
Available online at www.sciencedirect.com
ScienceDirect

Physics of Life Reviews 12 (2015) 1–21

www.elsevier.com/locate/plrev

Review

Statistical physics of crime: A review

Maria R. D’Orsogna a,b, Matjaž Perc c,d,e,∗

a Department of Mathematics, California State University at Northridge, Los Angeles, CA 91330, USA
b Department of Biomathematics, UCLA, Los Angeles, CA 90095, USA

c Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, SI-2000 Maribor, Slovenia
d Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia

e CAMTP – Center for Applied Mathematics and Theoretical Physics, University of Maribor, Krekova 2, SI-2000 Maribor, Slovenia

Received 5 August 2014; received in revised form 20 October 2014; accepted 3 November 2014

Available online 6 November 2014

Communicated by L. Peliti

Abstract

Containing the spread of crime in urban societies remains a major challenge. Empirical evidence suggests that, if left unchecked, 
crimes may be recurrent and proliferate. On the other hand, eradicating a culture of crime may be difficult, especially under 
extreme social circumstances that impair the creation of a shared sense of social responsibility. Although our understanding of the 
mechanisms that drive the emergence and diffusion of crime is still incomplete, recent research highlights applied mathematics 
and methods of statistical physics as valuable theoretical resources that may help us better understand criminal activity. We review 
different approaches aimed at modeling and improving our understanding of crime, focusing on the nucleation of crime hotspots 
using partial differential equations, self-exciting point process and agent-based modeling, adversarial evolutionary games, and the 
network science behind the formation of gangs and large-scale organized crime. We emphasize that statistical physics of crime can 
relevantly inform the design of successful crime prevention strategies, as well as improve the accuracy of expectations about how 
different policing interventions should impact malicious human activity that deviates from social norms. We also outline possible 
directions for future research, related to the effects of social and coevolving networks and to the hierarchical growth of criminal 
structures due to self-organization.
© 2014 Elsevier B.V. All rights reserved.
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1. Introduction

An unattended broken window invites bypassers to behave mischievously or even disorderly. Soon, one broken 
window may become many, and the inception of urban decay is in place. Similarly, a subway graffiti, however beautiful 
and harmless in appearance, points to an unkept environment that anyone can desecrate, signaling that more egregious 
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Fig. 1. Dynamic changes in residential burglary hotspots for two consecutive three-month periods, starting June 2011, in Long Beach, California. 
The emergence of different burglary patterns is related to how offenders move within their environments and how they respond to the successes 
and failures of their illicit activities. Residential burglars tend to return to previously victimized locations, or to their close vicinities, after having 
acquired information on the properties, the schedules of inhabitants, possible surveillance systems – a reasoning that is closely aligned with “routine 
activity theory” [2]. The figure is reproduced from [3].

damage will be tolerated. Panhandlers, drunks, addicts, prostitutes, and loiterers are more likely to frequent neglected 
subway stations than orderly and carefully patrolled ones. The 1982 seminal paper by Wilson and Kelling [1] contains 
many more lucid examples and anecdotes to introduce the “broken windows theory”, articulating how seemingly 
unimportant and petty signals of urban disorder may elicit antisocial behavior and serious crime. Although not immune 
from criticism, this work has since become a widely adopted criminological theory.

To mathematicians and physicists, the broken windows theory may be reminiscent of complexity science and self-
organized criticality [4], where seemingly small and irrelevant changes at the local level frequently have unexpected 
consequences at the global level later in time. Feedback loops, bifurcations and catastrophes [5], as well as phase tran-
sitions [6], are commonly associated with emergent phenomena stemming from the nonlinearities inherent to complex 
social systems [7]. Crime is ubiquitous, yet far from being uniformly distributed across space or time [8–13]. This is 
evidenced also by the dynamic nucleation and dissipation of crime hotspots shown in Fig. 1 [3,14], as well as by the 
emergence of complex geographical gang and organized crime networks. Such intriguing pattern formation naturally 
invites quantitative mathematical analyses, to which we attend in this review.

We consider crime as a complex phenomenon, where nonlinear feedback loops and self-organization give rise to 
system-wide unexpected behaviors that are difficult to understand and control [15]. Data provided by the Federal 
Bureau of Investigation shown in Fig. 2 suggest that crime deterrence policies are struggling to have the desired 
impact. Indeed, if viewed over a time scale of decades, the relative frequency of offenses, regardless of crime type, is 
heavily undulating and lacks persistent downward momentum.

Outside the realm of mathematical modeling, there exist well-known and widely accepted theories of criminal 
behavior. According to “routine activity theory” [2], most criminal acts are born out of the convergence of three 
factors: the presence of likely offenders and of suitable targets and the absence of guardians to protect against the 
attempted crime. Residential burglary, grand theft auto, armed robberies, pickpocketing and rape are examples of 
such criminal acts. Other crimes may imply a precise target focus, such as in murder for revenge or other clan-type 
retaliation offenses.

If viewed upon sociologically, these “ingredients” of routine activity theory are relatively straightforward con-
ditions that obviously favor criminal activity. Mathematically, however, routine activity theory allows us to model 
criminal offender dynamics as deviations from simple random walks. This is due to built-in heterogeneities in target 
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Fig. 2. The persistence of crime over time despite our best prevention and punishment efforts. Data from the Federal Bureau of Investigation 
indicate that crime, regardless of type and severity, is remarkably recurrent. Although positive and negative trends may be inferred, crime events 
(measured as number of offenses per 100 000 population) between 1960 and 2010 fluctuate across time and space. There is no evidence to support 
that crime rates are permanently decreasing. The U.S. state index is alphabetical, including the District of Columbia being 9th, and the U.S. total 
being 52th.

selection that may drive criminal activity towards preferred locations and away from less desired ones, marked, say, 
by better surveillance systems, more physical obstacles to break-ins or thefts, and in general by a higher, real or per-
ceived, risk vs. reward ratio. The degree of target “attractiveness” may change in time and depend on mundane factors 
such as the day of the week or weather conditions, or on the more sophisticated interplay between landscape, criminal 
activity and law enforcement responses. Crime dynamics may also include learning mechanisms or feedback loops. 
All these elements lead to the emergence of non-trivial patterns such as spatially localized crime hotspots as shown in 
Fig. 1 for grand-theft auto in the city of Long Beach, California: note how hotspots diffuse over time in a non-trivial
manner. Another interesting phenomenon is that of repeat and near-repeat victimization in the case of residential bur-
glary [16–19], whereby for a given period of time after a first break-in, the odds of a second victimization are greatly 
enhanced both for the original target site and locations in its near vicinity.
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The complexity of crime dynamics and the many factors that influence criminal activity render mitigation and 
displacement of crime a non-trivial task [20–24]. Rational choice theories applied to crime may be too simplistic in 
assuming straightforward gain-loss principles, for example that stronger punishment would automatically lead to less 
crime [25,26]. In this work, we review recent quantitative mathematical models of crime where statistical physics, 
complexity science, game theory and self-organized criticality are used in an attempt to understand the multiple 
aspects of crime and to identify possible prevention and amelioration strategies.

