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Conditional strategies and the evolution of cooperation in spatial public goods games
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The fact that individuals will most likely behave differently in different situations begets the introduction of
conditional strategies. Inspired by this, we study the evolution of cooperation in the spatial public goods game,
where, besides unconditional cooperators and defectors, also different types of conditional cooperators compete
for space. Conditional cooperators will contribute to the public good only if other players within the group are
likely to cooperate as well but will withhold their contribution otherwise. Depending on the number of other
cooperators that are required to elicit cooperation of a conditional cooperator, the latter can be classified in as
many types as there are players within each group. We find that the most cautious cooperators, who require all
other players within a group to be conditional cooperators, are the undisputed victors of the evolutionary process,
even at very low synergy factors. We show that the remarkable promotion of cooperation is due primarily to the
spontaneous emergence of quarantining of defectors, who become surrounded by conditional cooperators and are
forced into isolated convex “bubbles” from which they are unable to exploit the public good. This phenomenon
can be observed only in structured populations, thus adding to the relevance of pattern formation for the successful
evolution of cooperation.
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I. INTRODUCTION

The origins of prosocial behavior in groups of unrelated
individuals are difficult to trace down. There exist ample
evidence indicating that between-group conflicts may have
been instrumental for enhancing in-group solidarity [1]. On
the other hand, some argue that our prehuman ancestors
may have been confronted by more pressing challenges then
simply to avoid being wiped out by their neighbors. About
two million years ago some hominids were beginning to
evolve larger brains and body size and to mature more slowly
than other apes, which likely created serious challenges in
rearing offspring that survived [2,3]. Hence, alloparental care
and provisioning for someone else’s young have also been
proposed as viable for igniting the evolution of the remarkable
other-regarding abilities of the genus Homo that we witness
today [4]. Regardless of its origins, it is a fact that cooperation
in groups is crucial for the remarkable evolutionary success of
the human species, and it is therefore of the utmost importance
to identify mechanisms that might have spurred its later
development [5].

Evolutionary game theory [6–10] is firmly established as the
theoretical framework of choice for those studying the emer-
gence and sustainability of cooperation at different levels of
organization [11]. Recent reviews attest clearly to the fact that
interdisciplinary approaches, linking together knowledge from
biology, sociology, and economics as well as mathematics and
physics, are especially successful in identifying new ways by
means of which the successful evolution of cooperation among
selfish and unrelated individuals can be understood [12–16].
The public goods game, in particular, has proven itself time
and again as the classic paradigm that succinctly captures
the essential social dilemma that emerges as a consequence
of group and individual interests being inherently different,
which may ultimately result in the “tragedy of the commons”
[17]. Governed by group interactions, the public goods game
requires that players decide simultaneously whether they wish

to contribute to the common pool, i.e., to cooperate, or not.
Regardless of the chosen strategy, each member of the group
receives an equal share of the public good after the initial
investments are multiplied by a synergy factor that takes into
account the added value of collaborative efforts. Evidently,
individuals are best off by not contributing anything to the
common pool, i.e., by defecting, while the group, and indeed
the society as a whole, is most successful if everybody
cooperates.

Recent research has made it clear that spatial structure
plays a pivotal role by the evolution of cooperation, as
comprehensively reviewed in [14]. Inspired by the seminal
paper introducing games on grids [18], evolutionary games
on graphs and complex networks [19–37] have proven in-
strumental in raising the awareness of the fact that relaxing
the simplification of well-mixed interactions may lead to
qualitatively different results that are due to pattern formation
and intricate organization of the competing strategies, which
reveals itself in most unexpected ways. Specifically, for the
spatial public goods game [38,39], it has recently been shown
that inhomogeneous player activities [40], appropriate partner
selection [41,42], diversity [43–45], the critical mass [46],
heterogeneous wealth distributions [47], and the introduction
of punishment [48,49] and reward [50], as well as both the
joker [51] and the Matthew effect [52], can all substantially
promote the evolution of public cooperation.

