configuration of spatial ordering in the square lattice for the population 
density ρ = ρT = 0.5. In the schematic square lattice of size 6 × 6 above, a black 
filled circle denotes a site that is occupied by a player who is either a defector, a 
cooperator or a pool expeller, and a white hollow circle represents a site that is just 
empty. At such a critical population density, the spatial system performs a stable 
checkerboard pattern with ‘occupied’ and ‘empty’ as the two opposite states of sites 
in the stationary state.

for the population density ρ = 0.918 and the cost of pool expul-
sion cO E = 0.01 when the enhancement factor r = 2.5. At the start 
of the evolution, the randomly mixed initial state is particularly 
beneficial for the exploitation of cooperators and pool expellers by 
defectors. Accordingly, the fraction of defectors ρD/ρ rises rapidly, 
while the fractions of cooperators ρC /ρ and pool expellers ρO E/ρ
fall [see Fig. 4(a)]. Thanks to spatial reciprocity [30] as well as the 
evolutionary mechanism of pool expulsion, pool expellers are able 
to form a number of spatial clusters, which are partially isolated 
from defectors by vacant sites, in a self-organizing manner to re-
sist the invasion of defectors (see Fig. 5). Cooperators, on the other 
hand, cannot win the direct competition with defectors solely by 
virtue of spatial reciprocity at such a low enhancement factor, i.e., 
r = 2.5, and thus merely maintain in the vicinity of pool expellers’ 
clusters by not contributing to the expulsion pool (see Fig. 5). Af-
ter the initial relaxation time, the end of which is indicated by 
an arrow in Fig. 4(a), the system reaches the equilibrium state 
in a oscillatory way. Fig. 4(b) shows a ‘cut-out’ for a full cycle 
(i.e., from time t = 950 to t = 2050) of fluctuation from Fig. 4(a). 
When the second-order freeriders are almost wiped out by de-
fectors from the population, pool expellers surrounding by thin 
active vacant layers become more effective to compete with de-
fectors, and thus the clusters of pool expellers begin to expand 
uniformly [see Fig. 4(b) as well as Figs. 6(a) and 6(b)]. However, 
during the expansion process of pool expellers’ clusters, coopera-
tors begin to invade the spatial territories of pool expellers from 
interior though the fraction of pool expellers is still increasing [see 
Fig. 4(b) as well as Figs. 6(b) and 6(c)]. Once the clusters of coop-
erators reach the boundaries of the islands between defectors and 
pool expellers, traveling waves dominate the spatial system: De-
fectors can spread toward the spatial domains of cooperators, and 
cooperators in turn invade the bulk of the spatial domains of pool 
expellers [see Fig. 4(b) as well as Figs. 6(d) and 6(e)]. Based on this 
process, defectors may control a significant portion of the spatial 
system for a long period of time until a new cycle of fluctuation 
begins [see Figs. 4(a) and 4(b) as well as Fig. 6( f )].
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Fig. 4. (Color online.) Time courses depicting the evolutionary process for the oscil-
latory phase (O E + C + D)O occurring at the population density ρ = 0.918 and the 
cost of pool expulsion cO E = 0.01 when the enhancement factor r = 2.5. (a) Evolu-
tion of the distribution of strategies starting with a random initial state. The vertical 
dashed lines mark a full cycle of time from t = 950 to t = 2050, between which the 
densities of defectors ρD/ρ , cooperators ρC /ρ and pool expellers ρO E/ρ undergo 
rise and fall once. Note that the horizontal axis is logarithmic. (b) Enlargement of 
the rectangle area shown by the vertical dashed lines in Fig. 4(a).