The organization of this review is as follows. In Section 2, we will focus on a set of reaction–diffusion partial 
differential equations to study the emergence, dynamics and possible suppression of crime hotspots [3,14,19,27,28]. In 
Section 3, we will review the application of self-exciting point processes, which are frequently used by seismologists 
to study space–time clustering of earthquakes [29] to crime data [30–32]. Section 4 will be devoted to the study 
of crime by means of adversarial games and evolutionary social dilemmas [33–36]. In Section 5, we will review 
mechanisms behind the growth and structure of criminal networks and the formation of gangs [37], while in Section 6, 
we will survey a rehabilitation and recidivism model [38] that reveals an optimal resolution of the “stick versus 
carrot” dilemma [39–46]. We will conclude with a summary and an outlook in Section 7, describing the implication 
of statistical physics of crime and outlining viable directions for future research related to agent-based modeling, 
hierarchical growth, and self-organization.

2. Crime hotspots

Empirical observations of spatio-temporal clusters of crime in urban areas, such as those presented in Fig. 1, 
motivated the development of a statistical model of criminal behavior, which was introduced and studied in [3]. The 
model was developed to study residential burglary, one of the simplest instances of opportunistic, routine activity 
crime. Here, target sites – residential homes – are stationary and one can focus on burglar dynamics only, as opposed 
to crimes where both offender and targets are mobile, as in the case of assault or pickpocketing.

Burglars most often opportunistically victimize areas that are sufficiently, but not too close to where they live, and 
where they have committed crimes before [47]. Aside from a small exclusion zone centered around their own resi-
dences, the distances that criminals are willing to travel to engage in criminal acts are best described by monotonically 
decreasing functions [48]. Offender movement is usually described as a biased random walk. The bias is twofold. On 
the one hand, from a burglar’s perspective, a given target home may be intrinsically more attractive than another due 
to its perceived wealth, the ease in accessing it, or the predictable routine of its occupants. On the other, there may be 
learned elements that bias the burglar towards a specific location. For instance, a criminal may return to a previously 
victimized home or to its immediate neighborhood, having already learnt the details of the area, and having acquired 
the know-how for a successful break-in.

To quantify the bias towards any given location and to determine the subsequent rate of burglary, the crime model of 
[3] includes a dynamically changing “attractiveness” field. The tendency for repeat victimization [16–19] is included 
in the model by temporarily increasing the attractiveness field in response to past burglary events [49,50] both at 
the burglary site and in its near vicinity. Since potential crime targets in case of residential burglary do not move, it 
is convenient to start with a discrete model on a square lattice with periodic boundary conditions. Each lattice site 
s = (i, j) is a house or real estate with attractiveness As(t). The higher the value of As(t), the higher the bias towards 
site s and the more likely will it be victimized. Moreover, once site s has been victimized, its attractiveness further 
increases. The following decomposition is introduced

As(t) = A0
s + Bs(t), (1)

where A0
s is the static, though possibly spatially varying, component of the attractiveness field, and Bs(t) represents 

the dynamic component associated with repeat and near-repeat victimization [16,19,47]. Specifically, Bs(t + 1) =
Bs(t)(1 − ω) + Es(t), where ω sets a time scale over which repeat victimizations are most likely to occur and Es(t)

is the number of burglary events that occurred at site s during t and t + 1. To take into account the broken windows 
theory [1], we let Bs(t) spread locally from each site s towards its nearest neighbors s′ according to

Bs(t + 1) =
[
(1 − η)Bs(t) + η

z

∑
′

Bs′(t)

]
(1 − ω) + Es(t) (2)
s
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where the sum runs over the nearest neighbor sites associated to site s, z is the coordination number of the lattice 
and η is a parameter between zero and one that determines the significance of neighborhood effects. Higher values 
of η lead to a greater degree of spreading of the attractiveness generated by a given burglary event, and vice-versa 
for lower values. In this review we assume, for simplicity, that the spacing between sites � and the discrete time unit 
δt over which criminal actions occur are both equal to one, and that every time a site s is burglarized its dynamic 
attractiveness Bs(t) increases by one. Interaction networks other than the square lattice, that may better describe the 
city grid or social networks for other types of crime [51–53], and even coevolving or dynamically changing networks 
[54–57], can be easily accommodated in a similar way.

Criminal activity is included in the model by allowing individuals to perform one of two actions at every time step. 
A criminal may either burglarize the site he or she currently occupies, or move to a neighboring one. Burglaries are 
modeled as random events occurring with probability ps(t) = 1 − exp[−As(t)]. Whenever site s is burglarized, the 
corresponding criminal is removed from the lattice, representing the tendency of actual burglars to flee the location of 
their crime. To balance burglar removal, new criminal agents are generated at a rate Γ uniformly on the lattice. If site 
s is not burglarized, the criminal will move to one of its neighboring sites with probability 1 − ps(t) = exp[−As(t)]. 
The movement is modeled as a biased random walk so that site s′ is visited with probability

qs→s′(t) = As′(t)∑
s′ As′(t)

, (3)

where the sum runs over all neighboring sites of s. The position of the criminals and the biasing attractiveness field 
in Eqs. (1) and (2) create nonlinear feedback loops which may give rise to complex patterns of aggregation that 
are reminiscent of actual crime hotspots, similar to those depicted in Fig. 1. Results for As(t) are shown in Fig. 3. 
Depending on parameter values, it is possible to observe three different behavioral regimes. In the upper row, all 
localized increases of As(t) that emerge due to recent burglaries disappear very quickly, resulting in a predominantly 
homogeneous attractiveness field. In the middle row, crime hotspots emerge at random locations and they persist 
for different periods of time before disappearing or diffusing elsewhere. Lastly, in the bottom row, stationary crime 
hotspots emerge, which are surrounded by areas of extremely low As(t) values. Interestingly, a high number of 
criminals can result in either the absence of hotspots or intense stationary hotspots. The model actually displays four 
different regimes of As(t) (see Fig. 3 in [3] for details), but for simplicity we here restrict ourselves to reviewing the 
three most distinctive cases shown in Fig. 3.

On the basis of the discrete system it is possible to derive a continuum model, the bifurcation analysis of which 
yields a more thorough understanding of the spatio-temporal dynamics summarized in Fig. 3. From the continuum 
model one can also outline suggestions for crime hotspot suppression and policing [14,27]. The continuum version of 
the dynamics of the attractiveness field is

∂B

∂t
= ηD

z
∇2B − ωB + εDρA, (4)

where D = �2/δt , ε = δt , and ρ(s, t) = ns(t)/�
2. Details of the derivation are described in [3]. The continuum 

equation for criminal number density, denoted as ρ is given by

∂ρ

∂t
= D

z
�∇ ·

[
�∇ρ − 2ρ

A
�∇A

]
− ρA + γ, (5)

where offenders exit the system at a rate ρA, and are reintroduced at a constant rate per unit area γ = Γ/�2. Eqs. (4)
and (5) are coupled partial differential equations that describe the spatio-temporal evolution of the attractiveness B
and the offender population ρ. They belong to the general class of reaction–diffusion equations that often lead to 
spatial pattern formation [58].

