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In competitive settings that entail several populations, individuals often engage in intra- and interpopulation
interactions that determine their fitness and evolutionary success. With this simple motivation, we here study
a multipopulation model where individuals engage in group interactions within their own population and in
pairwise interactions with individuals from different populations. We use the evolutionary public goods game
and the prisoner’s dilemma game to describe these group and pairwise interactions, respectively. We also take into
account asymmetry in the extent to which group and pairwise interactions determine the fitness of individuals.
We find that interactions across multiple populations reveal new mechanisms through which the evolution of
cooperation can be promoted, but this depends on the level of interaction asymmetry. If inter- and intrapopulation
interactions are symmetric, the sole presence of multiple populations promotes the evolution of cooperation.
Asymmetry in the interactions can further promote cooperation at the expense of the coexistence of the
competing strategies. An in-depth analysis of the spatiotemporal dynamics reveals loop-dominated structures and
pattern formation that can explain the various evolutionary outcomes. Thus, complex evolutionary interactions
in multiple populations reveal an intricate interplay between cooperation and coexistence, and they also open up
the path toward further explorations of multipopulation games and biodiversity.
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I. INTRODUCTION

Although competition has been proven to be a momentous
law of species evolution and biodiversity, the guiding role
of widespread collaborative behaviors in biological systems
cannot be neglected [1–3]. In social animals and microbial
communities, particularly, individuals may form alliances to
adapt to harsh environments and competition [4,5]. Observ-
able examples include vampire bats sharing blood meals
with each other and emperor penguins huddling together for
warmth [6]. However, a stable cooperative system does not
imply spontaneous altruism of all members but a dynamic co-
existence of the prosocial and the antisocial behaviors [7–10].
A typical example is the “fig-fig wasp” system, in which
the fig wasps may dynamically choose whether to pollinate
figs [11].

Evolutionary game theory has been confirmed to be a
favorable mathematical tool for studying cooperation in dy-
namic biological systems. According to the conventional
approaches, the interactions among individuals are mainly
abstracted into two categories, one of which is pairwise
interaction with only two agents, and the other is group-
wise interaction with more than two participants. The most
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representative models for pair and group interactions, are
the prisoner’s dilemma game [12–14] and the public goods
game [15,16], respectively. Since all defection is the unique
pure-strategy Nash equilibrium, there are many analogous
properties between the prisoner’s dilemma game and the pub-
lic goods game. For example, cooperative behavior can be
facilitated by cyclic dominance when voluntary participation
is permitted, whether it in a prisoner’s dilemma game or a
public goods game [17–19]. Nonetheless, the public goods
game is not exactly the multiplayer extension of the pris-
oner’s dilemma game as more complex features may emerge
in group interactions [20,21]. In addition, pool-based mecha-
nisms, such as pool punishment [22–25], pool reward [26–28],
and pool exclusion [29,30], make the dilemma of multiple
participants irreplaceable.

Both interaction modes are important for explaining evo-
lutionary cooperation, but they are not entirely incompatible,
as individuals may choose to participate in paired or group
games based on their preferences or circumstances [31]. Pre-
vious studies and empirical evidence highlight the important
reality that in ecological and epidemiological systems, or-
ganisms may be involved in different patterns of interaction
with multiple populations [32–34]. Typically, viruses, which
mutate rapidly during propagation, interact variously with
different variants over a considerable period of time [35].
Turning back to the perspective of biological game theory, it
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is shown that neutral payoffs between populations cause in-
dividuals to oscillate between cooperation and defection [36].
In addition, environmental differences [37,38] in individuals
may lead to different strengths of their interactions [39–42],
which are rarely considered in evolutionary game theory. In
particular, within a sociobiological community, the different
tasks undertaken by individuals may affect the strength of
interactions within and between populations.

Based on such a background, this paper develops an ap-
proach to study the competition and cooperation with multiple
populations. Specifically, intra- and interspecific interactions
are considered to be of different types, with individuals being
allowed to participate in different numbers of pair and group
games simultaneously, depending on their local environment.
Furthermore, both symmetrical and asymmetrical situations
are considered, where the symmetry (asymmetry) means that
individual fitness is equally (unequally) dependent on games
within and between populations. Through the simulations, we
find that cooperation can be significantly improved with the
introduction of additional populations. Moreover, asymmetry
is proven to be a possible way to promote cooperation but at
the expense of biodiversity.

