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Lying on networks: The role of structure and topology in promoting honesty

Valerio Capraro ,1,* Matjaž Perc ,2,3,4 and Daniele Vilone 5,6

1Department of Economics, Middlesex University, The Burroughs, London NW4 4BT, United Kingdom
2Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000 Maribor, Slovenia

3Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan
4Complexity Science Hub Vienna, Josefstädterstraße 39, 1080 Vienna, Austria

5Laboratory of Agent Based Social Simulation, Institute of Cognitive Science and Technology, National Research Council,
Via Palestro 32, 00185 Rome, Italy

6Grupo Interdisciplinar de Sistemas Complejos, Departamento de Matemáticas, Universidad Carlos III de Madrid, 28911 Leganés, Spain

(Received 5 October 2019; accepted 24 February 2020; published 13 March 2020)

Lies can have a negating impact on governments, companies, and the society as a whole. Understanding the
dynamics of lying is therefore of crucial importance across different fields of research. While lying has been
studied before in well-mixed populations, it is a fact that real interactions are rarely well-mixed. Indeed, they
are usually structured and thus best described by networks. Here we therefore use the Monte Carlo method to
study the evolution of lying in the sender-receiver game in a one-parameter family of networks, systematically
covering complete networks, small-world networks, and one-dimensional rings. We show that lies that benefit
the sender at a cost to the receiver, the so-called black lies, are less likely to proliferate on networks than they
do in well-mixed populations. Honesty is thus more likely to evolve, but only when the benefit for the sender is
smaller than the cost for the receiver. Moreover, this effect is particularly strong in small-world networks, but
less so in the one-dimensional ring. For lies that favor the receiver at a cost to the sender, the so-called altruistic
white lies, we show that honesty is also more likely to evolve than it is in well-mixed populations. But contrary
to black lies, this effect is more expressed in the one-dimensional ring, whereas in small-world networks it is
present only when the cost to the sender is greater than the benefit for the receiver. Last, for lies that benefit both
the sender and the receiver, the so-called Pareto white lies, we show that the network structure actually favors
the evolution of lying, but this only occurs when the benefit for the sender is slightly greater than the benefit for
the receiver. In this case again the small-world topology acts as an amplifier of the effect, while other network
topologies fail to do the same. In addition to these main results we discuss several other findings, which together
show clearly that the structure of interactions and the overall topology of the network critically determine the
dynamics of lying.
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I. INTRODUCTION

The conflict between lying and truth-telling is at the core
of any social or economic interaction with asymmetric infor-
mation. Lying, while sometimes interpreted as a sign of intel-
ligence in children [1] and a relatively common occurrence in
adults to get out of awkward situations, can be detrimental to
people, governments, organizations, firms, and ultimately to
human societies as a whole. The cost of tax evasions in the
USA alone, for example, has been estimated at 100 billion
per year [2]. Lying negatively affects also close personal
relationships, being associated with marital dissatisfaction
and friendship dissolution [3,4]. Thus, not surprisingly, re-
searchers have sought to understand factors that determine
dishonest behavior for years [5–19].

Here we advance this subject by using methods of sta-
tistical physics. Indeed, the past two decades have signifi-
cantly expanded the scope of physics beyond its traditional
boundaries. Various aspects of economics [20] and social
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sciences [21–25] have benefited from the Monte Carlo method
[26,27] and the coming-of-age of network science [28–31].
In particular the social dynamics in general [21], as well as
more specific aspects of modern human societies, such as
crime [22], gossiping [32], epidemics [23], vaccination [24],
and cooperation [25], have all been successfully studied using
methods of physics and the gist of the “physics approach”
[33], which is to rationally select the key components of a
system until the latter is fit to describe the essence of the
problem at hand. These preceding developments certainly
invite physics research into the realm of other types of moral
behaviors [34], including lying and honesty [35].

Part of the success of the Monte Carlo method relies on
the fact that it can be used in evolutionary game theory to
simulate the strategic evolution of the nodes of a network. The
nodes are occupied by players that interact through a strategic
game and then, after the accumulation of payoffs, update
their strategies through a suitable imitation, replication, or
exploration rule. In fact, this method has proven extremely
useful to study the evolution of cooperation on lattices and
heterogenous networks in social dilemmas [36–41], as well
as to study strategic fairness in the ultimatum game [42–51].
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However, to the best of our knowledge, no previous work has
explored the evolution of honesty and lying on networks.

