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Group-size effects on the evolution of cooperation in the spatial public goods game

Attila Szolnoki1 and Matjaž Perc2
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We study the evolution of cooperation in public goods games on the square lattice, focusing on the effects that
are brought about by different sizes of groups where individuals collect their payoffs and search for potential
strategy donors. We find that increasing the group size does not necessarily lead to mean-field behavior, as is
traditionally observed for games governed by pairwise interactions, but rather that public cooperation may be
additionally promoted by means of enhanced spatial reciprocity that sets in for very large groups. Our results
highlight that the promotion of cooperation due to spatial interactions is not rooted solely in having restricted
connections among players, but also in individuals having the opportunity to collect payoffs separately from
their direct opponents. Moreover, in large groups the presence of a small number of defectors is bearable, which
makes the mixed-phase region expand with increasing group size. Having a chance of exploiting distant players,
however, offers defectors a different way to break the phalanx of cooperators and even to resurrect from small
numbers to eventually completely invade the population.
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The public goods game [1,2] is played in groups and
captures the essential social dilemma in that collective and
individual interests are inherently different. Players must
decide simultaneously whether they wish to contribute to the
common pool, i.e., to cooperate, or not. All the contributions
are then multiplied to take into account synergetic effects
of cooperation and the resulting amount is divided equally
among all group members irrespective of their strategies.
Selfish players obviously should decline to contribute if the
investment costs exceed the return of the game. However,
if nobody decides to invest, the group fails to harvest the
benefits of a collective investment and the society may evolve
toward the “tragedy of the commons” [3]. Yet despite the
obvious social dilemma, observations indicate that individuals
cooperate much more in public goods games than expected
[4], which calls for the identification of mechanisms that
can sustain cooperation. The sustenance of cooperation in
sizable groups of unrelated individuals, as is the case by the
public goods game, is particularly challenging since group
interactions tend to blur the trails of those who defect. Unlike
by pairwise interactions, reciprocity [5,6] often fails as it is not
straightforward to determine with whom to reciprocate. Social
enforcement, on the other hand, may work well, although it
is challenged by the fact that it is costly (see Ref. [7] for a
review). Recently studied ways of promoting cooperation in
public goods games include the introduction of volunteering
[8,9] and the introduction of social diversity by means of
complex interaction networks [10,11], random exploration
of strategies [12], and various forms of reward [13–16] and
punishment [17–20], to name but a few.

Spatial reciprocity [21], which is part of the five rules
for the evolution of cooperation [22], has long established
as a prominent mechanism for the evolution of cooperation
[23]. The spatial public goods game [24] in particular is
interesting also from the viewpoint of physics, for example,
in terms of phase transitions [25], pattern formation [26],
effects of inhomogeneous player activities [27], diversity [28],
and noise [29], as well as coevolutionary processes [30]
and processes taking place on complex networks [31,32].

While the efficiency of spatial reciprocity is known to be
vitally affected by the structure of interaction graphs [33],
studies systematically analyzing the impact of group size on
the evolution of cooperation are still lacking. Although it is
traditionally assumed that very large groups should result in
mean-field behavior due to the emergence of all-to-all coupling
(see, e.g., Ref. [34]), certain studies suggest that this may
not always be the case [35]. Adding to this the experimental
findings [36] indicating that larger groups (of size 40 or 100)
provide public goods more efficiently than small groups (of
size 4 or 10) clearly outlines the need to clarify the importance
of the group size, especially for games that are governed by
group interactions.

Here we therefore study the evolution of cooperation in the
public goods game on the square lattice, whereon initially
each player on site x is designated either as a cooperator
(sx = C) or defector (sx = D) with equal probability. We
note, however, that the main findings do not depend on the
host lattice topology because the large-group-size interactions
diminish the fine topological differences. Players can collect
payoffs from groups ranging in size from G = 5 to 445, as
depicted schematically in Fig. 1. In addition, we also consider
different groups of players that are eligible to act as strategy
donors, ranging from nearest neighbors only to all players that
are members in the groups containing the focal player, i.e.,
the one potentially adopting a new strategy. Note that there
exist exactly n = G groups containing any given player x (one
group where player x is focal and n − 1 groups where this is
not the case). Each selected player x acquires its payoff Px by
accumulating its share of the public good from all the n groups
with which it is affiliated (unless stated otherwise). Without
loss of generality, cooperators contribute 1 to the pool while de-
fectors contribute nothing; subsequently all the contributions
within a group are multiplied by the enhancement factor r and
divided equally among all the members. Employing the Monte
Carlo simulation procedure, each elementary step involves
randomly selecting one focal player x and one player y that is
eligible to act as a strategy donor. Following the accumulation
of payoffs Px and Py as described above, player y tries to
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FIG. 1. Left: Schematic presentation of different group sizes G

on the square lattice. Depicted are groups containing G = 9 (open
squares), 45 (gray squares), 97 (pluses), 185 (solid squares), and
301 (crosses) players, respectively. The focal player is marked by a
star. Right: Schematic presentation of possible sources of strategy
invasion. Three different cases are considered, namely, the adoption
can only be attempted from the nearest neighbors (open squares),
from the focal group (white patch), or from all the groups (gray
areas) where the focal player is a member.