For a detailed mathematical treatment of Eqs. (4) and (5), as well as the derivation of their dimensionless form, 
we refer to [3,14,27]. Here we summarize the analysis, which shows that parameters used to obtain the first and 
second row of Fig. 3 correspond to the case where the continuum equations allow for a stable uniform solution, while 
parameters used to obtain the third row of Fig. 3 correspond to the case where the uniform solution is unstable. The 
emerging picture is that crime hotspots form when the enhanced risk of repeat crimes – measured as a function of all 
relevant parameters – is high enough to diffuse locally without binding distant crimes together (for details see Fig. 2 
in [14]). Within the unstable regime, the formation of crime hotspots may occur either via supercritical or subcritical 
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Fig. 3. The evolution of crime hotspots. Depending mainly on the number of criminals, hotspots may either not appear at all (top row), be transient 
(middle row) or stationary (bottom row). If criminals are few, crime hotspots are likely transient and driven by randomness (middle row), while if 
criminals are many, the crime hotspots either never appear (top row) or they do and are stationary (bottom row). To classify different outcomes, a 
continuum model is derived and a linear stability analysis is performed, results of which are described in the text. From left to right, the color maps 
encode the time evolution of the attractiveness field As(t) (see Eq. (1)), such that green represents the midpoint and values below and above follow 
the rainbow spectrum from violet (minimum) to red (maximum). We refer to [3], from where this figure has been adapted, for further details. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

bifurcations [59]. In order to study the effects of police intervention, the crime rate ρA in Eq. (5) is set to zero at 
given hotspot locations and for a given time frame [14]. Numerical studies reveal that only subcritical crime hotspots 
may be permanently eradicated via the above described suppression mechanism, while supercritical hotspots are only 
displaced. The two different outcomes are illustrated in Fig. 4, where the upper and bottom rows show the suppression 
of supercritical and subcritical crime hotspots, respectively.

Further research on this model include the introduction of spatial disorder, methods for police suppression to 
dynamically adapt to evolving crime patterns or to choose from different deployment strategies and more rigorous 
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Fig. 4. Crime hotspot suppression. Upper row: crime hotspots emerging via a supercritical bifurcation and subjected to suppression. The stationary 
solution on which the suppression is initiated is shown in the left panel. The targeted crime hotspots disappear leading to a transition period 
characterized by a “hot ring” solution around the location of the original central hotspot (middle panel). Eventually, new hotspots emerge in 
positions adjacent to the original ones (right panel). Crime has been displaced but not eradicated. Lower row: crime hotspots emerging via a 
subcritical bifurcation and subjected to suppression. The stationary solution on which the suppression is initiated is shown in the left panel. The 
hotspot gradually vanishes without giving rise to new hotspots in nearby locations (middle and right panels). Crime has been eradicated. All 
depicted solutions were obtained with Eqs. (4) and (5). From left to right, the color maps encode the time evolution of the attractiveness B , using 
the same color profile as in Fig. 3. We refer to [14], from where this figure has been adapted, for further details. (For interpretation of the references 
to color in this figure legend, the reader is referred to the web version of this article.)

analysis [28,60–63]. Other mathematical work on the spread of crime in society include dynamical systems that 
include competition between citizens, criminals and guards [64], the effects of socio-economic classes, changes in 
police efficiency and/or resources assigned to them [65], the effects of imprisonment and recidivism [66] and the 
possibility of communities defending themselves from criminals [67]. Viewed as a whole, this body of work may 
prove useful in developing better and more cost-effective crime mitigation methods and to allow for the optimization 
of containment and suppression resources.

3. Self-exciting point process modeling

Certain types of crime, like burglary and gang violence, appear clustered in time and space and are reminiscent of 
earthquake activity. The clustering patterns observed by seismologists indicate that the occurrence of an earthquake is 
likely to induce a series of aftershocks near the location of the initial event, leading to earthquake swarms and clusters. 
Similar induction phenomena may be observed in crime pattern formation, motivating the application of seismology 
methods to model criminal activity. One of these methods is the self-exciting point processes [30].

A space–time point process is a collection of points representing the location (x, y) and the time t of occurrence of 
a given event, such as an earthquake, the striking of lightening or the birth of a species. The process is associated to a 
conditional rate λ(x, y, t), indicating the rate of occurrence of events at location (x, y) conditioned on the history H(t)

of the point process up to time t [29]. In seismology, point processes are used by considering a “parent earthquake” and 
subsequent background events or aftershocks. Background activity is modeled as a stationary Poisson process with 
arrival rate μ(x, y) that depends on all previous seismic events. Aftershocks are described via a triggering function 
g(x, y, t) that also depends on previous seismic occurrences, but whose amplitude decreases as a function of the 
spatio-temporal distance from them. The function g also depends on the magnitude of past earthquakes. These ideas 
have been translated into criminal modeling by similarly considering “parent crimes” and subsequent background 
or offspring crimes. A few modifications in going from earthquake to crime modeling are necessary such as the 
introduction of a multiplicative factor ν(t) in the background activity which embodies global fluctuations due to 
weather, seasonality or time of day. Also, while in seismology decades of research and refinement have lead to well 
defined functional forms for g, in crime non-parametric methods and calibrations using actual data are used to estimate 
g as well ν and μ. For details on the forms of μ and g used in seismology and on the iterative procedures used in 
crime we refer to the seminal work by Mohler et al. [30].
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The application of self-exciting point process modeling to urban crime has been tested using residential burglary 
data provided by the Los Angeles Police Department [30]. Previous methods of predicting crime had been introduced 
in the literature [68] where crime hotspot maps were generated via a pre-assigned fixed kernel, using previous crime 
occurrences as input. The point process methodology has been found superior to the crime hotspot map, even for 
robberies or auto theft where near-repeat effects play less of a role. The main advantage of point process modeling has 
been attributed to a better balance between exogenous and endogenous contributions to crime rates and to its direct 
inference from data rather than an a priori imposition of hotspot maps. Accordingly, the usage of self-exciting point 
process modeling is in many ways superior to using a pre-assigned fixed kernel.

Self-exciting point processes have also been used to analyze temporal patterns of civilian death reports in Iraq 
between 2003 and 2007 [32]. Similarly to urban crimes, the rate of violent events has been partitioned into the sum of 
a Poisson background rate and a self-exciting component in which previous bombings or other episodes of violence 
generate a sequence of offspring events according to a Poisson distribution. Comparing with actual data, the study 
showed that point processes are well suited for modeling the temporal dynamics of violence in Iraq. Point processes 
may also be used in geographic profiling of criminal offenders to estimate the probability density for the home base 
of a criminal who has committed a given set of spatially distributed crimes. Target selection from a hypothetical home 
base is informed by geographic inhomogeneities such as housing types, parks, freeways or other physical barriers as 
well as directional bias and preferred distances to crime [31]. In the context of geographic profiling, point processes 
are used to estimate the crime probability density given a set of spatially distributed crimes. In more recent work, 
self-exciting point processes have been used to model intra-gang violence due to retaliation after an initial attack [69].