Here we make a first step in this direction. As a relatively
simple but complete mathematical model of lying, we use
the sender-receiver game [16,52]. As we will show in the
Mathematical model section, this paradigm is fundamentally
different from previous games studied using the Monte Carlo
method, such as the prisoner’s dilemma and the ultimatum
game. At the same time, it is particularly suitable for the
application of the Monte Carlo method, and it allows us to
study the evolution of four different types of lies. Namely,
black lies, altruistic white lies, Pareto white lies, and spiteful
lies (the Mathematical model section has all the definitions).
While we have previously studied the evolution of lying using
the sender-receiver game in well-mixed populations [35], it
remains an open question whether and to what degree the
fact that our interactions are commonly structured rather than
well-mixed impacts the results. The evolution of lying in
well-mixed populations was found to be strongly dependent
on the type of lie, and it also displayed complex character
that precluded generalizations over different parameters of
the game. Since human interactions are not random, as we
are more likely to interact within our social circles, such as
with family, friends, or within our workplace with colleagues
and coworkers, it is thus important to go beyond well-mixed
populations and to study the evolution of lying in networks.

To that effect, we study the evolution of lying in a large
family of networks, known as LASW networks [53]. LASW
networks are a one-parameter family of networks spanning
from the one-dimensional ring to the complete network,
as follows. One starts from the one dimensional ring and
then adds each of the missing edges with probability p ∈
[0, 1]. Therefore, if p = 0, then one remains with the one-
dimensional ring, while p = 1 returns a complete graph.
When p varies from 0 to 1 one obtains a number of inter-
mediate cases of great theoretical and practical interest, such
as small-world networks [54], which are thought to underline
several sociological phenomena [55,56].

The paper is structured as follows. Section II contains all
the definitions. These definitions are grouped in three subsec-
tions. In the sender-receiver game subsection we describe the
definition of the sender-receiver game, in the LASW network
section we describe in self-sufficient detail this family of net-
works, and in the Monte Carlo method section we described
the details of the model how it is simulated. Section III reports
all the main results and findings, whereas Sec. IV compares
these to the results in the existing literature, and we also point
out avenues for future research.

II. MATHEMATICAL MODEL

A. The sender-receiver game

To study the evolution of dishonesty, we use the sender-
receiver game. Among the many decision problems and strate-
gic games that behavioral scientists have introduced to study
people’s dishonesty [5,19,57], the sender-receiver game is
particularly suitable for the application of the Monte Carlo
method, because it is a game with two players and (practi-
cally) two strategies [35]. This game was initially introduced

by Uri Gneezy in Ref. [52]. Here, we adopt a subsequent
version developed by Erat and Gneezy [16]. There are two
potential allocations of money between the sender and the
receiver, Options A and B. Without loss of generality, we
can normalize the payoffs such that A = (0, 0) and B = (r, s),
with r, s ∈ [−1, 1]. The first component represents the payoff
of the receiver; the second component that of the sender. The
sender privately rolls a six-face dice and looks at the outcome.
Then the sender chooses a message to send to the receiver
among six possible messages: “The outcome was i,” with
i ∈ {1, 2, 3, 4, 5, 6}. After receiving the message, the receiver
guesses the true outcome of the roll of the dice. If the receiver
guesses the true outcome, then Option A is implemented as a
payment; if the receiver does not guess the true outcome of
the roll of the dice, then Option B is implemented.

Therefore, the sender has essentially two strategies: he
either sends a truthful message, or not. Similarly, the receiver
has essentially two strategies: She either believes the message
sent by the sender or not. If the receiver believes the sender,
then she reports the same number as the one sent by the
sender; otherwise, if the receiver does not believe the sender,
then she draws randomly a number from the remaining five
numbers of the dice. Therefore, the sender-receiver game can
be written using the following bimatrix:

B N

T 0,0 s, r
L s, r 4

5 s, 4
5 r

where T stands for “Truth,” L stands for “Lie,” B stands for
“Believe,” and N stands for “Not Believing.” The ratios 4

5
descend from the fact that, when the sender lies and the re-
ceiver does not believe the sender’s message, then the receiver
does not guess the true outcome of the roll of the dice with
probability 4

5 . Therefore, these ratios directly descend from
the formulation of the sender-receiver game proposed by Erat
and Gneezy [16]. In the discussion section, we will mention
potential extensions to be explored in future research.