In the remainder of this paper, we elaborate on the
evolutionary multipopulation game models and explore the
mechanisms of cooperative behavior in biological systems.
Under Results, we present the results for the symmetric model
first, followed by the results for the asymmetric model. The
main phenomena and analyses are also described in this sec-
tion. Ultimately, we conclude this article and discuss other
complex interactions by comparing them with other related
studies.

II. METHODS

The proposed evolutionary game is performed on a L × L
lattice with periodic boundary and von Neumann neighbors
(degree k = 4). Individuals from different populations are
stochastically arranged on the nodes of the lattice and engaged
in two types of interactions, namely the public goods game
and the prisoner’s dilemma game. Specifically, the intrapop-
ulation interaction is defined as the public goods game and
interpopulation interaction as the prisoner’s dilemma game.
Since opponents may belong to different populations, the
focal player has the opportunity to participate in prisoner’s
dilemma games and public goods games, simultaneously. In
particular, one has to participate in n = k + 1 groups of public
goods games when all of its opponents belong to the identical
population as it. On the contrary, it plays k pairs of prisoner’s
dilemma games when all of the opponents belong to another
population. More generally, it plays n = ks + 1 groups of
public goods games, and k − ks pairs of prisoner’s dilemma
games, where ks is the number of opponents who belongs
to the same population as it. Note that ks � 1 indicates that
the public goods game will not be organized within a single
player.

In a group of the public goods game, cooperators devote
c = 1 to the common pool, while defectors contribute noth-
ing. The sum of the contributions is multiplied by a synergy
factor r, then it is distributed equally to the participants. The
payoffs of cooperators and defectors in a given group g can be

expressed as:
Pg

C = ncr/n − c

Pg
D = ncr/n,

where nc denotes the number of cooperators in the group.
Unlike the conventional setting, everyone has a fixed initial
endowment E = k + 1 to guarantee non-negative cumulative
payoffs even when participating in k + 1 groups of public
goods game.

In the prisoner’s dilemma game, if two cooperators (defec-
tors) meet, both receive R(P); if a cooperator competes with a
defector, then the cooperator (defector) receives S(T ). In this
paper, the payoff matrix can be illustrated as:

C D

C R = 1 + u S = 0
D T = 1 + 2u P = u

where 0 < u < 1, satisfied the essence of the prisoner’s
dilemma game that T > R > P > S, and 2R > T + S. What
we must pay attention is that such a payoff matrix is adopted
to ensure that participants have a non-negative return in the
prisoner’s dilemma game.

By interacting with all its neighbors, player x derives a
cumulative payoff PPGGs

x from intrapopulation competitions,
and another cumulative payoff PPDGs

x from interpopulation
competitions. In the symmetric interaction case, the partici-
pants in each population have the same intensity of interaction
within and between populations, and then their fitness is
equally dependent on the returns of public goods game and
the prisoner’s dilemma game. Thus, player’s fitness is simply
defined as Fx = PPDGs

x + PPGGs
x .

In the asymmetric interaction case, we analyze the evolu-
tionary dynamics of cooperation with only two populations.
Considering the different interaction strengths within and be-
tween populations, the fitness configurations for population A
and B are constructed as Fx = (1 − α)PPGGs

x + (1 + α)PPDGs
x

and (1 + α)PPGGs
x + (1 − α)PPDGs

x , respectively. The param-
eter α takes values within the range [0, 1] indicating the
degree of asymmetry between populations. When only inter-
population interactions are considered, population A has an
advantage over population B in fitness due to the introduced
asymmetry, so we next simply name them as strong and weak
populations, respectively.

Starting from states where cooperators and defectors (from
all swarms) are randomly arranged on lattice nodes, a com-
plete Monte Carlo (MC) step contains an average chance of all
individuals to update their strategies and population attribu-
tions. For the strategy update, we selected the Fermi rule, one
of the most popular and accepted approach in evolutionary
game theory [43,44], as it facilitates the comparison of results.
Specifically, an individual decides whether to imitate one of
his random neighbors by the following probabilities:

�(sy→sx ) = 1/{1 + exp[(Fx − Fy)/K]},
where x and y represent the random selection of adjacent
players, Sx(Sy) and Fx(Fy) indicate their strategies and fitness.
We fix K = 0.5 as the inverse of the chosen temperature
to obtain comparable results with existing studies [45]. We
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employ the size of linear systems ranging from L = 400 to
4000, in accordance with the proximity of the phase transition
points [22,46,47]. To a certain extent, using a sufficiently large
system size may enable us to guarantee the accuracy of an
evolutionarily stable solution. Conversely, the final outcome
of the evolution may be largely influenced by stochasticity.
In addition, the quantitative results at the steady state are
determined by the average of the last 5000 steps in 100 000
MC step simulations.