Overall, the application of self-exciting point processes, inspired by earthquake prediction in seismology, can 
be used successfully for modeling and predicting crime, as demonstrated on residential burglary data from the Los 
Angeles Police Department [30] and on temporal patterns of civilian death reports in Iraq [32]. In the future it may 
be desirable to further tailor point process models specifically for crime type and local geography and to refine the 
construction of parametric models which could facilitate the application of this promising methodology.

4. Crime as a social dilemma

Evolutionary game theory [70–74] has been the traditional framework of choice for studying the evolution of dif-
ferent behavioral strategies in a competitive setting [75–78]. From the large array of possible games, few have received 
as much attention as the prisoner’s dilemma [79]. Here, within each round, two players must decide simultaneously 
whether they want to cooperate with each other or not. Each player then receives a payoff that depends on the mu-
tual decisions made. A “social dilemma” arises because cooperation between both players would yield the highest 
collective payoff, but the payoff for a defector is higher if the opponent decides to cooperate. Mutual defection is 
therefore the only rational outcome that emerges if both players act selfishly so as to maximize their individual profit. 
In the long run, the proliferation of defection inevitably leads to the “tragedy of the commons” [80], where common 
resources are lost to society due to overexploitation and lack of cooperative care.

Although criminal behavior does not necessarily map to the prisoner’s dilemma, it is nevertheless possible, and 
indeed very rewarding, to study the evolution of crime within the framework of social dilemmas [81]. In this context, 
social order can be considered as the common good that is threatened by criminal activity, with competition arising 
between criminals and those trying to prevent crime. However, committing crimes is not necessarily equivalent to 
defection, since criminals, unlike defectors, may actively seek to harm others. By the same token, fighting crime can 
be more than simply to cooperate, in particular since it may involve risk that goes beyond contributing some fraction 
of one’s “wealth” into the common pool. Although in principle committing crime and defecting, as well as fighting 
crime and cooperating are in good correspondence, a more deliberate formulation of the competing strategies may 
elevate the accuracy of the modeling approach.

With these considerations in mind, an adversarial evolutionary game including four competing strategies can be 
constructed [33] as summarized in Fig. 5. The game entails informants (I ) and villains (V ) as those who commit 
crimes, as well as paladins (P ) and apathetics (A) as those who do not. Informants and paladins actively contribute to 
crime abatement by collaborating with authorities whenever called upon to do so. All players may witness crimes or 
be the victims of crime, in agreement with victimization surveys [82]. Thus, paladins are model citizens that do not 
commit crimes and collaborate with authorities, while villains, to the other extreme of the spectrum, commit crimes 
and do not report them. Intermediate figures are informants who report on other offenders while still committing 
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Fig. 5. Crime as an evolutionary game. The society is composed of four strategies – informants, paladins, villains and apathetics – defined by their 
propensities to both commit crimes and serve as witnesses in criminal investigations. Arrows between strategies indicate the number of possible 
game pairings and outcomes in which the update step leads to a strategy change. For example, there are two ways by means of which a villain can 
be converted into a paladin. Circular arrows within each strategy quadrant indicate updates where player strategies remain unchanged. This figure 
has been reproduced from [33].

crimes, and apathetics who neither commit crimes nor report to authorities. The lack of active cooperation in apathetics 
may be due to inherent apathy, fear of retaliation or ostracism from the community at large. Apathetics are similar to 
second-order free-riders in the context of the public goods game with punishment [40,83], in that they cooperate at 
first order by not committing crimes, but defect at second order by not punishing offenders.

The game unfolds iteratively. At each round a criminal is randomly selected from the V + I pool together with a 
potential victim from the N − 1 remainder of the population. The two selected players begin the game with a unitary 
payoff. After a crime occurs, the criminal player increases its payoff by δ, while the victim looses δ. If the victim is 
either an apathetic or a villain, the crime is not reported to the authorities and therefore successful: the victim’s payoff 
is decreased to 1 − δ and the victimizer’s is increased to 1 + δ. If, on the other hand, the victim is a paladin or an 
informant, the crime is reported to the authorities and an “investigation” begins. For this, a subset M of the N − 2
remaining players is drawn, and the victimizer is convicted with probability w = (mP + mI )/M , where mP and mI

are the number of paladins and informants within M . In case of a conviction, the victim is refunded δ, and payoff of 
the criminal becomes 1 − θ , where θ determines the severity of punishment. With probability 1 − w the crime is left 
unpunished, in which case the criminal retains 1 + δ, while the victim’s payoff is further decreased to 1 − δ − ε. Here 
ε may be interpreted as retaliation on the accuser as perpetrated by the accused who, having escaped punishment, 
feels empowered in his or her revenge. Other interpretations of ε may be damages to personal image or credibility, 
or a loss of “faith in the system” after making an accusation that is unsubstantiated by the community. Note that in 
the latter case, the choice of reporting one’s victimization to authorities may be even more detrimental to the witness 
than the original criminal act (ε > δ). This scenario especially applies to societies heavily marred by war, by mafia or 
drug cartels, where few people will serve as witnesses to crimes. Parameters δ, θ and ε are always used such that all 
payoffs remain positive. At the end of each round of the game, the player with the smaller payoff changes his or her 
strategy according to proportional imitation [84]. In particular, if the victimizer is emulated, the loser simply adopts 
the victimizer’s strategy and ends the update as either a villain or an informant. If the victim is emulated, the loser 
mimics the victim’s propensity to serve as a witness but adopts a noncriminal strategy regardless of the victim’s. In 
this case, the update results with the loser becoming either a paladin or an apathetic (see Fig. 5 for details).

Stochastic simulations reveal that informants are key to the emergence of a crime-free society – “utopia”. Indeed, 
a crime-dominated society can be transitioned to one that is largely crime-free by imposing an optimal number of 
informants I0 at the onset of the game. The dynamics depend on the chosen parameterizations and utopia may be 
more difficult to achieve in an extremely adversarial society, with initial high numbers of villains and apathetics. 
However, by deriving a deterministic version of the above described game [33] it is possible to show that if there are 
at least some informants initially present in the population (I0 > 0) the final state is always utopia regardless of δ, θ
and ε. This is illustrated in Fig. 6, which features a 4D ternary phase diagram of the four competing strategies.