4. Discussion

The impact of pool expulsion has been studied in the spatial 
public goods game with defection, cooperation, and pool expul-
sion as the three competing strategies. We have found that pool 
expellers are able to survive or even prevail across the whole 
ρ − cO E parameter region even if the synergistic effects of coop-
eration are low to the point that spatial reciprocity alone fails to 
sustain it, and if thus the second-order freeriders are present in 
the population, as well as if the expulsion behavior is costly. De-
tailed analysis of the pattern formation process reveals that the 
evolutionary advantage of pool expulsion over defection, when the 
population density ρ is considerably large, comes from: (1) for-
mation of compact clusters by spatial reciprocity; (2) formation of 
active vacant layers between defectors and pool expellers by pool 
expulsion. It turns out that pool expellers in this case can even 
dominate the population only within a strongly limited region of 
parameters, i.e., the cost of pool expulsion c → 0. Furthermore, if 
the cost of pool expulsion c becomes slightly larger, the spatial sys-
tem evolves into a self-organizing spatial temporal pattern where 
all three strategies coexist in a oscillatory manner. When the pop-
ulation density ρ is small, however, pool expellers are able to 
Fig. 5. (Color online.) Spatial distribution of strategies on a 200 × 200 portion of a 
larger 800 × 800 square lattice for the same parameters as those used in Fig. 4. The 
snapshot was taken at the end of the initial relaxation time, which is indicated by 
an arrow in Fig. 4(a). Defectors, cooperators, pool expellers and vacant sites are de-
picted in red, orange, green and white, respectively. In this snapshot, pool expellers 
survive in the square lattice by expelling their defective neighbors as well as form-
ing spatial clusters of small sizes while cooperators merely maintain in the vicinity 
of pool expellers’ clusters by not contributing to the expulsion pool.

survive in the sparse lattice solely by virtue of pool expulsion. Par-
ticularly, if the population density ρ ≤ 0.5, the whole population is 
governed by exploration dynamics [47], which leads to the equal 
abundances of all three strategies. Interestingly, when the popu-
lation density ρ = 0.5, the spatial system produces checkerboard 
patterns with ‘occupied’ and ‘empty’ as the two opposite states. 
Although the contributors, i.e., cooperators and pool expellers, ac-
count for a large majority of the population in this case, it does not 
mean that the individual interest or the social welfare can benefit 
from such a cooperative outcome. In contrast, due to the isolation 
of individuals from each other in the stationary state, nobody is 
able to play the public goods game in the square lattice. Therefore, 
both the individual payoff and the overall wealth of the entire so-
ciety are equal to zero, which is a situation similar to the “tragedy 
of the commons” where defectors prevail over the whole popula-
tion. In order to understand such a nontrivial phenomenon, it is 
instructive to characterize the evolutionary process in two stages, 
wherein the evolutionary system is driven by the coupling interac-
tions between the imitation and the exploration dynamics in the 
initial stage, and is solely governed by the exploration dynamics in 
the subsequent stage. In the first stage, defectors invade into the 
spatial territories of both cooperators and pool expellers due to 
the diluted effects of the population. The evolutionary system with 
the presence of mutation reaches the end of the first stage for this 
process once it evolves into the separating state where individuals 
are isolated from each other. In the second stage, the exploration 
dynamics finally result in the equal fractions of all three strategies.

In contrast with the efficiency of peer expulsion in maintaining 
socially advantageous states [42], we have found that pool expul-
sion is less effective because cooperators can always invade the 
spatial territories of pool expellers as long as the cost of pool 
expulsion is positive. This also partially leads to the spontaneous 
emergence of self-organizing spatiotemporal patterns governed by 
oscillatory dynamics among defection, cooperation, and pool ex-
pulsion. On the contrary, cooperators and peer expellers are able 
to separate from each other and fight independently against de-
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Fig. 6. (Color online.) Spatiotemporal evolution of the strategies at the equilibrium 
state for the same parameters as those used in Fig. 4. The snapshots were taken at 
time steps: (a) t = 1270; (b) t = 1340; (c) t = 1410; (d) t = 1550; (e) t = 1680 and 
( f ) t = 2000 [see the dotted lines in Fig. 4(b) marking when the snapshots of the 
spatial patterns were recorded in Fig. 6]. Here shows a 200 ×200 portion of a larger 
800 ×800 square lattice. The color code is the same as that used in Fig. 5. From time 
step 1270 to 1410, the clusters of pool expellers surrounded by thin active layers of 
vacant sites expand towards the spatial territories of defectors, and gradually occupy 
the larger parts of the spatial lattice in comparison with defectors do. From time 
step 1340 to 1550, the cooperators’ clusters begin to emerge and expand inside 
the pool expellers’ clusters until reach the boundaries of spatial clusters between 
defectors and pool expellers. From time step 1550 to 2000, the spatial clusters of 
defectors begin to retake their lost territories by invading the spatial territories of 
cooperators while the cooperators’ clusters continue to intrude the spatial territories 
of pool expellers until the nearly extinction of cooperators.