III. RESULTS

A. Symmetric populations

Before presenting the main results, we briefly analyze
the evolutionary dynamics in a single population and there-
fore without interpopulation interaction (prisoner’s dilemma
game). In this case, each player engages in k + 1 = 5 groups
of public goods games, and individuals are distinguished only
by strategy. The model we proposed gives all individuals
equivalent initial endowments, which is different from the
traditional spatial public goods game. But it does not affect
the evolutionary outcome of cooperation. Therefore, when the
synergy factor r exceeds the group size, cooperators entirely
dominate the system. Conversely, when it is below a threshold
(about r = 3.74), all the cooperators die out [23].

We next discuss the representative outcome of two sym-
metric populations, defined as A and B, respectively. Just
like the role of r in the public goods game, the parameter u
unilaterally determines the strength of the prisoner’s dilemma.
Consequently, these two parameters jointly determine the
evolutionary dynamics of cooperation in cases where both
dilemmas are involved in this paper. In Fig. 1, we present
the stationary cooperation frequency of the whole system
in dependence on the parameter r and u. Not surprisingly,
the cooperation frequency decreases with increasing dilemma
strength [49,50]. Notably, an increase in the parameter r or
decrease in u can significantly improve the cooperation rate.
Compared to the case of a single population, collaborative
behavior is more favorable when interpopulation competitions
are permitted. From the perspective of the public goods game,
the threshold at which cooperation emerges declines from
about r = 3.74 to r = 2.5. When the reciprocity of the pub-
lic goods game reaches another threshold (about r = 4), the
increase in strength of the prisoner’s dilemma does not lead
to the extinction of the cooperators. Conversely, at the given
parameter range in Fig. 1, no matter how weak the dilemma
is, there is no full cooperation state.

The spatiotemporal dynamics animation in Ref. [48]
reveals the intrinsic mechanism by which cooperation is fa-
cilitated in a system comprising two symmetric populations.
Correspondingly, a typical snapshot in the stationary state and
the evolutionary process of the frequencies of the strategies
are presented in Fig. 2. Cooperators and defectors in the snap-
shot and the animation are colored in blue and red, while the
shade of the colors indicate the population to which the player
is affiliated. The frequency of strategies in Fig. 2(b) would
adopt the same color scheme, and solid and dashed lines
represent the case of populations A and B, respectively. In the
left panel, some patches are circled, which express representa-

FIG. 1. The stationary cooperation frequency. Depicted above is
the overall cooperation rate FC consisting of two populations on the
(u, r) plane. These results show that the introduction of an additional
population, which enables inter- and intrapopulation interactions to
coexist in the system, significantly enhances the cooperation rate.

tive features during evolutionary dynamics. The white circles
marked “1,” “2,” and “3” show that cooperators from popu-
lation A are surrounded by cooperators from population B,
while the circles marked “4” and “5” show the opposite cases.
These patches indicate that cooperators at the interface of
different populations can invade each other. This is because
the cooperators did not participate in the two games in the
same amount, so they did not have exactly the same fitness.
For a similar reason, defectors belonging to different popula-
tions can also invade each other.

Afterward, we explore another crucial characteristic of the
system. As shown by the circled patches marked “6” and
“7” in Fig. 2(a), a few defectors spirally attached in the
gaps of large cooperation patches from populations A and
B. The patch marked “6” highlights that DA defectors in-
vade the CA cooperators, while the territory thus acquired is
quickly occupied by the CB cooperators. Similarly, the circled
patch marked “7” indicates that the DB defectors beat CB

cooperators but are beaten by CA cooperators. In this case, a
closed loop of DA → CA → DB → CB → DA appears in the
system, which further leads to a dramatic improvement in
cooperation. From the right panel of Fig. 2, the characteristics
of closed-loop invasion are reflected. We can also find that
the frequency of strategies does not converge over time but
dominates cyclically within a certain range. Furthermore, the
amplitude cooperation rate (the frequency of CA and CB) is
markedly higher than defectors (the frequency of DA and DB).
Since the direction of the mutual invasion of cooperators is
unilaterally determined by the shape of the interface between
the two populations, it does not lead to large fluctuations in
cooperation frequencies. Therefore, the slight fluctuation in
defector frequency induces a tremendous fluctuation in coop-
eration rates, and it is obvious that the loop invasion plays
a more important role in the evolutionary dynamics than the
mutual invasion of cooperators from different populations.