While beneficial, the presence of informants may come at a cost, either in training an undercover informant, or 
in convincing a criminal to collaborate with authorities, or in tolerating the criminal acts that informants will keep 
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Fig. 6. The emergence of utopia in a society with informants. All trajectories with I0 > 0 evolve towards a crime-free state. The phase diagram 
shows unstable fixed points in light red, unstable fixed lines in thick light red, stable fixed lines in thick dark blue, and trajectories beginning (or 
ending) along various eigenvectors as thick green arrows. The dystopian fixed point d and the saddle point s are unstable to increases in I , so 
that the only attracting final states for I0 > 0 are those utopias with P > Pc . These results were obtained with δ = 0.3, θ = 0.6 and ε = 0.2, but 
qualitative results are independent of parameters. This figure has been reproduced from [33]. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.)

committing. One may thus consider an optimal control problem [35] to investigate the active recruitment of informants 
from the general population in terms of associated costs and benefits. Higher recruitment levels may be the most 
beneficial in abating crime, but they may also be prohibitively expensive. Recruitment costs are designed to depend 
on the past history of players so that the conversion of individuals with higher cumulative past payoffs might be more 
costly than that of less successful ones [35]. The optimal control problem was expressed via three control functions 
subject to a system of delay differential equations, and was solved and discussed under different settings. Targeted 
and random recruitment of informants were also considered. Optimal recruitment strategies were shown to change 
drastically as parameters and resource constraints were varied and that more information about individual player 
strategies leads only to marginally lower costs.

The crucial role of informants within the reviewed adversarial evolutionary game [33] has also been studied by 
means of human experiments in [34]. The goal was to test whether informants are indeed critical towards crime 
abatement as predicted by theory. Quite remarkably, as illustrated in Fig. 7, good agreement between the outcome of 
the stochastic simulations and the laboratory experiments was obtained for different parameterizations of the game. 
Human experiments thus confirmed that reaching and maintaining a low-crime society may be favored by seeking 
cooperation with active criminals. Details on adaptations of the theoretical game to a laboratory setting and nuanced 
considerations on the role of informants in the two settings are described in [34].

The evolution of crime can also be studied through the lens of the inspection game [85]. Rational choice theories 
predict that increasing fines should diminish crime [25]. However, a three strategy inspection game, where in addition 
to criminals (C) and punishing inspectors (P ), ordinary individuals (O) are present as well leads to very different 
outcomes [36] than what expected. The O players neither commit crimes nor participate in inspection activities and 
represent the “masses” that catalyze rewards for criminals and costs for inspectors. Ordinary individuals receive no 
bonus payoffs upon encountering inspectors or their peers. Only when paired with criminals do they suffer the conse-
quences of crime in form of a negative payoff −g ≤ 0. Criminals, vice-versa, gain the reward g ≥ 0 for committing a 
crime. When paired with inspectors, criminals receive a payoff g − f , where f ≥ 0 is a punishment fine. When two 
criminals are paired none of the two are assigned any benefits. Inspectors, on the other hand, always have the cost of 
inspection, c ≥ 0, but when confronted with a criminal, an inspector receives the reward r ≥ 0 for a successful appre-
hension. This game was studied via Monte Carlo simulations on a square lattice with periodic boundary conditions 
where each lattice site is occupied either by a criminal, a punishing inspector, or an ordinary citizen. The game evolves 
by first randomly selecting player s to play the inspection game with its four nearest neighbors, yielding the payoff 
Ps . One of the nearest neighbors of player s, s′ is now chosen randomly to play the game with its nearest neighbors, 
leading to Ps′ analogously to player s before. Finally, player s′ imitates the strategy of player s with probability

q = 1
, (6)
1 + exp[(Ps′ − Ps)/K]
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Fig. 7. Human experiments confirm that informants are key to diminishing crime. Depicted are comparisons of the strategy evolutions simulated 
from theory (left) and obtained from experimental sessions (right). In the top row all four strategies are allowed, while in the bottom row informants 
are disallowed. Both simulation and human experiment outcomes confirm that the absence of informants leads to elevated levels of criminal 
behavior. Future challenges remain to determine how well the model and the human experiment actually fit to a potential real-life scenario. Paladins 
are red circles, apathetics are blue squares, informants are orange triangles, and villains are green diamonds. For further details we refer to [34], 
from which this figure was adapted. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.)

where K determines the level of uncertainty in the strategy adoption process. The chosen form in Eq. (6) corresponds 
to the empirically supported multinomial logit model [86], which for two decision alternatives is also known as the 
Fermi law [87,88]. A finite value of K accounts for the fact that better performing players are readily imitated, 
although it is not impossible to imitate a player performing worse, for example due to imperfect information or errors 
in decision making.

Monte Carlo simulations reveal that the collective behavior of the three-strategy spatial inspection game is com-
plex and counterintuitive. As depicted in Fig. 8, continuous (solid lines) and discontinuous (dashed lines) transitions 
between different phases emerge. For the left panel of Fig. 8, where we use low reward values r for successful inspec-
tion, these include (i) a dominance of criminals for high rewards of committing a crime g and high inspection costs c
(the C phase), (ii) a coexistence of criminals and punishing inspectors for large values of g and moderate values of c
(the P + C phase), (iii) a dominance of punishing inspectors for moderate inspection costs and low values of g (the 
P phase), and (iv) cyclical dominance for small inspection costs and small values of g (the C + O + P phase). In 
the cyclic dominance phase criminals beat ordinary individuals, ordinary individuals beat punishing inspectors, and 
punishing inspectors win against the criminals. Noteworthy, the C + O + P phase yields oscillatory behavior, where 
C beat O , O beat P , and P beat C, thus closing the dominance loop (C → O → P → C). The cyclic dominance that 
is responsible for strategy density oscillations emerges spontaneously due to pattern formation and is robust against 
initial condition variations.

The three-strategy inspection game shows that the interplay between criminal activities and sanctioning efforts may 
be complex and lead to nonlinear dynamics that may make it difficult to devise successful intuitive crime prevention 
policies. Other game-theoretic optimization studies include finding the best way to defend multiple sites against crim-
inal attempts who also must choose among several attack locations [89]. Results from this section indicate that crime 
should be viewed not only as the result of offending actions committed by certain individuals, but also as the result 
of social interactions between people who adjust their behavior in response to societal cues and imitative interactions. 
The emergence of crime thus should not be ascribed merely to the “criminal nature” of particular individuals, but rather 
to the social context, the systems of rewards and punishment, the level of engagement of the community, as well as 
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Fig. 8. Phase diagrams demonstrating the spontaneous emergence and stability of the recurrent nature of crime and other possible outcomes of 
the evolutionary competition between criminals (C), ordinary people (O) and the police (P ). The diagrams show the strategies remaining on the 
square lattice after sufficiently long relaxation times as a function of the inspection cost c and the temptation to commit crime g, for low (left) and 
high (right) reward of successful inspection r . The overlayed color map encodes the stationary density of criminals in the population (crime rate). 
For small and intermediate values of c and g, cyclic dominance between the three strategies characterizes the evolutionary dynamics. Criminals 
outperform ordinary people, ordinary people outperform the police, and the police outperform criminals. This cyclic dominance leads to recurrent 
outbreaks of crime during the evolutionary process. If either c or g exceed a certain threshold, the cyclic phase ends with a continuous phase 
transition to a mixed P + C phase (lower solid line), where police and criminals coexist. Further increasing the two parameters leads to another 
continuous transition (upper solid line) and an absorbing C phase, where criminals dominate. A re-entry into the cyclic C +O +P phase is possible 
through a succession of two discontinuous phase transitions (dashed lines) occurring for sufficiently small g and decreasing inspection costs. First, 
the absorbing C phase changes abruptly to an absorbing P phase dominated by inspectors, which then changes abruptly to the cyclic phase. If r
is larger (right), the region of cyclic dominance increases, but the possibility of complete dominance of the police also vanishes. Dash-dotted gray 
lines correspond to the condition where the probability for criminals to be detected p is the same as the temptation to commit crime, and a transition 
to criminal behavior would thus be expected according to the rational choice theory. For further details we refer to [36], from where this figure was 
adapted.