enforce its strategy sy on player x in accordance with the
probability W (sy → sx) = {1 + exp[(Px − Py)/K]}−1, where
K determines the uncertainty by strategy adoptions [29].
To account for the different number of groups affecting
the absolute values of the payoffs when increasing G (and
thus indirectly influencing W ), parameters r and K must be
considered properly normalized with G to ensure relevant
comparisons of results. During a Monte Carlo step (MCS)
all players will have a chance to pass their strategy once on
average. For the results presented below we used the square
lattice having L = 400–1600 linear size and up to 107 MCSs
before determining the stationary fraction of cooperators ρC

within the whole population.
Figure 2 features the critical multiplication factor rc at

which cooperators die out in dependence on G. Above this
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FIG. 2. (Color online) Critical multiplication factor rc in depen-
dence on G. Strategy donors were selected only from the four nearest
neighbors (solid squares), from within the group of players where
player x is focal (open circles), or among all the groups where player
x is a member (solid circles). The uncertainty by strategy adoptions
was K/G = 0.1 (the normalization of K with G takes into account
the number of groups participating in the accumulation of payoffs).

rc value the cooperators can coexist with defectors by forming
a mixed phase. If they exceed a second critical rc value
(not shown here), the defectors will die out and the system
will arrive at the pure C phase, as demonstrated in previous
works considering small group sizes [29,35,37–41]. In the
present work we focus on the group-size dependence of
the lower critical rc that limits the surviving chance of a
cooperator strategy. As Fig. 2 suggests, increasing the group
size can drastically decrease the minimally required r for the
sustenance of cooperation and there is no indication of arriving
at mean-field behavior (note that rc = G in the well-mixed case
[42]) even for very large groups. However, the positive effect
depends significantly on the available set of potential strategy
donors. The smaller the latter (the range from all groups
reduced to focal group or reduced further to nearest neighbors),
the stronger the promotion of cooperation induced by large
G. An alternative, and in fact more interesting, interpretation
is that the larger the difference between interaction (used
for the accumulation of payoffs) and replacement (used for
selecting potential strategy donors) groups, the smaller the
rc at any given G. This is different from what was reported
in Ref. [43] for games governed by pairwise interactions,
where cooperators were found to be diminishing as the overlap
between interaction and replacement graphs was lessened.

Our observations can be corroborated further by consider-
ing public goods games where each player x acquires its payoff
Px only from the one group where it is focal. Figure 3 shows the
results. The most relevant difference from the results presented
in Fig. 2 can be observed for the case where strategy donors
are selected among all the groups where player x is a member
(solid circles). Note that distant players can interact indirectly
here, i.e., although they do not collect payoffs from the same
group, their strategies influence the income of the other player.
In this case there exists an optimal group size where rc is
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FIG. 3. (Color online) Critical multiplication factor rc in depen-
dence on G, as obtained when the payoffs are acquired from a
single group where the corresponding players are focal. The symbols
correspond to those used in Fig. 2, determining the set of potential
strategy donors. The uncertainty by strategy adoptions was K = 0.1
(note that the normalization with G is unnecessary since all the
payoffs originate from a single group).
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minimal (instead of a continuous downward trend), although
the well-mixed limit (rc = G), as well as, in fact, even the
small-group limit (r/G → 0.915), is never reached for very
large G. Results presented in Fig. 3 lead to the conclusion
that it is beneficial for the evolution of cooperation not only
if the interaction and replacement groups are different, but
also when players have the ability to play the game (collect
their payoffs) with other players who are beyond the scope of
potential donors of a new strategy. For the uppermost curve in
Fig. 3 (solid circles) this is not warranted (note that the payoffs
are collected only from the group where a given player x is
central, while strategy donors are sought from all the groups
where player x is member) and it is indeed there where the
promotion of cooperation by means of large groups is least
effective. Nevertheless, large groups are definitely better suited
for the effective provision of public goods under unfavorable
conditions (small r) than small groups, thus supporting the
experimental findings of Isaac et al. [36].