To get a clearer understanding of the above two dynamic
characteristics, we show the evolutionary dynamics from a
prepared initial state in Fig. 3. Such a special initial distri-
bution of the strategies allows more kinds of interactions to
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FIG. 2. (a) Typical snapshot of the stationary distribution of strategies consisting of two populations. Cooperators and defectors belonging
to the symmetric populations are referred to here as A and B, which are depicted in bright (light) blue and bright (light) red, respectively.
The circled patches reveal the core mechanism of evolutionary dynamics, and details can be observed in the animation [48]. In particular, the
closed loop of DA → CA → DB → CB → DA is found to further promote the formation of spiral patches. (b) The evolutionary frequency of
the four strategies corresponding to the left panel, and a built-in illustration scaling down the coordinates to observe the defection rate. The
closed loop can be understood with the oscillating frequency of the four competing strategies. The results for both panels are obtained with
r = 3.8, u = 0.05, and L = 500.

be visualized [22]. From the next panel, the bright (light) blue
rapidly invades light (bright) red, while being slowly invaded
by the bright (light) red. However, from the corresponding
interfaces, one can see that the competition of cooperators (or
defectors) between different populations appears to be more
moderate. Although it can be found from Fig. 3 that the system
undergoes drastic changes, the spatial distribution of policies
is roughly bilaterally symmetric. It highlights the extremely
slow rate at which cooperators from different populations
invade each other. The subsequent evolutionary results show
that the territories are cyclically occupied by different species
and explain the oscillating spatial diffusion of the strategies.
Similar spatiotemporal features of loop dominance can be
further traced from previous ecological studies [32,51–53]
that reveal important ways in which species interact in terms
of pattern and diversity.

The above results for two symmetric populations are suffi-
ciently representative that we do not extend the analysis of the
spatiotemporal dynamics of more than two populations [36].
Nonetheless, it is still worth discussing how the number of
populations affects the evolution of cooperative behavior. In
Fig. 4, we present the stationary cooperation frequency of the
whole system in dependence on the parameter u for population

numbers equal to 2, 3, and 4. Note that the results of the single
population are not shown, because we adopt r = 3.2 below
the cooperation threshold (r = 3.8) that cooperator cannot
survive without interpopulation interactions. The results are
concise, the stationary frequency of the cooperation increases
with the number of symmetric populations. In addition, a
larger population in a system allows cooperation to persist in
stronger dilemmas.

B. Asymmetric populations

In biological systems, stronger individuals may need to
defend against external enemies and therefore have greater
strength of interpopulation interactions and less strength of
intrapopulation interactions. Here we only explore a simple
case where the two populations participating in the interac-
tions are divided into the strong and the weak. Therefore, the
strategy set contains CS , CW , DS , and DW , which represent
strong cooperators, weak cooperators, strong defectors, and
weak defectors, respectively. Based on the coupling rules of
the fitness for strong and weak, the parameter α, which is
used to control the degree of asymmetry between the two

FIG. 3. Representative evolution of the four strategies from a prepared initial state. It can be observed that the interface between bright red
(blue) and light red (blue) is very smooth and the mutual invasion of cooperators (defectors) from different populations is significantly slower
than that between cooperators and defectors in the same population. It highlights that the dynamics of the closed loop dominates the evolution
of the system. The results are obtained with r = 3.8, u = 0.05, and L = 500.
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FIG. 4. The stationary frequency of cooperation in the whole
system FC in dependence on the parameter u as obtained for different
numbers of populations. Note that the results of a single population
are not shown because we adopt r = 3.2, which is below the cooper-
ative threshold of r = 3.8 in the spatial public goods game. It implies
that the additional populations considerably promote cooperation
when interpopulation competitions are permitted.

populations, becomes an important factor affecting the evo-
lutionary dynamics.