Apart from rare exceptions, the large majority of previ-
ously published works assumed unconditional strategies, i.e.,
cooperators that always cooperated and defectors that always
defected. Nevertheless, the usage of unconditional strategies
constitutes a simplification that deserves further exploration.
It is a fact that individuals, be it humans or animals, will
likely behave differently under different circumstances. This
invites the introduction of conditional strategies, by means
of which such considerations can be appropriately taken into
account. With this motivation, we here study the evolution of
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cooperation in the spatial public goods game containing condi-
tional cooperators. Conditional cooperators will contribute to
the common pool only if there is a sufficiently high number of
other conditional cooperators in the group. If not, conditional
cooperators will defect, at least until the group acquires more
players that are likely to cooperate. The details of the model
and the main results will be presented in the following two
sections; first, however, the key finding of this work is that
conditional cooperators are able to quarantine defectors into
isolated convex “bubbles” from which they are unable to
exploit the public good and, in doing so, warrant completely
defector-free states even if the synergy factor is close to 1.
Perhaps even more interestingly, we find that just the signaling
of the willingness to cooperate, instead of a hard promise,
is sufficient to elevate the level of collaborative efforts. As
we will show, these observations rely on the spatial structure
and cannot be observed in well-mixed systems, although they
are robust against the topological variations of the interaction
network and the group size.

II. SPATIAL PUBLIC GOODS GAME WITH
CONDITIONAL STRATEGIES

The public goods game is staged on a square lattice with
periodic boundary conditions where L2 players are arranged
into overlapping groups of size G = 5 such that all players
are connected to their G − 1 nearest neighbors. Accordingly,
each individual belongs to g = 1, . . . ,G different groups.
Initially, each player on site x is designated either as a
conditional cooperator (sx = Ci), where i = 0, . . . ,G − 1,
or a defector (sx = D) with equal probability. Conditional
cooperators contribute a fixed amount (here considered to be
equal to 1 without loss of generality) to the public good only
if there are at least i other players within the group g who
are also willing to cooperate (whose strategy is C0, C1, C2,
C3, or C4), while defectors contribute nothing. Formally, C0

thus returns unconditional cooperators C, while CG returns
unconditional defectors D. Note that in the presence of a player
having strategy sx = CG, there cannot be G other conditional
cooperators within a group. The sum of all contributions in
each group is multiplied by the synergy factor r , and the
resulting public goods are distributed equally among all the
group members irrespective of their contributions.

Monte Carlo simulations of the game are carried out
comprising the following elementary steps. A randomly
selected player x plays the public goods game with its
G − 1 partners as a member of all the g groups, whereby
its overall payoff Psx

is thus the sum of all the payoffs
acquired in the five groups. Next, player x chooses one of
its nearest neighbors at random, and the chosen coplayer y

also acquires its payoff Psy
in the same way. Finally, player

x enforces its strategy sx onto player y with a probability
w(sx → sy) = 1/{1 + exp[(Psy

− Psx
)/K]}, where K = 0.5

quantifies the uncertainty by strategy adoptions [39], implying
that better-performing players are readily adopted, although it
is not impossible to adopt the strategy of a player performing
worse. Such errors in decision making can be attributed to
mistakes and external influences that adversely affect the
evaluation of the opponent. Each Monte Carlo step (MCS)
gives a chance for every player to enforce its strategy onto

one of its neighbors once on average. The average densities of
conditional cooperators (ρi) and defectors (ρD , alternatively
denoted as C5 and ρ5) were determined in the stationary
state after sufficiently long relaxation times. Depending on
the actual conditions (proximity to phase transition points and
the typical size of emerging spatial patterns), the linear system
size was varied from L = 180 to 720 and the relaxation time
was varied from 104 to 106 MCS to ensure proper accuracy.

