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e Institute of Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17A, AU-1090 Vienna, Austria
f CAMTP – Center for Applied Mathematics and Theoretical Physics, University of Maribor, Mladinska 3, SI-2000 Maribor, Slovenia

g Complexity Science Hub, Josefstädterstraße 39, A-1080 Vienna, Austria

Received 18 January 2018; accepted 19 January 2018
Available online 31 January 2018

Communicated by J. Fontanari

Keywords: Complex networks; Biological systems; Beta cells; Multilayer networks; Intercellular communication; Calcium signaling

We would like to thank all the experts for their insightful and very interesting comments that have been submitted 
in response to our review “Network science of biological systems at different scales” [1]. We are delighted with 
the number of comments that have been written, and even more so with the positive opinions that these comments 
communicate to the wider audience [2–9]. Although methods of network science have long proven their value in 
relevantly addressing various challenges in the biological sciences, such interdisciplinary research often still struggles 
for funding and recognition at many academic levels.

In this reply, we would like to highlight the coming of age of network science, as well as data science, applied to 
biological systems in the broadest possible sense. We would also like to emphasize that the theoretical and modeling 
tools that have been developed by physicists, mathematicians, and computer scientists have reached the maturity to 
effectively address the many challenges of our time, not least aiding the diagnosis and treatment of disease [10]. In 
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what follows, we briefly discuss the comments on our review in the light of this fact, and we also point out the many 
outstanding challenges as well as opportunities for future research.

De Domenico [4] has raised concerns about the lack of objective measures for statistical similarities, either for 
dealing with simplex or multiplex networks. Along this line, Jalili [7] also puts emphasis on the existence of differ-
ent similarity measures, such as the linear cross-correlation or the synchronization likelihood that captures nonlinear 
relationships, and similar concerns have been expressed by Wedgwood and Satin [9] as well as by Loppini who also 
suggested the use of partial correlations or transfer entropy as possible means of network construction [2]. More-
over, De Domenico, Jalili, and Pedersen [4,7,8] underline methodological drawbacks related to the thresholding of 
similarity matrices. Fixing the network density seems to be a good alternative, especially when multiple groups are 
compared [11]. We agree with this remark. For example, in islets the beta cell activity and the resulting synchro-
nization patterns gradually depend on the stimulus concentration and also possible pharmacological interventions. 
Studying in depth the resulting network structures requires a proper compensation for such intrinsic biases. Perhaps 
even more remarkably, De Domenico highlights some advanced alternative approaches for bridling differences in den-
sities that are based on the random matrix theory [12] or on optimization principles [13]. We would like to additionally 
point out that also prior steps preceding the application of similarity measure algorithms require a rigorous treatment. 
In particular, complex calcium signals captured with confocal microscope entail a baseline activity, noise and other 
artifacts. The processing of time series and the extraction of the desired dynamical components should therefore be 
performed with care.

Jalili [7] emphasized that the majority of functional brain network studies are based on undirected networks, al-
though the information flow is in general directed. Even more, directionality of connections may reveal different 
architectural properties that are not observed in undirected networks [11]. We do not only agree with the comment but 
also argue that considering bidirectional connections can be even more relevant in intercellular than in brain networks. 
Often, the cells are directly coupled and the resulting collective activity is mediated by calcium wave propagation. As 
a matter of fact, Pires et al. [14] have already implemented a directed network approach to track the calcium signal 
in a culture of astrocytes, whereas we used a similar method to simultaneously track the depolarization and calcium 
wave propagation in islets and represented the intercellular communication pattern as a multiplex network [15]. In 
both studies the time lag was used as the main determinant for directionality. We believe that mapping and examining 
signal propagation in tissues and other settings by means of a directed network is a promising approach and signifies 
a physiologically relevant alternative for the more traditional functional connectivity patterns.