to the interactions between individuals. This more comprehensive view of crime may have relevant implications for 
policies and law enforcement.

5. Networks of crime, gangs and geography

A natural extension of the research reviewed thus far, where the focus has been on crime hotspots and the propensity 
of single individuals to commit crime, is to consider criminal networks, the formation of gangs, and the geography of 
crime building, and in particular how these topics could benefit from recent advances in network science [52,90–94]. 
Forms of large-scale organized crime [95], such as the Italian Mafia [96], street gangs, or drug cartels [97] usually 
emerge when fear and despair become so ingrained within a society that the social norm is simply to accept crime, so 
that witnesses and even victims of crime choose not to cooperate with law enforcement in the prosecution of criminals. 
Instead, one tries to fit in. Acquiescence and acceptance are usually slippery slopes towards later forms of active en-
gagement, leading to the growth of the local criminal organization or a criminal network. Criminological research has 
identified a number of factors that may promote the regional development of crime, including unemployment [98,99], 
economic deprivation [100], untoward youth culture [101], failing social institutions [102], issues with political legit-
imacy [100], as well as lenient local law enforcement strategies [103,104], to name but a few examples. Recent work 
on declining criminal behavior in the U.S. in fact suggests that trends in the levels of crime may be best understood 
as arising from a complex interplay of many such factors [105,106], while most recent empirical data indicate that 
social networks of criminals have a particularly strong impact on the occurrence of crime – the more the criminals are 
connected into networks, the higher the crime rate [107,108].

The assumption that there is a network structure behind organized crime immediately invites the idea that removing 
the leader, or the most important hubs of the network [110], will disrupt the organization to its very core and thus hin-
der further criminal activity. Police thus often attempt to identify and arrest the “ring leader” of the targeted criminal 
organization. But even if successful, such operations rarely have the desired effect. A recent study analyzing cannabis 
production and distribution networks in the Netherlands shows that this strategy may be fundamentally flawed [109]. 
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Fig. 9. A cannabis cultivation criminal network in the Netherlands. Nodes represent the many actors needed for successful production and distribu-
tion of cannabis. The network is highly resilient to targeted disruption strategies and perturbations will lead to reorganization towards a more robust 
and resilient network. Node sizes represent the number of actors fulfilling the associated role, and link thickness corresponds to the total number of 
links between actor groups. For further details we refer to [109], from where this figure has been reproduced.

As depicted in Fig. 9, all attempts towards network disruption analyzed in the study proved to be at best unsuccessful, 
at worse increased the efficiency of the network, which through nifty reorganizations and recovery ultimately became 
stronger. By combining computational modeling and social network analysis with unique criminal network intelli-
gence data from the Dutch Police, Duijn et al. [109] have concluded that criminal network interventions are likely to 
be effective only if applied at the very early stages of network growth, before the network gets a chance to organize, 
or to reorganize to maximum resilience.

Gangs are similar to criminal networks, although their activity is usually more geographically constrained and 
segregated [111,112], and their organization features less hierarchy and complexity. The seminal work by Schelling 
on dynamic models of segregation [113] and subsequent variations [114–116] considered agent-based modeling on 
a square lattice to take into account structured time-invariable interactions [117]. The consideration of a structured 
rather than a well-mixed population is crucial because, in a criminal network or a gang, not everybody is connected 
to everybody else, and the interactions among members usually follow an established pattern that does not vary over 
time. Although the usage of realistic social networks might be even more appropriate, the square lattice is a good 
first-order approximation. The latter allow for the implementation of statistical physics methods [118] which have 
long been used to analyze related systems of interacting particles [119].

The creation of street gang rivalries was studied via agent-based simulations in conjunction with data from the 
Hollenbeck policing division of the Los Angeles Police Department [120], home to many urban gangs. Each agent 
is part of an evolving rivalry network that includes past interactions between gang members. Individuals perform 
random walks where the jump length is drawn from a truncated Lévy distribution and where bias in the direction of 
rivals is included. Gang home bases, historical turfs and geographic details that may limit movement such as freeways, 
rivers and parks are included in the so-called simulated biased Lévy walk network, as well as typical gang behaviors 
inferred from the criminology literature. Simplified baseline models are also simulated and results from all models 
are compared with actual gang networks in Hollenbeck. Using metrics derived from graph theory, it is possible to 
show that simulated biased Lévy walk network modeling is the most accurate in replicating the actual gang network, 
compared to the other, more simple methods. For comparison we show simulated results and an actual map of violent 
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Fig. 10. Reconstructing a gang network. Interactions between agents simulated using the biased Lévy walk network method (left). Actual density 
map of gang-related violent crimes in Hollenbeck between 1998 and 2000 (right). Thick lines represent major freeways crossing the city. Further 
details are described in [120], from where this figure has been reproduced.

crimes in Hollenbeck in Fig. 10. Furthermore, the simulated biased Lévy walk network converges to stable long-term 
configurations, which is useful when modeling unknown rivalry interactions. The method is portable and can be 
applied to other geographical locations, offering insight on gang rivalry distributions in the absence of known data. It 
may also be extended to test sociological concepts related to gang interactions such as territoriality and/or allegiances 
within gangs.

Police department field interview cards were later used to study the behavioral patterns of roughly 748 suspected 
gang members who were stopped and questioned in Hollenbeck [121]. The goal was to identify any social commu-
nities among street gang members by creating a fully-connected ad hoc graph where individuals represent nodes and 
links encode geographical and social data. Individuals stopped together were assumed to share a friendly or social link 
and the distance di,j between stop locations of individuals was recorded. This information was used to determine the 
affinity matrix Wi,j associated with the graph. Its entries are composed of a term that decays as a function of di,j , rep-
resenting geographical information, and of an adjacency matrix whose entries are zero or one depending on whether 
individuals were stopped together or not. The latter represents social information. Using spectral clustering meth-
ods distinct groups were identified and interpreted as distinct social communities among Hollenbeck gang members. 
These clustered communities were then matched with actual gang affiliations recorded from the police field interview 
cards. To evaluate cluster quality the authors use a purity measure, defined as the number of correctly identified gang 
members in each cluster divided by the total number of gang members. Results showed that using geographical infor-
mation alone leads to clustering purity of about 56% with respect to the true affiliations of the 748 individuals taken in 
consideration. Adding social data may improve purity levels, especially if this data is used in conjunction with other 
information, such as friendship or rivalry networks. These results may be used as a practical tool for law enforcement 
in providing useful starting points when trying to identify possible culprits of a gang attack.