It is worth pointing out that this is not a threshold-type
model because the goods will always be shared between
all group members, even if the conditional cooperators will
not all contribute. We note that the condition for conditional
cooperators to cooperate introduced above is the most soft in
terms of how many players are actually expected to cooperate.
More precisely, it is likely that a very cautious cooperator (with
a high i value) will not cooperate, even though the same unclear
conditions may be enough reason for a less cautious cooperator
to do so. Hence, in our model conditional cooperators require
only a positive signal, or what can be interpreted as an “easy
promise” from other group members, rather than a definite
mutual agreement to contribute to the common pool. A much
stricter and sophisticated condition would be that a player
having sx = Ci will cooperate only if there are at least i other
players in the group whose index is less than or equal to i.
This rule, imposing thus much stricter conditions, can only be
applied if there is also at least one CG player (unconditional
defector) in the group. Note that without it this definition yields
misleading commands to conditional defectors. For example,
in a group containing players C0, C3, C3, C4, and C4, the strict
Ci � Cj rule would dictate defection for all C3 players. In
the following, we will refer to the dynamics relying on the
“more careful” conditional strategies as the strict rule. We will
comment on the outcome of such and other alternative models
in the next section, where we now proceed with presenting the
main results.

III. RESULTS

It is instructive to first examine the evolution of a subset
of all the possible strategies. Figure 1 shows the outcomes of
three-strategy games, where in addition to the unconditional
cooperators C0 and defectors CG = D one conditionally
cooperative strategy (C1, C2, C3, or C4) is initially present.
Depicted is the stationary density of defectors ρD versus
the synergy factor r for the four possible strategy triples as
well as for the traditional two-strategy version of the spatial
public goods game (C0 curve). In the latter case, cooperators
die out at r � 3.748, which is a well-known result [39].
Additionally introducing one type of conditional cooperator
to the traditional setup continuously decreases the minimally
required r for cooperative behavior to survive as i increases.
Most remarkably, if initially unconditional cooperators C0

and defectors CG = D and conditional cooperators C4 each
occupy one-third of the lattice, we find that defectors cannot
survive even in the r → 1 limit (C4 curve). This indicates that
simple conditional strategies have ample potential for elegantly
avoiding the tragedy of the commons even under the worst of
conditions.

The critical value of r where cooperators die out can be
estimated by means of a simple approach that considers the
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FIG. 1. (Color online) The fraction of defectors ρD as a function
of the synergy factor r , as obtained for different combinations of
strategies that compete for space on the square lattice. In addition
to pure cooperators (C) and defectors (D), one-third of the lattice
is initially occupied by one conditionally cooperative strategy Ci , as
marked by each depicted curve. It can be observed that the higher the
value of i is, the earlier (at lower r) the downfall of ρD is. Remarkably,
if the most cautious conditional cooperators are introduced (C4),
defectors are completely defeated irrespective of r . We note that the
results obtained with the related three-strategy strict rule model are
identical.

competition between two ordered domains of strategies [53].
As Fig. 2 illustrates, the elementary change that modifies the
steplike interface between competing domains is an invasion
across the dashed line between unequal strategies. Assuming
Cj players as conditional cooperators and unconditional
defectors, the accumulated payoffs of competing players are
as follows:

r

G

G−1∑

i=j+1

i = r

G

G∑

i=j+1

i − (G − j ). (1)

From this equation the critical synergy factor for the con-
ditional cooperator strategy Cj is r

j
c = G − j . Thus, even

D  D  D  D  D  D
D  D  D  D  D  D 
D  D  D   C  C  C
C  C  C  C  C  C
C  C  C  C  C  C

FIG. 2. (Color online) Schematic presentation supporting the
interface stability analysis of competing domains. The leading
process, which modifies the interface between the ordered domains
more intensively, is the invasion across the border marked by the
dashed line.

this simple analysis is able to reproduce the decreasing
critical values of rc by increasing j and, moreover, warns
that unconditional defectors cannot exist if a CG−1 strategy
is present. Evidently, other elementary processes are also
possible, but their contributions to the boundary velocity
are smaller and to consider them would make this analysis
untraceable. What is important is to note that the result is
independent of the group size G and is qualitatively valid
for all lattice types. This is a straightforward consequence
of the multipoint interaction of public goods games, which
diminishes several microscopic differences of graphs and
makes topological features such as the clustering coefficient
irrelevant [39]. The latter are, of course, essential for games
that are governed by pairwise interactions [14]. As evidenced
by the stability analysis, the crucial property in the presently
studied model, however, is the “spatiality,” allowing interfaces
that separate domains of different strategies, which can only
be fulfilled in structured populations.