Loppini [2] has excellently pointed out the idea to use the multilayer network (MLN) formalism by means of in-
cluding also other cell types, i.e. alpha and delta cells, as well as other intercellular signaling mechanism, such as 
autocrine and paracrine signaling. We very much agree with the idea. A complete understanding of islet functionality 
and hormone regulation requires a holistic approach beyond the beta cell physiology. While indeed a few recent studies 
have addresses this issue theoretically [16] and even in part experimentally [17], the technology to acquire simultane-
ously the dynamics of multiple cell types in situ with a good spatio-temporal resolution, which would facilitate such 
MLN-based endeavors, still needs to be developed. However, one of the most fundamental and the most problematic 
issues is the discrimination of different cell types in islets in a manner compatible with functional multicellular cal-
cium imaging (fMCI). Relying on differences in the inactivation properties of voltage gated sodium channels between 
alpha and beta cells [18] or other electrophysiological properties of alpha, beta, and delta cells is limited to a single 
cell at a time and is therefore not compatible with fMCI. More promising are specific stimulation protocols with the 
help of which the cells can be classified with regard to their characteristic response to high glucose and glutamate [19]
or adrenaline [20]. However, this approach is limited by the length of the protocol itself and therefore not suited for 
screening purposes followed by a battery of tests. Another option is immunolabeling which enables identification of 
cell types after recording the calcium response [21–23]. Immunolabeling is specific and a large number of cells can be 
characterized. Its major drawbacks are the fact that it is applicable only post festum, i.e., after the functional imaging 
and that during immunolabeling, the same optical section needs to be maintained to ensure an exact overlap between 
structural and functional data and this can be technically demanding and time consuming [21–23]. At present, the most 
straightforward approach to discriminate between the two most prevalent cell types, alpha and beta cells, would be to 
use GluCre-ROSA26EYFP (or GYY) mice that express the enhanced yellow fluorescent protein specifically in alpha 
cells [24] and that have previously helped to electrophysiologically characterize alpha cells in tissue slices [25]. Beta 
cells could then be discriminated from other non-alpha cells by their characteristic response to glucose. Additionally, 
transgenic somatostatin-Cre mice crossed with fluorescent reporter strains could be used to identify delta cells [26,27]. 
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In this way, beta cells with different roles in the network could conceivably be compared with respect to their spatial 
relationship to alpha cells. However, genetic labeling can only be used in specific transgenic mouse strains and is not 
applicable to islets from other species. To circumvent this problem, Shuai et al. have recently introduced adenoviral 
vector based cell type specific promoter driven expression of fluorescent proteins mCherry or GFP [28].

Similarly, as suggested by Wedgwood and Satin [9] and Belgardt et al. [5], the dependence of a cell’s role in the 
network on other characteristics of the same cell, its neighbors, or even mesenchymal structures, such as endothelial 
cells [29], can be investigated, given that calcium signals can be obtained from islets labeled for other structural or 
functional markers.

In this respect, one of the main challenges for the foreseeable future is to find out how some of the described 
functional properties of different beta cells, such as (i) the number of their functional connections (that determines 
their roles as hubs versus less well connected cells) [30–32] or (ii) the sequence in which they are activated during 
a calcium oscillation (that determines their role as pacemakers versus followers) [33,30,34–36] relate to recently 
described morphological subtypes of beta cells [37–42].

More specifically, Bader et al. recently described two molecularly and physiologically distinct populations of beta 
cells with regard to their Flattop (FLTP) expression profiles. FLTP+ cells that constitute the majority of beta cells 
(80%) seem to be metabolically more active compared with FLTP- cells (20%) which display higher proliferation 
rates [43]. Similarly, by staining purified beta cells with antibodies against ST8SIA1 and CD9, Dorrell et al. found 4 
distinct subpopulations of beta cells. The double negative subtype of cells displayed the lowest basal insulin secretion 
and the highest stimulation index [44]. Given that hub cells present a minority of beta cells and that they are metabol-
ically highly active [15,30] but secretory less capable and slightly undifferentiated [30], it is tempting to speculate 
that they might at least partly overlap with FLTP- and non-ST8SIA1-/CD9- cells, but this will have to be addressed in 
future studies. The understanding of the complex machinery in islets that governs the homeostatic control of glucose 
will definitely encompass further efforts in developing suitable experimental techniques for assessing simultaneously 
as many dynamical compounds as possible. Understanding and interpreting such complex and exhaustive data requires 
advanced computational tools and the MLN formalism definitely represents an excellent and promising possibility.