A mathematical approach to modeling gang aggregation and territory formation by means of an Ising-like model 
on a square lattice has recently also been proposed in [37]. Here, otherwise indistinguishable agents are allowed to 
aggregate within two distinct gangs and to lay graffiti on the sites they occupy. Interactions among individuals are 
indirect and occur only via the graffiti markings present on-site and on nearest-neighbor sites. Graffiti is subject to de-
cay either from the elements or from active police removal. Within this model, gang clustering and territory formation 
may arise under specific parameter choices, and a phase transition may occur between well-mixed, possibly dilute 
configurations and well separated, clustered configurations. Using methods of statistical physics, the phase transition 
between these two qualitatively different scenarios has been studied in detail. In the mean-field rendition of the model, 
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Fig. 11. Minimizing recidivism requires carefully balanced rehabilitation programs, where both punishment and reward play a crucial role. Either 
neglecting punishment in favor of generous rehabilitation or vice versa will ultimately fail in successfully reintegrating offenders into society. 
Depicted is the ratio between paladins and unreformables P/U in dependence on the amount of resources for rehabilitation h, as obtained for 
different values of the duration of intervention τ (see top of individual graphs). In all cases the severity of punishment θ is adjusted so that 
hτ + θ = C (see legend in the top left graph), taking into account the fact that available resources are finite. The upper right graph reveals that the 
optimal parameter values are h = 0.3, τ = 1.5 and θ = 0.35, which indicates that the most successful strategy is to allocate the limited resources 
so that after being punished, criminals experience impactful intervention programs, especially during the first stages of their return to society. For 
further details we refer to [38], from where this figure has been reproduced.

parameter regimes were identified where the transition is first or second order. In all cases however, these clustering 
transitions were driven by gang-to-graffiti couplings since direct gang-to-gang interactions were not included in the 
model. This leads to the conclusion that indirect coupling between gangs, such as graffiti markings, may be the sole 
catalyst for gang clustering. The role of graffiti and vandalism has been recently reviewed by Thompson et al. [122], 
who analyzed the urban rail industry, where graffiti markings have significant impact on expenditure, timely operation 
of services, and on passenger perception of safety.

Lastly, we mention promising efforts to detect criminal organizations [123] and to predict crime [124] based on 
demographics and mobile data. It is known that the usage of communication media such as mobile phones and online 
social networks leaves digital traces, and research shows that this data can be used successfully for detecting and 
characterizing criminal organizations. With the aid of statistical network analysis and community detection [125], 
recent advances could allow forensic investigators to better understand hierarchies within criminal organizations, to 
discover members who play central role, as well as provide valuable information on connections among sub-groups 
[123].

6. Rehabilitation and recidivism

Perhaps most fitting to end this review, we turn to rehabilitation and recidivism as successful and unsuccessful ends 
to the treatment of past offenders, respectively. In addition to punishing wrongdoers, the justice system should aim to 
rehabilitate and integrate past offenders into society. Recidivism is a sign that this process has failed, as offenders who 
experience punishment relapse into crime. Here, the dilemma is that of the “stick versus carrot”, a dilemma that has 
already received ample attention within evolutionary public goods game [39], the main focus being on punishment 
[40]. On the other hand, recent research on antisocial punishment has raised concerns on the use of sanctions as a 
means to promote collaborative efforts and to raise social welfare [42,126].
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While the majority of previous studies addressing the “stick versus carrot” dilemma concluded that peer punishment 
is more effective than reward in sustaining cooperation [39,40], evidence suggesting that rewards may be as effective as 
peer punishment and lead to higher total earnings without potential damage to reputation [127] or fear from retaliation 
[41] is mounting rapidly. Moreover, in their recent paper [44], Rand and Nowak provide firm evidence that antisocial 
punishment renders the concept of sanctioning ineffective, and argue further that healthy levels of cooperation are 
likelier to be achieved through less destructive means. Regardless of whether the burden of cooperation promotion 
is placed on peer punishment [128–130] or reward [43,45,131], the problem with both actions is that they are costly. 
Cooperators who abstain from either punishing or rewarding therefore become “second-order free-riders”, and they 
can seriously challenge the success of sanctioning [83,132] as well as rewarding [131]. In the context of rehabilitating 
criminals, the question is how much punishment for the crime and how much reward for eschewing wrongdoing in the 
future is in order for optimal results, as well as whether these efforts should be placed on individuals or institutions 
[133–135], and assuming of course the resources are limited [136,137].

Berenji et al. [38] have introduced an evolutionary game to study the effects of “carrot and stick” intervention 
programs on criminal recidivism. The model assumes that each player may commit crimes and may be arrested after 
a criminal offense. In the case of a conviction, a criminal is punished and later given resources for rehabilitation, 
in order to prevent recidivism. After their release into society, players may choose to continue committing crimes 
or to become paladins (P ), implying they have been permanently reformed. Players are given r chances to become 
paladins; if after the r-th arrest and rehabilitation phase, an individual relapses into crime, he or she is marked as an 
unreformable (U ). States P and U are thus sinks, meaning they represent the end of the evolutionary process for each 
particular individual. As such the final P/U ratio is a natural order parameter of the system: crime-infested societies 
are marked by P/U → 0 and crime-free societies by P/U → ∞. The main parameters of the game are the allocated 
resources for rehabilitation h, the duration of the rehabilitation intervention τ , and the severity of punishment θ . The 
parametrization of the game requires that for each player a record is kept for the number of punished and unpunished 
crimes. Stochastic simulations are performed which include the constraint hτ + θ = C, where C is the total amount 
of available resources. Here hτ is the portion of the resources spent on rehabilitation efforts – the carrots – while 
θ is the remainder, spent on punishment efforts – the sticks. Because C is finite, increasing one effort decreases the 
other, hence the “stick versus carrot” dilemma. For a given set of resource allocation h, τ, θ , we use the P/U ratio 
as a measure of success. Fig. 11 shows that as C increases, the ratio P/U will increase as well: with more general 
resources available, the conversion to paladins becomes more efficient. For a given value of C Fig. 11 also shows that 
the most successful strategy in reducing crime, warranting the highest P/U ratio, is to optimally allocate resources 
so that after being punished, criminals experience impactful intervention programs, especially during the first stages 
of their return to society. Indeed, the upper right panel of Fig. 11 reveals that for the case of N = 400 players the 
optimal parameter values are h = 0.3, τ = 1.5 and θ = 0.35. This indicates that the available resources C need to 
be balanced so that there is enough stick (a sufficiently high θ ) and enough carrots (a sufficiently high h) for a long 
enough time (a sufficiently high τ ). Within this model, excessively harsh or lenient punishments are less effective 
than the judicious balancing of the two. In the first case, there are not enough resources for rehabilitation left, in the 
second, punishment was not strong enough to discourage criminals from committing further crimes upon release to 
society. These findings have important sociological implications, and they provide clear guidance on how to minimize 
recidivism while maximizing social reintegration of criminal offenders.