Another positive sides of the sender-receiver game, com-
pared to other measures of dishonesty, is that it allows to study
different types of lie. Following the taxonomy introduced
by Erat and Gneezy [16], we introduce four types of lies,
depending on whether lying harms or benefits the agents:

(1) Pareto white lies are those that benefit both the sender
and the receiver: r, s > 0.

(2) Altruistic white lies are those that benefit the receiver
and harm the sender: r > 0, s < 0.

(3) Black lies are those that benefit the sender and harm
the receiver: r < 0, s > 0.

(4) Spiteful lies are those that harm both the sender and
the receiver: r, s < 0.

1. Equilibrium analysis

The distinction among different types of lie turns out to
be useful for the equilibrium analysis. To find the equilibria
of the game, it is convenient to describe it as a symmetrical
two-player game. Since, in our model, each player acts as both
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sender and receiver, we have in practice four composed pure
strategies σ ≡ (Xs, Xr ), where Xs ∈ {T, L} and Xr ∈ {B, N}
are the basic strategies as a sender and receiver, respectively.
As we are going to illustrate in Sec. II C, we have a population
undergoing an evolutionary dynamics, which implies that the
Nash equilibria can be found by means of the replicator
equations [58]:

ẋσ = xσ · (�σ − �̄),
∑

σ

xσ = 1, (1)

where xσ and �σ are the densities and the average payoffs
of each strategy σ , respectively, and �̄ is the average global
payoff. The normalization condition in Eq. (1) represents the
conservation of the population’s size. After some laborious
but easy calculation the quantities �σ and �̄ can be computed,
and by imposing the stationary condition on Eqs. (1) it is
straightforward to find the equilibria.

In the case of spiteful lies, there are two equilibria in pure
strategies (that is, configurations where all the agents share the
same strategy) (T, B) and (L, N ), and one mixed equilibrium
x(T,B) = 1/6, x(L,N ) = 5/6. In the case of altruistic or black
lies, there is only one equilibrium in mixed strategies, which
is, again, x(T,B) = 1/6, x(L,N ) = 5/6. Finally, in the case of
Pareto white lies, there are two equilibria in pure strategies,
(T, N ), (L, B), and one equilibrium in mixed strategies, which
is, once again, x(T,B) = 1/6, x(L,N ) = 5/6. The cases r = 0
and/or s = 0 are straightforward, because the corresponding
agents are indifferent between the two available strategies.

This analysis also highlights the fundamental difference
between the sender-receiver game and the previous games
that have been studied using the Monte Carlo method, the
prisoner’s dilemma and the ultimatum game, which have
radically different set of equilibria.

B. LASW networks

A LASW network is defined starting from a regular one-
dimensional ring with N nodes, each one connected to its 2m
(m ∈ N) nearest neighbours, so that there are mN links (or
edges). The topology is then modified by adding new links,
that is, we add each of the [N (N − 1)/2 − mN] initially miss-
ing edges with probability p. Therefore, by varying p we can
tune the topology from euclidean to the complete-network as
desired [53]. In particular, we have regular, one-dimensional
lattice for p → 0+, the Watts-Strogatz (WS) small-world
topology [54] for 0 < p � p∗, a random network (RN) [59]
for p∗ � p < 1, whilst for p → 1− we get a complete graph
(that is, we recover the mean-field configuration); the critical
link adding probability is p∗ = 2m/N [53].

The main topological differences among these four regimes
can be described by the behavior of the diameter D and the
clustering coefficient χ of the network. D is defined as the
mean shortest path between two random nodes; χ is defined
as the probability that two nodes that share a neighbor are
also neighbor themselves. A ring has high diameter (with the
exception of the case m = 1) and high clustering coefficient;
a WS network is instead characterized by small diameter and
high clustering coefficient; in random networks both quanti-
ties are small; finally, in a complete graph, one has D = 1 and
χ = 1.