Belgardt et al. [5] and De Domenico [4] have evolved in their comments the idea of MLN and diabetes and 
other diseases research even further. De Domenico [4] emphasizes that the functioning of cells is governed by a 
set of molecular interactions and that all interactome types are interconnected. Because of this interdependency, the 
alteration of single genes can quickly propagate a perturbation to the protein–protein interaction network, causing 
abnormal functions in tissues and organs that culminate in diseases. Belgardt et al. [5] additionally underscore the 
relation of the disease network with the social network, especially in the relation with a lifestyle related pathogenesis. 
We acknowledge these ideas and believe that due to the interconnectedness of different networks, the identification 
of causes is a thrilling and very demanding mission that many times cannot be accomplished focusing only on single 
scales, i.e. network layers. Searching for such interdependencies is one of the main tasks of the recently emerging 
fields of network medicine [10] and network physiology [45]. However, probably the most vital and unresolved 
issue is to identify how different layers within an organism interact and, subsequently, how to formally describe 
and quantify such interactions. Interestingly, Belgardt et al. [5] have pointed out an interesting idea, relying on very 
recent studies [46], that exosomes might be the information carriers that interconnect different physiological networks 
and different scales of biological organization in an organism.

Nevertheless, the idea of having multiple layers of networks and/or interdependent networks is even older than the 
modern network science itself. Such systems were examined decades ago in disciplines like sociology and engineer-
ing, but in the last few years a tremendous progress has been made by providing a unified mathematical framework 
to study multilayer complex systems [47–50]. However, as nicely underscored by Muldoon [6], there are many open 
issues and possible inconsistencies especially by the definition of inter-layer connections based on multidimensional 
datasets. While the construction of connections within network layers has a long tradition and is well accepted within 
the community, the interlayer connections represent a different story. Currently, the choice for interconnecting nodes 
in different layers is set by the user. The nature and/or strength of these connections, however, impacts significantly the 
extracted network measures, especially the dynamic community detection. Buldú [3] shares the same concerns. In his 
comment he focuses predominantly on MLN brain networks, but the problems he raises are well applicable to tissues 
and other setting as well. While in general he agrees that the MLN perspective is a powerful technique to assess the 
multiple types of coordination and dynamic activities in the brain, he outlines some very important issues about the 
evaluation of interlayer connections. He stresses out that the same fundamental problems appear when studying the 



M. Gosak et al. / Physics of Life Reviews 24 (2018) 162–167 165
interplay between anatomical and functional connectivity, tracking the network activity in time, and when focusing 
on specific frequency bands. We completely agree with both commentators and also encourage further endeavors to 
systematically explore the effects of various parameter choices. Finding objective and, most importantly, physiologi-
cally relevant criteria for the construction of inter-layer connections will be one of the most important future tasks in 
the MLN community, irrespective of the scale.

Wedgwood and Satin [9] as well as Pedersen [8] also suggest to combine phenomenological complex network 
approaches with mathematical models and computer simulations to gain more insight into the mechanism that support 
functional connectivity patterns. We strongly agree with this opinion and acknowledge their contributions and contri-
butions by others in this regard [51,34,52,53,35]. Especially the recent study by Cappon and Pedersen has provided 
an interesting mechanistic explanation for the emergence of the small world functional network in our tissue slice 
preparation [31] due to a large degree of heterogeneity in intercellular coupling. Their simulation study also indirectly 
addressed an important problem of confocal microscopy based fMCI, namely that a 3D system is captured only with a 
2D optical section. Their model was constructed in 3D and then a given 2D section was analyzed yielding functional 
connectivity patterns very similar with what we recorded in islets [52]. Moreover, we also employed a combination of 
computer simulations and experimental measurements to show that the most connected cells are the ones showing the 
highest degree of dissipativity [15] and to show that the spatiotemporal patterns of calcium dynamics upon stimulation 
with glucose display a phase transition from critical to supercritical behavior. In our model of coupled beta cells, in 
contrast with the study by Cappon and Pedersen [52], heterogeneity in intercellular coupling was not sufficient to ex-
plain the experimentally observed behavior, but a high degree of heterogeneity in some crucial parameters that govern 
beta cell behavior was also needed [33], as also noted by Loppini [2,54,55].

In sum, all contributors share our opinion and in a large extent also the enthusiasm about the network science and 
especially the MLN formalism being one of the key pillars for assessing the functional principles of various biological 
systems. We are all well aware that there are still limitations and open issues referring either to the theoretical part 
of network science or to the difficulties of acquiring and integrating data obtained from different sources and at 
different levels of biological organization. Since the network science is a rather young and intensively developing 
field, this should not be considered as a weakness, but rather as a motivation for researchers to critically interpret the 
current research and to develop new methods. This will in turn hopefully lead to more integrated perspectives on the 
functioning of biological systems and the evolution of complex diseases, thereby making the network science one of 
the major driving forces for the progress in human medicine.
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