Turning to the complete six-strategy version of the spatial
public goods game, we find that our main conclusion, arrived
at based on the analysis of different three-strategy games,
remains fully valid. In Fig. 3, we first present characteristic
time courses of all six strategies over time as obtained for a
very low value of r . As expected based on the results presented
in Fig. 1, unconditional cooperators C0, as well conditional
cooperators C1, C2, and C3, albeit marginally for the latter,
all die out quickly due to invading defectors C5. However,
after the defectors are left on their own with C4, they cannot
withstand the invasion of this strain of conditional cooperators
and die out. Interestingly, although C4 appear to be eating
into the territory of defectors from the very beginning of the
evolutionary process, their full potential is unleashed only
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FIG. 3. (Color online) Time evolution of the complete six-
strategy public goods game with unconditional cooperators (C0) and
defectors (C5) as well as the four conditionally cooperative strategies
(C1, C2, C3, and C4), as obtained for r = 1.05. As can be deduced
from the results presented in Fig. 1, at such low synergy factors all
but the C4 strategy are outperformed by defectors. However, after the
defector-induced extinction of C0,...,3, the most cautious conditional
cooperators (C4) are able to completely invade the defectors (C5).
The inset shows the same evolution as obtained if using the strict rule
model, and it can be observed that the final outcome is the same.
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FIG. 4. (Color online) Time evolution of the complete six-
strategy public goods game with unconditional cooperators (C0)
and defectors (C5) as well as the four conditionally cooperative
strategies (C1, C2, C3, and C4), as obtained for r = 4.5. At such
a high synergy factor all five cooperative strategies C0,...,4 are able to
withstand being wiped out by defectors. In fact, the latter are forced
to extinction primarily by C4 and, to a much lesser extent, by C3. As
soon as defectors die out, however, all cooperative strategies become
equivalent, and their evolution becomes identical to that of the voter
model. As in Fig. 3, the inset shows the same outcome for the strict
rule model.

after all the other less cautious conditional cooperators die
out. This is because although C4 are obviously impervious to
defectors, this is not necessarily the case with regard to other
conditionally cooperative strategies. In particular, it may well
be that under certain circumstances the lesser criteria for when
to cooperate may yield a temporary advantage of C0,...,3 over
C4. Thus, in fact, the other cooperative strategies hinder C4 at
effectively invading defectors by invading C4 themselves. This,
however, is very short-lived as defectors are able to invade
C0,...,3 extremely effectively at r → 1. In a rather twisted
turn of events, defectors, by invading C0,...,3, actually pave
the way themselves toward a premature extinction. Although
one could thus, in principle a least, hypothesize an alliance
between C0,...,3 and C5 = D to successfully invade C4, our
simulations reveal that the evolutionary window for such a
complicated alliance to remain stable is too small to exist.

At high synergy factors, however, the outcome of the
six-strategy public goods game is significantly different. As
evidenced by the results presented in Fig. 4, at r = 4.5 all
the cooperative strategies are able to withstand being invaded
by defectors. In fact, both C4 and, to a substantially lesser
degree, C3 are able to do the exact opposite, which is to
gain ground at the expense of retreating C5 = D. Importantly,
however, after the defectors die out all five remaining strategies
C0,...,4 become completely equivalent. Note that, due to the soft
condition, requiring only the presence of a certain number
of conditional cooperators within the group, regardless of
their type (see Sec. II for details), all group members now
receive the required number of positive signals from others
to actually go ahead and contribute to the common pool.
Henceforth, the evolution becomes identical to that of the voter
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FIG. 5. (Color online) Fixation probabilities Pf of the complete
six-strategy game to eventually arrive at a pure Ci phase depending
on the synergy factor r . It can be observed that while at r → 1 the
fixation at C4 is practically unavoidable, in the high r limit all five
cooperative strategies (C0,...,4) become equally probable as the victors
of the evolutionary process. Importantly, regardless of r , defectors are
unable to survive, let alone dominate.

model [54], entailing logarithmically slow coarsening in the
absence of surface tension [55]. The final stationary state is
thus determined primarily by the share of the square lattice
that is occupied by any given strategy at the time of defector
extinction.