C. The Monte Carlo method

We consider the sender-receiver game among N agents,
who interact pairwise in a LASW network. At each round
of the game, one agent plays in the role of the sender, and
the other agent plays in the role of the receiver. The role
of an agent is randomly determined at the beginning of the
interaction. When playing as a sender, an agent can either tell
the truth (T ) or lie (L); when playing as a receiver, an agent
can either believe (B) the message sent by the sender, or not
(N). This results in four different strategies: (T, B), (T, N ),
(L, B), and (L, N ). Initially, each agent is randomly assigned
to either T or L (when she plays as a sender), and to either B
or N (when she plays as a receiver).

We simulate the game using the Monte Carlo method.
The following elementary steps apply. First, an agent x is
randomly drawn from the population. Agent x then plays the
sender-receiver game with four randomly chosen neighbours
in a pairwise manner as described above, thereby obtaining
the payoff πx. Note that, for p = 0, each agent has exactly
four neighbours, therefore, in this case, there is no random
selection, and x plays with all his neighbours; when p in-
creases, the number of neighbours statistically increases, and
therefore in this case, there is an actual random selection of
the four neighbours with whom x plays. Then, another agent y
is randomly drawn from the population, and he also plays the
sender-receiver game with four randomly selected neighbours,
thereby obtaining the payoff πy. Finally, agent y imitates the
strategy of agent x with the probability w = {1 + exp[(πy −
πx )/K]}−1, where K encapsulates the uncertainty during the
strategy adoption process. When K → ∞, payoffs lose im-
portance and strategies change at random; conversely, when
K → 0, agent y imitates x only if πx > πy; between these
two limits, the strategies of better performing agents tend to
be imitated, although under-performing strategies are imitated
as well, with nonzero probability. In reality, this may be due
to errors in the decision making, imperfect information, and
external influences that may adversely affect the computation
of the other player’s payoff. Without loss of generality, we set
K = 0.1, in agreement with previous work showing this to be
a representative value [25].

The time is measured in Monte Carlo steps (MCS),
whereby one MCS corresponds to executing all three elemen-
tary steps N times. During one MCS, each agent changes
strategy, on average, once. For a systematic numerical anal-
ysis, we have determined the fraction of strategies in the
stationary state when varying the values of s and r. To obtain
adequate accuracy, we have used large system sizes, varying
from N = 500 to 1000, as well as long enough thermalization
and sampling times, varying from 104 to 106 MCS. To further
remove statistical fluctuations, we have averaged the final
outcome over up to 2000 independent realizations.

III. RESULTS

A. Final densities of liars and believers across
lie type and networks

As a first step of our analysis, we look at the final densities
of liars and believers, as a function of lie type (parameters r
and s) and network (parameter p). In this and in the following
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FIG. 1. Final density of liars in (a) the well-mixed network, (b) the one-dimensional ring, and two small-world networks with (c)
p = 0.00025 and (d) p = 0.001. Systems of size N = 500. Averages over 300 independent realizations.

analyses, we focus on four prototypical values of p: p = 0
(ring), p = 0.00025, p = 0.001 (two small-world networks),
and p = 1 (well-mixed population). We conducted numerical
simulations also with several other p values, but the results
do not qualitatively differ from the above cases. Specifically,
when p < 0.1 (small-world networks), the pattern of results
is qualitatively very similar to the cases p = 0.00025 and
p = 0.001; in the case of values of p greater than 0.1 (random
networks), numerical simulations show that the differences
with the complete network become tinier and tinier, therefore
we report directly the limit, well-mixed, case, p = 1.

We start with the liars. Figure 1 highlights several dif-
ferences between the final densities of liars in small-world
networks (lower left panel: p = 0.00025; lower right panel:
p = 0.001) and the final densities of liars in well-mixed
populations (upper left panel). Specifically, both in the domain
of black lies (r < 0, s > 0) and in the domain of altruistic
white lies (r > 0, s < 0), the evolution of lying is disfavored
in the two small-world networks, compared to the complete
network, but only below the diagonal r = −s. By contrast,
in the domain of Pareto white lies (r, s > 0), the differences
between the small-world networks and well-mixed popula-
tions tend to be concentrated right above the diagonal r = s;
in particular, lying is favoured in small-world networks com-
pared to the complete network. The case of spiteful lies is
trivial: honesty evolves with frequency 1 independently of the
network.