fectors. Since peer expellers do it more successfully, they can out-
compete cooperators via both direct and indirect domain compe-
tition. As a result, the oscillatory state between defection, coop-
eration, and peer expulsion cannot be observed [42]. Punishment 
represents a form of reactive strategy that entails paying a cost for 
somebody else to incur a cost [7,14]. In pool punishment, punish-
ers are willing to contribute into a common pool in advance, from 
which resources are then taken to sanction defectors [54–56]. If 
we classify this kind of costly punishment as an active one, we can 
consider pool expulsion in our model as an inactive form of pun-
ishment: Pool expellers tend to contribute in advance to a common 
pool, which is used to ‘punish’ defectors in a way that pool ex-
pellers terminate future interactions with defectors. On the other 
hand, pool expellers in our model are also similar to pool exclud-
ers, who share costs to spontaneously form an institution so as 
to carry out the rejection of the freeriders and preclude them from 
enjoying the benefits [57,58]. Note that the institutions constructed 
by pool excluders in their model require the cognitive ability that 
Fig. 7. (Color online.) Densities of players ρX (X ∈ D, C, O E) as a function of the 
enhancement factor r for the population density ρ = 1.0 and the cost of pool expul-
sion cO E > 0. The transition point at rth = 3.637 (9) separates the parameter region 
of the enhancement factor r ∈ (1,5) into two distinct phases: the absorbing phase 
D and the dynamical coexistence phase (C + D)D . Simulation results were obtained 
for L ∈ [500,1000] and t ∈ [

105,106
]

time steps, depending on the proximity to the 
transition point r = rth .

can be used to identify freeriders before the public goods are allo-
cated to group members. In this case, pool excluders can emerge 
or stabilize themselves even in well-mixed populations if only the 
net gain of pool excluders from the public goods game is larger 
than the shared cost of pool expulsion. The institutions built by 
pool expellers, however, merely have the cognitive ability to rec-
ognize freeriders after the public goods game, which thus leads to 
their extinction in the mean-field limit.

We hope that this research will prove inspirational for further 
explorations of the fascinating links between physics and soci-
ety [59], in particular how methods of physics, and the general 
approach that is characteristic for physics, can lead to a better un-
derstanding of human societies.
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Appendix A. The no vacant sites case

Computational results by Monte Carlo simulation presented in 
Fig. 7 show the stationary fractions ρD , ρC and ρO E for various 
values of the enhancement factor r when there are no vacant sites 
on the square lattice, i.e., when the population density ρ = 1.0. 
On the saturated square lattice (i.e., population density ρ = 1.0), 
there are no vacant sites available for pool expellers to banish 
defectors in their public pools. Pool expellers, like cooperators, 
are able to persist in the structured population by virtue of spa-
tial reciprocity. However, as the cost of pool expulsion cO E > 0, 
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the evolutionary performance of pool expellers is inferior to that 
of cooperators. Therefore, pool expellers vanish in the structured 
population across the whole applicable range of the enhancement 
factor r (see Fig. 7). On the other hand, cooperators are able to 
survive by forming compact clusters if the enhancement factor r is 
larger than a threshold rth = 3.637 (9) [60]. Below such a thresh-
old, cooperators become extinct (i.e., ρC = 0) (see Fig. 7), wherein 
the transition from the mixed to the homogeneous state pertains 
to the directed percolation university class for spatial systems of 
two dimensions since the density of cooperators ρC ∝ (r − rtr)

β by 
β = 0.55 (1) [61–63].
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