In Fig. 5, we illustrate the u-α phase diagram of the system
as obtained for r = 3.2. In this case, the cooperators are sur-
vivable when competing symmetrically. The blue solid lines
indicate the continuous phase transitions, while the red dashed
lines indicate the discontinuous phase transitions. The phase
diagram reveals several fundamental features associated with
two asymmetric populations. First, it is shown that the phases
containing cooperation form a triangle, which implies that

FIG. 5. The (u, α) phase diagram of the spatial game with two
asymmetric populations as obtained for r = 3.2. The solid blue lines
denote continuous phase transitions, while dashed red lines denote
discontinuous phase transitions. The extremely narrow space be-
tween the triplets marked “ALL” refers to the CS + CW + DS + DW

phase.

FIG. 6. The stationary frequency of the four strategies is depen-
dent on the asymmetric factor α for u = 0.33 and r = 3.2. From this
cross section, a series of phase transitions are reflected.

small values of u and moderate values of α are conducive to
cooperators’ survival. In the triangle region, the CS is always
viable, and the CS + CW + DW and CS + DS + DW phases
occupy the most area. Especially, the CS + CW + DW phase
prevails when u is low, while the CS + DS + DW phase is dom-
inant when u is high. Between the two triples, there is a narrow
inverted U-shaped phase, labeled “ALL,” indicating that the
four strategies coexist in the system. Moreover, there is an
important discontinuous phase transition process associated
with the “ALL” phase, namely the system from the DS + DW

phase jumps into the CS + CW + DS + DW phase with the
decrease of u. The same phenomenon can also be observed
in the results of symmetric interactions, which explain that
biodiversity is only well maintained when the population is
(asymptotically) symmetric. In that case, the dynamics of
cooperation are mainly driven by the cyclic dominance of
the four strategies, and once the closed loop is broken, all
cooperators die out from the system simultaneously.

Interestingly, a full cooperation (CS) phase appears when
the degree of asymmetry is further increased, suggesting that
asymmetry among populations may be the reason for pro-
moting cooperation. The associated two discontinuous phase
transitions include the CS + DS + DW phase transforms into
the complete CS phase as well as the complete CS phase to
complete the DW phase. The former illustrates the disinte-
gration of the defense alliance, while the latter highlights the
extinction of cooperation. In addition, when the value of u is
relatively large, the full CS change into the CS + DW phase
through continuous phase transitions. It is surprising that the
CS + DW phase refers to a typical asymmetric interaction pat-
tern in biological systems and is abstracted as a “box pigs”
game [54,55].

In Fig. 6, we show the typical cross section of the phase
diagram when u = 0.33. It can be observed that the system
starts from a DS + DW phase with an equal proportion of both
strategies because the two populations are symmetric when
α = 0. With the increase of α, the density of DW defector
is getting higher, while the fraction of DS defector is getting
lower. Understandably, defectors from both populations hold
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FIG. 7. Consecutive snapshots of the evolutionary system, as obtained for u = 0.1, α = 0.23 (top row) and u = 0.3, α = 0.2(bottom row)
from a prepared initial state. The cooperators and defectors from the strong (weak) population are colored in bright (light) blue and bright
(light) red. During relaxation, the lattice is divided into two halves, and each half contains the strategies of one triplet. After the subsystem is
evolutionarily stable (the typical features of the second column appear), the separating walls are removed, and the competition between the
alliance starts. The top row shows that the CS + CW + DW triplet is dominant, while the bottom row shows that the CS + DS + DW triplet is
dominant. Other parameters are r = 3.2 and L = 600.

the same payoff when all cooperators disappear from the
system, and the coupling rule gives a higher degree of fitness
to the weak than to the strong, as the α value increases. With
the further increase of α, CS cooperators join the fray, and
the system forms into a CS + DS + DW defensive alliance,
and the cooperation rate is monotonically promoted under this
solution. Once again, it emphasizes that asymmetry facilitates
cooperation. Next, the reentrant phase transitions involving a
series of continuous transitions between triplets and quadru-
plets are clearly illustrated. Specifically, as α increases, the
system starts from the CS + DS + DW phase, across the “ALL”
phase (twice) and the CS + CW + DW phase, and finally re-
turns to the starting state. What this process expresses is not
a simple competition between CW and DS , but a war between
different triple alliances. After that, the system unexpectedly
jumps into the complete CS state, this discontinuous phase
transition reveals that the alliance of CS + DS + DW is broken
by the increased asymmetry. With the continuous increase
of α, DW defectors coexist with CS cooperators and finally
achieve full dominance of DW . Although the case of larger
values of α is not shown, we can understand that excessive
asymmetry is only profitable to the evolution of DW defectors.