Moving to the case of the one-dimensional ring (p → 0+,
upper right panel). In this case, we note that the most evident
differences, compared to the well-mixed population, appear
in the domain of altruistic white lies (r > 0, s < 0) and, to
a lesser extent, in the domain of Pareto white lies (r, s > 0)
and in the domain of black lies (r < 0, s > 0). Specifically,
compared to the well-mixed population, altruistic white lies

are less frequent than they are in the one-dimensional ring. In
the domain of black lies, lying appears to evolve with very
similar frequency in the two networks. By contrast, Pareto
white lies are more frequent in the one-dimensional ring,
compared to the well-mixed population, but this happens only
just above the diagonal r = s; for other values of r and s
in the same quadrant, the two networks behave roughly the
same. Finally, in the domain of spiteful lies (r, s < 0) the two
networks behave identically.

Coming to the evolution of believers, Fig. 2 highlights
that the evolution of believers mirror the evolution of liars
discussed above, although with some differences. For p =
0.00025 (lower left panel) and p = 0.001 (lower right panel)
the differences between the two small-world networks and
the complete network are concentrated in the domains of
altruistic white lies, black lies, and Pareto white lies. In the
first two domains, the differences are concentrated in the
region in which s is very small, where believing the sender’s
message is more likely to evolve. In the third domain, the
differences are concentrated right above the diagonal r = s,
where, again, believing the sender’s message is more likely to
evolve, compared to the well-mixed case.

As in the case of liars, the one-dimensional ring (p = 0,
upper right panel), gives rise to slightly different results.
Specifically, in the domain of black lies, the evolution of
believers is favored in the one-dimensional ring, compared to
the well-mixed case, especially for values of s close to 0 or
values of r close to 1. In the case of Pareto white lies, instead,
the evolution of believers somewhat reflects the evolution of
liars observed above: the evolution of believers is favored in
the one-dimensional case, compared to the well-mixed case,
but only just above the diagonal r = s; in the other parts of
the Pareto white lies quadrant, there are no major differences
between the two networks.
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FIG. 2. Final density of believers in (a) the well-mixed network, (b) the one-dimensional ring, and two small-world networks with (c)
p = 0.00025 and (d) p = 0.001. Systems of size N = 500. Averages over 300 independent realizations.

B. Time evolution of liars and believers across networks

1. Black lies

In the previous section, we have shown that the network
structure affects the final densities of liars and believers.
The previous section, however, does not allow to answer
the question of which types of liars and believers are more
or less likely to evolve in small-world networks and the
one-dimensional ring, compared to the complete network.
Indeed, there are two types of liars: those who, when acting
as receivers, believe the sender’s message; and those who,
when acting as receivers, do not believe the sender’s message.
Similarly, there are two types of believers: those who, when
acting as senders, tell the truth; and those who, when acting
as sender, lie. Therefore, to have a better understanding of
what type of agents evolve, here we analyze, across the four
networks under consideration, the time evolution of each of
the four pure strategy profiles (T, B), (L, B), (T, N ), and
(L, B). For each lie type, we study one pair (s, r). To select
this pair, we follow a pragmatic approach. We start from black
lies.

Figures 1 and 2 suggest that, in the domain of black lies
(r < 0, s > 0), the differences are concentrated below the
diagonal r = −s, and, in particular, for s small and r close
to −1. Therefore, we select r = −1 and s = −0.2.