Characteristic snapshots of the spatial grid for small and
large G, as depicted in Fig. 4 in the top and bottom rows,
respectively, serve well to understand the differences in the
evolutionary process that is brought about by differently sized
groups. For small groups (G = 5, top row), the evolution
of strategies proceeds with the characteristic propagation of
the fronts of the more successful strategy (in this case D)
until eventually the maladaptive strategy C goes extinct. For
intermediate values of r , we would observe the well-known
clustering of cooperators [21]. On the other hand, for large
groups (G = 301, bottom row), the cooperator clusters are
very strong and can easily outperform the defectors, even
if r is very small. However, as the number of defectors in
the large groups goes down, their payoff suddenly becomes
very competitive, to the point where defectors can strike back
and invade the seemingly invincible cooperative clusters. Such
an alternating time evolution is completely atypical and was
previously associated with cooperators only (see, for example,
Ref. [44]), i.e., the density of cooperators typically goes down
initially, until some form of reciprocity or a feedback effect

FIG. 4. (Color online) Characteristic snapshots of the spatial grid
for G = 5 (top row) and G = 301 (bottom row), using the focal group
imitation range as obtained for K/G = 0.1 and a system size of
L = 200. Cooperators are marked by light gray (green) and defectors
by dark gray (red). In both cases the final outcome is a full D

phase where normalized synergy factors are almost equal far from
the transition points (r/G = 0.74 and 0.24, respectively). Prepared
initial states were used to highlight the two significantly different
strategy invasion processes. Snapshots in the top row were taken at
0, 50, 100, 200, and 1500 MCSs, while in the bottom row they were
taken at 0, 30, 100, 300, and 400 MCSs.

 0.0

 0.2

 0.4

 0.6

 0.8

1

0  200  400  600  800  1000

fr
eq

ue
nc

y 
of

 c
oo

pe
ra

to
rs

time [MCS]

FIG. 5. (Color online) Time courses of the density of cooperators
ρC for G = 5 (dashed blue line) and G = 445 (solid red line), starting
from the mentioned prepared initial state (see Fig. 4) and using all-
group imitation range, as obtained for K/G = 0.1 and a system size
of L = 800. Synergy factors were r/G = 0.7 and 0.6, respectively.

establishes itself and enables the cooperators to win back lost
ground to defectors. For spatial public goods games played in
large groups we demonstrate here that the scenario is exactly
the opposite. Defectors are the ones who can resurrect from
small numbers to overtake cooperators and it is indeed the
difficulty of prevention of this negative backfiring of the initial
cooperative success that limits the success of large groups to
sustain cooperation at even smaller multiplication factors.

The two opposite time courses presented in Fig. 5 illustrate
the atypical evolutionary process at large G succinctly. To
obtain smooth curves, we have used larger system sizes
(L = 800) and averaged the data over 50 independent runs.
While for small G (dashed line) the fraction of cooperators
ρC decreases monotonically to zero, the outlay for G = 445
(solid line) is very much different. There we can first observe
a significant increase in ρC , which is brought about by
the formidably strong cooperative phalanx, which can easily
defeat weak defectors deep in the D domain. The dissolution of
D domains, however, serves well the surviving defectors who
then become the “leaders” of a counterattack that eventually
leads to the complete extinction of cooperators. Hence we
can observe the fall of ρC , although as emphasized, this one
is due to completely different circumstances than the one
reported for the G = 5 case. The time evolution of defectors,
as we have demonstrated for G = 445 (dominance following
near extinction), was previously associated with cooperative
behavior only and it is only the special impact of distant
invasion, which is made possible by large groups, on the
evolution of cooperation that is able to offer such a reversal of
expected roles of the two strategies.

In summary, we have studied the evolution of cooperation
in the spatial public goods games on the square lattice, thereby
focusing on revealing the impact of different group sizes
on the effective provision of public goods. Motivated by
the experimental findings indicating that larger groups are
advantageous to small groups [36], we find that large groups
indeed significantly promote the evolution of cooperation.
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Quite remarkably, if only the interaction and replacement
groups are sufficiently different and if players have the ability
to play the public goods game with at least some of the players
that are then not considered as potential donors of a new
strategy, the large groups prove impervious to defectors even
at very low multiplication factors. Since spatial reciprocity
is inherently rooted in the formation of compact cooperative
clusters, it seems natural that larger groups, potentially giving
rise to larger cooperative clusters, will be more effective
in warranting high levels of cooperation than small groups.
However, it is the size of large groups that may backfire on
the cooperators when the number of defectors in such groups
becomes very low. Then the advantages of defection become
so strong that cooperators may still be defeated despite their
stellar start. It is mainly this mechanism that limits the success
of large groups to sustain cooperation and puts a stop to
the pure number-in-the-group effect [45]. We would also like
to emphasize that the identified mechanism of promotion of
cooperation by means of participation in large groups is robust

and independent of details such as the uncertainty by strategy
adoptions or the local structure of the interaction network. In
particular, the joint membership in large groups will indirectly
link vast numbers of players [29], thus rendering local as well
global structural properties of interaction networks practically
irrelevant for the final outcome of the game. There are several
examples, such as local and federal tax payment, health
insurance, or pension systems, when people are involved in
partly separated large structured common ventures. Without
applying our model directly to such systems, the present work
offers an explanation why in fact cooperation can survive even
when the benefits of large-scale collaboration are relatively
modest.
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