We subsequently explain the mechanisms of these solu-
tions and relevant phase transitions from the spatiotemporal
dynamic characteristics. In Fig. 7, the cooperators and de-
fectors are colored in blue and red, while the shades are
used to distinguish the strong and weak populations. During
relaxation, the lattice is divided into two halves, and each
half contains the strategies of one triplet. Both rows of the
snapshots depict the evolution process of the four strategies
from the separate subsystems to the merged system. This
particular simulation method helps to explain the formation of

alliances and the competition among them [56,57]. From the
corresponding animations in [58,59], the disordered strategies
rapidly evolve into spiral patches. The static snapshots in
the first two columns of Fig. 7 briefly describe this process,
and this loop invasion is the most typical feature of the evolu-
tionary rock-paper-scissors game [60–63]. Specifically, from
the left part of the second column, the spiral plaques imply
that the CW cooperator dominates the CS cooperator, but is
dominated by the DW defector; while from the right part, the
DS defector beats the CS cooperator but are beaten by DW

defector. The triplets on both sides thus form corresponding
closed loops, namely CS → CW → DW → CS in the left half
and DW → DS → CS → DW in the right part. Although the
evolutionary snapshots of the CS + CW + DS + DW phase are
not shown, it is understandable that both loops coexist in the
“ALL” phase. What is more, the top row reveals the dynamics
when the CS + CW + DW triplet is more aggressive, while the
bottom row reveals the opposite case. In Fig. 8, we present the
evolutionary dynamics of the four strategies, where DS (CW )
is absent in the left (right) panel. Thus, the initial proportions
of the strategies in both panels are 1/3. It can be seen that
the amplitude of the strategy oscillation in the CS + CW + DW

triplet is greater than that of CS + DS + DW . Combined with
the size of the triplets shown in Fig. 7 and the result in
Ref. [64], we conclude that in “oscillatory systems,” the larger
spiral plaques and amplitudes of the evolutionary frequency of
the strategies reveal the slower strategies transition rate.

In Fig. 9, we explain the mechanism of the full CS phase
through the consecutive snapshots. In the initial state, the
four strategies are randomly arranged on the nodes of the
lattice. In general, individuals gain significantly more from the
public goods game than from the prisoner’s dilemma game,
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FIG. 8. Time evolution of the strategy frequency from a prepared initial state, and both panels adopt the same parameters r = 3.2, u = 0.1,
and α = 0.23. (a) The evolution in the absence of DS defectors, and (b) the evolution in the absence of CW cooperators. The results are obtained
with L = 400.

as can be calculated from the payoffs. In a highly asymmetric
situation, the weak population are more competitive than the
strong population. For these reasons, only a few bright reds
and bright blues remain in the sea of light blues and light
reds in Fig. 9(b). Considering the Nash equilibrium of the
public goods game, the defector is always at the advantage
of the same population competition, thus the CW cooperators
are quickly expelled from the system by the DW defectors.
Then, there are only the CS cooperators and the DW defec-
tors in the system, and the negative feedback mechanism
induced by network reciprocity enables the further expansion
of the CS clusters until the eventual full domination. Note that
the last panel of Fig. 9 does not represent the final state
of the evolution, but the consequence and the other details
of the evolutionary dynamics can be observed in Fig. 10(b).
In addition, among the three panels of Fig. 10, the frequency
of CS decreases dramatically at the beginning but slows down

FIG. 9. Consecutive snapshots of the evolutionary system from a
random state, as obtained for r = 3.2, u = 0.1, and α = 0.31. The
cooperators and defectors from the strong (weak) population are
colored in bright (light) blue and bright (light) red. From (a) to (f),
it explains the evolution of CS phase dominance. The size of the
adopted square lattice is 400 × 400.

after dropping to a very low level. The reason is that the small
CS clusters are formed to resist the invasions, as can be found
in Fig. 9. In the three panels, both the CW and DS are not
competitive enough to survive and are eliminated the fastest.
In the final stage of competition between the CS and DW ,
different results are reflected, namely the CS + DW phase, the
full CS phase, and the full DW phase, respectively.