This interpretation can be made more precise by deter-
mining the fixation probabilities of the cooperative strategies
depending on r . Results presented in Fig. 5 indicate that,
because of the neutral relations between the five cooperative
strategies, which set in after the defectors die out, the governing
voter-model dynamics will, through coarsening, result in a
homogeneous state where the system becomes fixed in one
of the remaining Ci strategies, where i < G. The fixation
probability depends on the fraction of competing strategies at
the time of ρD → 0, which in turn depends on the effectiveness
of the cooperative strategies to invade unconditional defectors
and, to a lesser degree, also on their effectiveness to invade
each other. Based on the time evolutions presented in Figs. 3
and 4, it is understandable that at low values of r the fixation
probability of C4 will be practically 1, while in the opposite
limit the eventual dominance of either cooperative strain will
be equally probable (see Fig. 5).

In order to reveal the main mechanism behind the rather
remarkable inability of defectors to survive in the presence of
C4, it is instructive to visualize the spatial patterns emerging
as a consequence of their direct competition. Figure 6 features
a series of four characteristic snapshots that were taken at
different times [increasing from Fig. 6(a) to Fig. 6(d)], where
only the two mentioned strategies compete for space. While
defectors are depicted in black, for convenience, we graph-
ically distinguish between two types of C4 players, namely
between those that are predominantly active as cooperators
and those that are predominantly inactive or hidden. The
criterion separating the two is simply the number of groups
in which the player has actually contributed to the common
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(a) (b)
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FIG. 6. (Color online) Characteristic snapshots depicting the
competition between conditional cooperators C4 and unconditional
defectors C5 = D when starting from a random initial state, as
obtained for r = 1.05. Black shows C5, white shows C4 when they
cooperate in at least three out of five groups, and light blue (gray)
shows C4 that cooperate in less than three of the five groups in which
they are members. The snapshots were taken at (a) 0, (b) 10, (c)
30, and (d) 100 full Monte Carlo steps. The final state is a pure C4

phase (all players are depicted in white), which is not shown. It can
be observed that, initially, all the cooperators are practically inactive
or hidden [light blue (gray) and black dominate in (a)]. Only after
the spatial reciprocity takes effect and the first cooperative clusters
are formed do the conditional cooperators actually start cooperating,
although they do so only in the interior of the clusters [see (b)]. At the
borders separating the two competing strategies, however, virtually all
C4 remain inactive as they are unable to gather the required number of
positive signals from their neighbors [see (c)]. This thin intermediate
layer of hidden and inactive C4 then acts as a shield that makes it
incredibly difficult for defectors to invade. In fact, defectors become
effectively quarantined into bubbles from which they are unable to
exploit cooperators [see (d) and Fig. 7 for a close-up]. Ultimately,
this mechanism results in the tragedy of the defectors, irrespective of
the value of r . The linear system size used here is L = 200.

pool. If the player, at the time the snapshot was taken,
has cooperated in three or more out of the five groups in
which it is a member, we mark it as active and depict it
in white; otherwise, if it has cooperated in two or fewer
groups, we mark it as inactive and depict it in light blue
(gray). With this graphical distinction, we reveal that the
reason why defectors cannot exploit C4 effectively is due to
the spontaneous emergence of very persistent interfaces of
inactive C4 players that separate cooperative and defective
domains. Since C4 players immediately stop cooperating in a
group that contains at least one C5 = D, the defectors cannot
collect large, competitive payoffs near the interfaces (and
certainly not in the middle of the sea of D). On the other hand,
hidden cooperators are still capable of collecting significant