Figure 3 reports the time evolution of the four pure strategy
profiles for these values of r and s. Comparing the upper
left panel (well-mixed population) with the other panels, we
find a number of differences. The strategy profile (T, N )
(blue line), which survives in well-mixed populations, quickly
vanishes in all other networks. The strategy (L, B) (black
line) survives in all networks, although with different frequen-
cies: in the well-mixed population it survives with frequency
around 0.15, while, in the other networks, the final density
more than doubles. The strategy (L, N ) (red line) too survives

in all networks, although with different frequencies: in the
well-mixed population it survives with frequency 0.8, while
in all other networks the final density is around 0.5. But
the most interesting case is the case of the strategy profile
(T, B) (green line). This strategy profile quickly vanishes in
well-mixed populations, but it survives with a relatively high
frequency (around 0.1) in all other networks. Importantly,
the vanish of (T, N ) is more than compensated by the emer-
gence of (T, B). Indeed, in well-mixed populations, (T, N )
survives with frequency less than 0.05, while, in the other
networks, (T, B) survives with frequency around 0.1 and,
in some cases (e.g., p = 0.001) even close to 0.2 Therefore
compared to well-mixed populations, small-world networks
and the one-dimensional ring have a net positive effect on
honesty among senders. A similar argument holds for be-
lievers: the frequencies of both the strategy profile (T, B)
and (L, B) are greater in the small-world networks and the
one-dimensional ring, compared to the complete network.
Therefore, there is a net overall positive effect on believ-
ing among receivers, although this net effect is stronger in
the small-world networks compared to the one-dimensional
ring.

2. Altruistic white lies

Next, we study the time evolution of the four pure strategy
profiles in a case in which lying benefits the receiver at a cost
to the sender. Specifically, since Figs. 1 and 2 suggest that the
differences between the networks are concentrated below the
diagonal r = −s, we opted for illustrating the time evolution
of the four pure strategy profiles using the parameters r = 0.3
and s = −1.

Figure 4 reports the outcomes of our numerical simula-
tions. Compared to the upper left panel (well-mixed pop-
ulation), we find several differences. One clear difference
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FIG. 3. Time evolution of the four pure strategy profiles (T, B), (L, B), (T, N ), and (L, B) for s = 0.2, r = −1 for (a) well-mixed, (b) one-
dimensional ring, and two small-world networks, (c) p = 0.00025, and (d) p = 0.001. System size N = 500, average over 3000 independent
realizations, random initial conditions.

concerns the evolution of (T, B): while this strategy profile
quickly vanishes in well-mixed populations, it survives in all
other cases. In particular, in the two small-world networks, it
survives with a density around 0.2, while in the case of the
one-dimensional ring, it survives with frequency around 0.08.
A similar pattern, although slightly less evident, emerges in
the case of the strategy profile (T, N ): in well-mixed popula-
tions, it survives with frequency less than 0.03; in small-world
networks it survives with frequency around 0.08; in the case
of the one-dimensional ring, the final density is even above
0.1. Clearly, the emergence of (T, B) and (T, N ) when passing
from complete to noncomplete networks comes at the price
of the other two strategy profiles, (L, B) and (L, N ), both of
which are less likely to evolve. Particularly evident is the
case of (L, B), which survives with nonzero frequency in
well-mixed populations, but it quickly vanishes in all other
cases. In sum, as in the black lie case discussed in the previous
section, also in this case the presence of a noncomplete
network favours the evolution of honesty among senders.
By contrast, the evolution of believing among receivers is
favoured, compared to the well-mixed case, only in the two
small-world networks, where the increase in the frequency of
(T, B) (equal to 0.2) more than counterbalance the decrease in
the frequency of (L, B) (equal to 0.06); in the one-dimensional
ring, the increase in the frequency of (T, B) (about 0.07) is

very similar to the decrease in the frequency of (L, B) (equal
to 0.06).

3. Pareto white lies

Then, we study the time evolution of the four pure strategy
profiles in a case in which lying benefits both the sender
and the receiver. Specifically, since Figs. 1 and 2 suggest
that the differences across networks are located slightly above
the diagonal r = s, we opted for illustrating the evolution for
r = 0.4 and s = 0.6.