Considering that the main conclusions in the above asym-
metric populations are based on r = 3.2. In such a situation,
cooperators and defectors are survivable even in symmetric
interactions. To thoroughly understand the influence of asym-
metry, we finally explore the evolutionary dynamics when
r = 2.4 (the cooperation threshold of symmetric interaction is
r = 2.5). In Fig. 11, it can be seen that cooperation persists
in three different forms, namely CS + DS + DW , CS + DW ,
as well as full CS phase. Although the huge strength of the
dilemmas, cooperation can be sustained by asymmetric in-
teraction. However, there are fewer ways for strategies to
coexist, such as the disappearance of the CS + CW + DW and
CS + CW + DS + DW phases. In addition, the phase diagram
is very similar to the situation in Fig. 5 when larger values of
u are embraced. It implies that the increase both in the intra-
and interpopulation competition intensity results in a similar
phenomenon in the biological system.

IV. DISCUSSION

Pairwise and groupwise interactions are the primary
abstractions for individual competition. Based on these
approaches, phenomena such as cooperation, invasion, eco-
logical stability, and biodiversity are explained. From the
perspective of cooperation and evolutionary games, only a
very small amount of literature considers the coexistence of
both competition modes [31]. However, the analysis of such
complex interactions is necessary, and this paper provides
a different framework to investigate it. Different from the
basic setting in previous studies [65–68], we make it pos-
sible for one to participate in different types of interactions
simultaneously.
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FIG. 10. Time evolution of the proportion of the four strategies from a random initial state for r = 3.2. Panel (a) is obtained for u = 0.33
and α = 0.265; panel (b) is obtained for u = 0.1 and α = 0.31; panel (c) is obtained for u = 0.1, and α = 0.32. The three panels explain the
formation of the CS + DW , CS , and DW phase. The results are obtained with L = 1000.

Specifically, players on the nodes of the network are di-
vided into two or even more populations, the intrapopulation
interactions are defined as groups of public goods games,
while the interpopulation interactions are defined as pairs of
prisoner’s dilemma games. Both symmetric and asymmetric
interactions are taken into account in this paper. In the sym-
metric competition model, individuals from each population
have the same competitiveness (consistent fitness structure).
We find that the introduction of additional populations and the
interpopulation competitions is beneficial to the maintenance
of cooperation and biodiversity. From the spatiotemporal
features, the cooperator from one population dominates the
defector from another population, while the defector dom-
inates the cooperator in intrapopulation interactions. In this
way, a closed loop appears in the system, and cooperation and
biodiversity are maintained by such dynamics.

However, the assumption of fully symmetric interaction is
difficult to achieve in biological systems [69–71]; therefore,
it is necessary to explore the asymmetric case. Specifically,

FIG. 11. u-α phase diagram of the spatial game with two asym-
metric populations, as for r = 2.4. The solid blue lines denote
continuous phase transitions, while dashed red lines denote discon-
tinuous phase transitions.

individuals are categorized as strong or weak depending on
their degree of dependence on either inter- and intrapopulation
interactions. This asymmetry between the populations can be
quantified by the difference in this degree of dependence.
We found that a moderate level of asymmetry is optimal
for promoting the evolution of cooperation between the two
populations. However, increasing the asymmetry between
populations leads to a reduction in the number of coexistable
strategy tuplets in the system. This suggests that high levels
of asymmetry can have a significantly negative impact on
biodiversity, ultimately even leading to its destruction.

In summary, this paper analyzed the evolutionary dynamics
of cooperation and biodiversity and the effect of the asymme-
try in multipopulation systems. It is noteworthy that the setting
of simply introducing the two game models mentioned above
as the interactions within and between populations is lacking
in general applicability. In particular, both share essentially
the same dilemma structure [72], and there remain several
classical models of pairwise interactions that have not been
applied to our work. It is foreseeable that the cooperation can
be further improved when the interaction models are trans-
formed into weaker dilemmas, such as the Snowdrift game
and the Harmony game. We would like to address these issues
by using dilemma strength theory [50,73], which constructs
intrinsic connections between different pairwise game models
and reveals the generality of social dilemmas. Furthermore,
how to construct a universal dilemma scale related to popula-
tion size becomes another important part of our future work.
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