7. Summary and outlook

As we hope this review shows, the statistical physics of crime can provide useful insights into the emergence of 
criminal behavior, as well as suggest effective policies towards crime abatement. The mathematical model for crime 
hotspots reviewed in Section 2, for example, provides a mechanistic explanation for recent difficulties in observing 
crime displacement in experimental field tests of hotspot policing. The model also forms the basis for a better under-
standing of why and how crime hotspots form and propagate through time and space. Moreover, the position of the 
criminals and the biasing attractiveness field create nonlinear feedback loops, which give rise to complex patterns of 
aggregation that are reminiscent of actual crime hotspots.

In Section 3, we reviewed how the highly space–time clustered nature of certain types of crime, akin to earth-
quakes and their aftershocks, can be exploited by means of self-exciting point process modeling. Methods developed 
in the realm of self-exciting point processes are well suited for criminological applications, and they have been ap-
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plied successfully for gaining insight into the form of space–time triggering and temporal trends in urban crime, for 
geographical profiling of criminal behavior, as well as for modeling the temporal dynamics of violence in Iraq.

If crime is treated as a social dilemma, as reviewed in Section 4, evolutionary dynamics reveals that informants are 
key to the emergence of a crime-free society. Furthermore, even a crime-dominated society can be transitioned to one 
that is largely crime-free by introducing an optimal number of informants. Since resources for their recruitment may 
be limited, an optimal control problem can be designed to find the most favorable informant recruitment strategies un-
der different constraints. Human experiments fully confirm that informants are vital in diminishing crime, in fact even 
more so than predicted by the accompanying theory. Another evolutionary game designed to study crime, the con-
ceptually simple three-strategy inspection game, reveals surprisingly nuanced and rich outcomes, including recurrent 
behaviors when there are gains associated with committing crimes. The complex dynamics that emerges from both 
games highlight that crime may be only partially understood by assuming that particular individuals are marked by a 
“criminal nature”. Rather one should look at the overall social context and conditions that seem to promote criminal 
behavior.

In Section 5 we reviewed a recent study on cannabis production networks in the Netherlands, showing that all 
possible attempts at network disruption did not weaken the network as desired, but rather made it more resilient. This 
highlights the difficulties of policymakers and law enforcement agencies across the globe to find effective strategies to 
control and efficiently dismantle criminal networks. We have also reviewed two distinct attempts to identify criminal 
and gang networks using field and/or gang rivalry data, geographical information, social interactions and behavioral 
patterns. Both methods were successful in reconstructing known crime networks and gang clustering, showing how 
these case studies can be applied to situations where actual gang or network structures are not known and as possible 
guidance when intervening in trying to detect the source of crime. A more mathematical approach was used to model 
gang aggregation and territory formation by means of a Hamiltonian, Potts-like model, where interactions among 
agents were expressed via indirect graffiti markings. The analysis reveals that first and second order phase transitions 
from coexisting, well mixed gangs towards networked, geographically segregated gang clusters are possible even in 
the absence of direct gang-to-gang interactions. Under certain conditions, the indirect coupling provided by graffiti 
marking is thus sufficient to nucleate exclusive gang turfs.

Lastly, in Section 6, we focused on rehabilitation and recidivism as modeled via a “stick versus carrot” evolutionary 
game. Given that total resources are finite, an important question to address is how much punishment for the crime 
and how much rehabilitation efforts after the punishment phase are in order to obtain optimal results. The reviewed 
research shows that the most successful strategy is a judicious resource allocation between the carrot and the stick, 
so that after sufficient punishment, criminals also experience impactful intervention programs. This is true especially 
during the first stages of a criminal’s return to society. Excessively harsh punishments accompanied by too little 
rehabilitation, as well excessively lenient punishments appear to be not quite as effective in reducing the recidivism 
rate.

Extensions of approaches reviewed in Sections 2–6 may be useful to police and other security agencies in develop-
ing better and more cost-effective crime mitigation schemes while optimizing the use of their limited resources. The 
statistical physics of crime is still a very much developing and vibrant field, with ample opportunities for novel dis-
coveries and improvements of existing models and theory. The model of crime hotspots, for example, could be easily 
upgraded to account for the distribution of real estate that better reflects the layout of an actual city. It would then be 
interesting to learn whether and how the introduced heterogeneity in the interaction network affects the emergence 
and diffusion of hotspots. If the crime is no longer residential burglary but crime that involves moving targets, further 
extensions towards social networks whose structure varies over time also become viable, and they point to a whole 
new class of coevolutionary crime models. If crime is treated as an evolutionary game the possibilities are even more, 
ranging from increased strategic complexity to the integration of more realistic, possibly coevolving, interaction net-
works that describe the societal fabric. In the realm of adversarial evolutionary games, it would also be interesting to 
study the impact of different strategy adoption rules, in particular since imitation-based rules are frequently contested 
with best-response dynamics in the realm of human behavior. In addition to the outlined extensions and upgrades 
of existing models, it is also possible to envisage new classes of models, especially such that would built more on 
self-organization and growth from first principles to eventually arrive at model societies with varying levels of crime. 
Here the hierarchical growth of criminal networks involving persuasion to join an organization and fidelity to either 
committing or not committing crimes appears to be a viable starting ground.
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Informed by the reviewed research, we conclude that the statistical physics of crime clearly has far-reaching soci-
ological implications, and we emphasize that the time is ripe for these insights to be used in synergy with traditional 
crime-related research to yield more effective crime mitigation policies. Many examples of ineffective policies clearly 
highlight that an insufficient understanding of the complex dynamical interactions underlying criminal activity may 
cause strong adverse effects of well-intended deterrence strategies. A new way of thinking, maybe even a new kind of 
science for deterring crime is thus needed – in particular one that takes into account not just the obvious and similarly 
linear relations between various factors, but one that also looks particularly at the interdependence and interactions of 
each individual and its social environment. One then finds that this gives rise to strongly counterintuitive results that 
can only be understood as the outcome of emergent, collective dynamics, and this is why applied mathematics and 
methods of statistical physics can make important and substantial contributions to the understanding and containment 
of crime. We reiterate that the aim of this short review was to highlight these valuable theoretical resources that can 
help us bridge the widening gap between data and models of criminal activity, and we hope that the outlined directions 
for future research will further accelerate progress along this beautiful and highly applicable avenue of research.
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