Comparing the upper left panel of Fig. 5 (well-mixed
population) with the other panels, we note an important dif-
ference. In well-mixed population, at the steady state, there
is a coexistence of three pure strategy profiles, (L, B) with
frequency slightly below 0.8, (T, N ), with frequency slightly
below 0.2, and (L, N ) with a small frequency around 0.09. By
contrast, in small-world networks and in the one-dimensional
ring, only the strategy profile (L, B) survives, while all
other strategy profiles quickly vanish, apart from the case
p = 0.001, where there is a small residual of the pure strategy
profile (T, N ), which survives with density below 0.02. In
sum, compared to the complete network, small-world net-
works and the one-dimensional ring have the effect of favoring
the evolution of lying among senders and believing among
receivers.
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FIG. 4. Time evolution of the four pure strategy profiles (T, B), (L, B), (T, N ), and (L, B) for s = −1, r = 0.3 for (a) well-mixed, (b) one-
dimensional ring, and two small-world networks, (c) p = 0.00025 and (d) p = 0.001. System size N = 500, average over 3000 independent
realizations, random initial conditions.

4. Spiteful lies

We finally report the time evolution of the four strategy
profile in the case of spiteful lies. Figures 1 and 2 suggest
that the evolution does not depend on the network, and that
senders quickly learn that their best strategy is to tell the
truth, while receivers quickly learn that their best strategy is
to believe the sender’s message. Our simulations confirm this
finding. In Fig. 6 we report the results of the simulations for
r = s = −0.5. As expected, only the strategy profile (T, B)
survives, while all others quickly vanish.

C. Steady state spatial configuration

We have also conducted a set of simulations to explore the
spatial configuration of the steady state. Our aim was indeed
to explore whether certain strategy profiles tended to cluster
together. However, interestingly, all the simulations that we
have conducted converged to a unique strategy profile. There-
fore, the final densities discussed above should be interpreted
as the probability that a single realization evolves in such a
way that all agents end up playing a given strategy profile.

IV. DISCUSSION

We have used the Monte Carlo method to study the evo-
lution of lying in a set of networks including small-world

networks and the one-dimensional ring. As a measure of
dishonesty, we have used the sender-receiver game [16,52],
a game that is fundamentally different from those that have
been used in previous research applying the Monte Carlo
method to evolutionary game theory on networks, such as
the prisoner’s dilemma and the ultimatum game. Our research
shows that the spatial structure has a nontrivial effect on the
evolution of the strategies, which depends significantly on the
consequences of lying and telling the truth. The only trivial
case is when lying harms both the sender and the receiver,
i.e., when we have spiteful lies. In this case, regardless of the
network, senders quickly learn that their best strategy is to tell
the truth and receivers quickly learn that their best strategy
is to believe the sender’s message. In the case of black lies,
that is those that harm the receiver at a cost for the sender,
we found major differences across networks located below
the diagonal r = −s. In this domain, Monte Carlo simulations
show that honesty is more likely to evolve in small-world
networks and, to a lesser extent, in the one-dimensional ring,
compared to the well-mixed case. A slightly different result
holds for receivers, where the differences are concentrated in
a region in which s is very small. Here, believing the sender’s
message is more likely to evolve in the one-dimensional ring
and, to a lesser extent, in the small-world network, compared
to the well-mixed case. In the case of altruistic white lies,
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FIG. 5. Time evolution of the four pure strategy profiles (T, B), (L, B), (T, N ) for s = 0.6 and r = 0.4 for (a) well-mixed, (b) one-
dimensional ring, and two small-world networks, (c) p = 0.00025, and (d) p = 0.001. System size N = 500, average over 3000 independent
realizations, random initial conditions.

that is those that benefit the receiver at a cost to the sender,
we find that the regions in which the differences between
the networks are located depend on the network topology.
In the one-dimensional ring, we find that honesty is more
likely to evolve, compared to the well-mixed case, regardless
of the specific payoffs r and s. By contrast, in small-world
networks, honesty is more likely to evolve, compared to the
well-mixed case, but only below the r = −s diagonal. Slightly
different are the results for receivers. In this case, the evolution
of believing in the one-dimensional ring is identical to that
in the well-mixed population. By contrast, the evolution of
believing is favored in small-world networks, compared to
well-mixed populations, but only below the r = −s diagonal.
Finally, in the case of Pareto white lies, that is those that
benefit both the sender and the receiver, the major differences
across networks are slightly above the r = s diagonal, where
both lying and believing are more likely to evolve compared
to the well-mixed case. In sum, our findings show that the
spatial structure has a highly nontrivial effect on the evolution
of honesty and lying in the sender-receiver game. We stress
that, with the exception of spiteful lies, our analysis shows that
the final densities largely depend on the specific parameters,
r and s, even within a given lie type. This implies that the
steady states almost never coincide with the equilibria of the
game. The only case in which this happens is in the domain

of spiteful lies, where the time evolution quickly converges to
one of the equilibria, the pure strategy profile (T, B), while
discarding the other two equilibria, (L, N ) and the mixed one
x(T,B) = 1/6, x(L,N ) = 5/6. The reason why these latter two
equilibria are discarded in favor of the former one is because
(T, B) maximizes the payoff of both players, and therefore it
is more likely to be imitated.