FIG. 7. (Color online) An 80 × 80 close-up of Fig. 6(d), demon-
strating clearly the spontaneous emergence of convex isolated bubbles
of defectors (depicted in black) that are contained by inactive
conditional cooperators of type C4 [depicted in light blue (gray)].
While the latter will predominantly cooperate with the bulk of
active conditional cooperators of the same type (depicted in white),
they will certainly defect in the opposite direction, where there
are unconditional defectors. Consequently, defectors cannot exploit
C4-type players, which leads to a gradual but unavoidable shrinkage
of the defector quarantines.

payoffs from C4 players that are on the opposite side of the
interface, where, in general, the condition to actually cooperate
will be fulfilled. In this way, hidden cooperators do not just
shield the active cooperators from the invasion of defectors,
but they can also effectively invade defectors to eventually
completely dominate the whole population. The phalanx of
hidden cooperators will quarantine unconditional defectors
into convex isolated bubbles, as demonstrated in Fig. 7, which
ultimately leads to an unavoidable “tragedy of the defectors.”

From the described workings of the mechanism, it is clear
that it cannot emerge under well-mixed conditions, as then
players adopting the C4 strategy will essentially never actually
cooperate, given that an encounter with at least one defector
is virtually unavoidable. Despite this fact C4 can survive, but
they will always reveal only their defector face. Accordingly,
the tragedy of the commons cannot be avoided by means of
similar conditional strategies in well-mixed settings of the
public goods game. On the other hand, it is also clear that the
mechanism is robust and potent not only on the square lattice
but also, in fact, on all other types of interaction graphs where
long-standing bonds between players are assumed (note that
certain coevolutionary rules [16], especially those that rely on
frequent rewiring of the links between players, may render
the mechanism dysfunctional). Finally, we emphasize another
positive message of this study, which is that cooperation can
be promoted simply by the signaling of others that they are
willing to cooperate, rather than a firm oath that they will
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actually do so. We have observed that our results remain
valid also when introducing the more sophisticated conditional
strategies, as discussed in Sec. II, although we find the usage
of the more elegant and simple model much more rewarding
and interesting.

IV. SUMMARY

In summary, we have shown that an intuitive introduction of
conditional cooperative strategies provides the ultimate boost
to the mechanism of spatial reciprocity [18]. In particular,
the most cautious conditional cooperators provide an escape
hatch out of the tragedy of the commons for all values of
the synergy factor r by spontaneously forming a protective
shield between them and the defectors. The shield, however,
not only makes it extremely difficult for defectors to exploit the
collaborative efforts of others but at the same time provides
an evolutionary advantage to cooperators that enables their
invasion of the territory of defectors, eventually leading to
their complete dominance. The quarantining of defectors is
crucial especially at very low values of r , where, otherwise,
they can reap huge benefits at the expense of cooperators. At
intermediate and high values of r , however, all the different
strains of conditional cooperators become more and more able
to withstand being wiped out by defectors on their own. Thus,
as soon as defectors die out, the evolution of the remaining
cooperative strategies becomes neutral and proceeds by means
of coarsening that is characteristic for the voter-model-type
dynamics [55]. By determining the fixation probabilities

depending on the synergy factor r , we have shown that in the
low r limit the fixation at C4 (the most cautious conditional
cooperators) is practically unavoidable, while in the high r

limit all five cooperative strategies (C0,...,4) become equally
probable as emerging as the dominant trait. Regardless of r ,
however, the defectors are unable to survive the evolutionary
process, which is a very rewarding discovery to arrive at
simply by means of a conditional strategy (C4). Conceptually
at least, our approach can be related to a recent study by Vukov
et al. [56], where directed investments were introduced to the
public goods game. In their model, however, a cooperator will
necessarily invest somewhere, while in our case cooperators
may remain dormant for long periods of time before eventually
deciding to contribute to the common pool. In terms of the
potential implication of our findings, apart from their relevance
for the successful evolution of prosocial behavior between
selfish and unrelated individuals, from the biological point of
view, the way inactive cooperators quarantine defectors and
force them into convex isolated bubbles resembles the way the
immune system works when trying to contain an infection [57].
We hope that this study will inspire future research aimed at
investigating the role of conditional strategies in structured
populations.
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