Most previous work on the evolution of lying used games
different from the sender-receiver game. For example, a
stream of research used the Philip Sidney game [57,60–62],
where the sender is with some probability initially either
healthy, or with the remaining probability needy. The sender
can then either pay a cost to signal his state to the receiver or
do nothing. If the sender decides to signal his state, then he
can lie about it. Indeed, the receiver does not know the state
of the sender, but can only observe the signal. After observing
the signal if the latter is sent, the receiver decides whether to
donate his resource to the sender. The sender-receiver game
used here departs from the Philip-Sidney game along two
dimensions. First, in the sender-receiver game the signaling
is cost-free. Even in this case, our results demonstrate that
honesty can evolve in some circumstances, even when lying
is self-serving (black lies). Second, the sender-receiver game
differs from the Philip Sidney game in that it allows to study
the evolution of lying not only in the domain of black lies,
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FIG. 6. Time evolution of the four pure strategy profiles (T, B), (L, B), (T, N ), and (L, B) for s = −0.5 and r = −0.5 for (a) well-mixed,
(b) one-dimensional ring, and two small-world networks, (c) p = 0.00025 and (d) p = 0.001. System size N = 500, average over 3000
independent realizations, random initial conditions.

but also in the domains of spiteful lies, Pareto white lies,
and altruistic white lies. Therefore, the sender-receiver game
mathematically describes a much broader class of lies, and
accordingly richer are the insights it affords. Another stream
of previous research focused on cooperation games preceded
by a commitment phase in which agents can make promises
about what they will do in the subsequent cooperation game
[63–65]. Our approach differs from this line of work in that
we focus on honesty and believing, with no consequences
on subsequent games. This allows us to clearly identify the
four types of lies, and to study the evolution of honesty as a
function of the type of lie.

As any research, also ours has some limitations. In the first
place, we studied the evolution of lying only on a specific
family of networks. This one-parameter family allows us to
continuously move from complete networks to small-world
networks and further to the one-dimensional ring. Therefore,
this left out a number of other networks that are thought to
emerge in many social settings, such as scale-free networks
[66] or echo chambers [67]. Previous work has explored the
evolution of cooperation in these networks [36,68–70]. Future
works should therefore investigate the evolution of lying in
these networks, as well as others, such as interdependent
and multilayer networks [29,30,71]. Second, we studied the
evolution of lying in a somewhat natural condition, in which
there is no punishment or reward. These mechanisms are

well-known to favor cooperative behavior [72–83], and it is
likely that they might also favor honest behavior along similar
mechanisms reported for cooperation. Accordingly, future
works should explore mechanisms to promote the evolution
of honesty, starting with punishment and rewarding, as well
as by other means, such as reputation or shame, which are
by experience often fit to work in reality. Thirdly, we studied
the evolution of lying in situations in which the players are
forced to play every round of the interaction. In reality, it
sometimes happens that players are unable to participate in
an interaction, due to unforeseen circumstances, or simply
because they decide to opt out from one particular interaction.
Previous research has explored the effect of opting out on
the evolution of cooperation [84]. Future research should
extend this line of work in the context of lying. Finally, we
studied the evolution of lying in the sender-receiver game
as proposed by Erat and Gneezy [16]. In this game, the set
of potential private pieces of information available to the
sender has cardinality six, and this ultimately generates the
coefficient 4

5 in the bimatrix representing the game. Of course,
one could generalize the sender-receiver game to information
sets of any (finite) cardinality and study the evolution of lying
as a function of a new parameter, representing the cardinality
of the information set. Future work should explore the evo-
lution of lying in this generalization of the sender-receiver
game.
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