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Percolation threshold determines the optimal population density for public cooperation
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While worldwide census data provide statistical evidence that firmly link the population density with several
indicators of social welfare, the precise mechanisms underlying these observations are largely unknown. Here
we study the impact of population density on the evolution of public cooperation in structured populations and
find that the optimal density is uniquely related to the percolation threshold of the host graph irrespective of its
topological details. We explain our observations by showing that spatial reciprocity peaks in the vicinity of the
percolation threshold, when the emergence of a giant cooperative cluster is hindered neither by vacancy nor by
invading defectors, thus discovering an intuitive yet universal law that links the population density with social
prosperity.
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When performing his seminal experiments on the behavior
of rats under crowded conditions, ethologist John B. Calhoun
found that too high population densities may induce a variety of
destructive conditions, ranging from infant cannibalism over
excessive aggression to increased mortality at all ages [1].
These observations became known as the “behavioral sink,”
and it was later confirmed that similar, although not quite as
savage and somewhat more subtle, effects of overcrowding
can be observed not just by rodents but also by primates [2]
and humans [3]. Although there is some disagreement among
sociologists as to how much population density actually affects
human behavior [4,5], and what its implications are for welfare
participation [6], World maps, depicting increasing population
density over a certain point on one side and decreasing social
welfare indexes on the other, as well as freely available census
data, dispel all doubts concerning their relatedness.

Cooperation in sizable groups is a particularly interesting
social phenomenon [7], as it is arguably crucial for the
remarkable evolutionary success of the human species. While
the origins of human cooperation are most frequently attributed
to between-group conflicts [8] and alloparental care [9],
mechanisms such as kin and group selection, as well as direct,
indirect, and spatial reciprocity, are known to facilitate its
evolution [10]. The public goods game captures succinctly the
essential social dilemma related to the evolution of cooperation
in groups [11]. Players must decide simultaneously whether
they wish to contribute to the common pool or not. All
individual contributions, for simplicity assumed being equal to
one, are then multiplied by a factor r > 1 to take into account
synergetic effects of cooperation, and the resulting amount is
divided equally among all group members irrespective of their
strategy. Clearly, individuals are tempted to defect, while the
group as a whole is best off if everybody cooperates. Failure
to harvest the benefits of a collective investment and mindless
exploitation of public goods are in fact the key causes for the
“tragedy of the commons” [12].

During the past decade, physics-inspired studies have led to
significant advancements in our understanding of the evolution

of cooperation, especially related to games on graphs [13]
and coevolutionary games [14]. Inspired by the seminal paper
on spatial reciprocity [15], for example, scale-free networks
have proven optimal for the evolution of cooperation [16],
while the dynamical organization of cooperation on complex
networks has provided vital insights as to why this is the
case [17]. Most recently, evolutionary games have also been
studied in growing populations [18,19], as well as on emergent
hierarchical structures [20]. Of direct relevance for the present
study are the early works on disordered environments in spatial
games [21,22], which gave rise to studies clarifying the role
of mobility in different evolutionary settings [23–25]. It is
within the latter works that the impact of population density has
been investigated before, primarily in relation to optimization
possibilities the empty sites give to success-driven individuals,
as determined by means of pairwise interactions with other
players.

Playing in a group with other players yields many-body
interactions, and their consequences cannot always be un-
derstood based on pairwise interactions. Motivated by this
possibility, we here depart from games governed by pairwise
interactions and focus on the spatial public goods game
[26]. We investigate the impact of population density on the
evolution of public cooperation by using a square lattice of
size L2, where only a fraction ρ of all the nodes is occupied
by players while the other nodes are left empty. The random
dilution of the lattice is performed only once at the start of
the game, and initially every player x is designated either
as cooperator (sx = C = 1) or defector (sx = D = 0) with
equal probability. Monte Carlo simulations are carried out
comprising the following elementary steps.

A randomly selected player x acquires its payoff P
g
x by

playing the public goods games with its existing interaction
partners as a member of a g ∈ G = 1 . . . 5 group, whereby its
overall payoff is thus Px = ∑

g P
g
x . Next, player x chooses one

of its nearest neighbors at random, and the chosen co-player y

also acquires its payoff Py in the same way. Finally, player x

enforces its strategy sx onto player y with a probability w(sx →
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FIG. 1. (Color online) The peculiar dependence of the fraction of
cooperators fC on the normalized synergy factor r/G for different
population densities ρ (see legend), as obtained for the square lattice.
While decreasing the population density below 1 facilitates the
evolution of public cooperation, there exists a lower bound to ρ below
which, for sufficiently high values of r , the effect is reversed. This
indicates that the population density crucially affects the evolution of
public cooperation, but it does so in a nontrivial way.

sy) = 1/{1 + exp[(Py − Px)/K]}, where K = 0.5 quantifies
the uncertainty by strategy adoptions. If player x has no
nearest neighbors, the whole procedure starts anew without
attempting a strategy change. Each Monte Carlo step (MCS)
gives a chance for every player to enforce its strategy onto
one of the neighbors (if they exist, which at sufficiently
small ρ will not be the case) once on average. The average
density of cooperators fC = ρ−1L−2 ∑

x sx was determined
in the stationary state after sufficiently long relaxation times.
Depending on the actual conditions, the linear system size
was varied from L = 200 to 1200 and the relaxation time was
varied from 104 to 106 MCS to ensure proper accuracy.

To begin with, it is motivating to examine the evolution
of cooperation in dependence on the synergy factor r for
different population densities ρ. In Fig. 1, the ρ = 1 curve
recovers the well-known result [26] of cooperator extinction
and dominance below RC1 = r/G = 0.75 and above RC2 =
r/G = 1.1, respectively. As ρ decreases below one, initially
both RC1 (the extinction threshold) and RC2 (the dominance
threshold) decrease, thus indicating that smaller population
densities favorably affect the evolution of public coopera-
tion. Below ρ = 0.6, however, the positive effect begins to
deteriorate, at least partially so. While RC1 keeps decreasing,
RC2 becomes altogether unattainable; i.e., cooperators become
unable to dominate even at very large values of r . These results
indicate that ρ plays a key role in games governed by group
interactions, invigorating, on one hand, the previous results
obtained for pairwise interactions [21] as well as the common
perception of the importance of population density for social
welfare, while on the other hand inviting a more detailed study
as to why this is the case.

Results presented in Fig. 2 provide a clearer view of the
impact of ρ on fC . In the ρ → 0 limit, the majority of players
has no neighbors at all (see inset), and hence, fC simply
mirrors back the initial state. As ρ increases, the few existing
links between players enable defectors to exploit cooperators
without having to fear the consequences of spatial reciprocity.

 0.0

 

 0.2

 

 0.4

 

 0.6

 

 0.8

 

 1.0

 0   0.2   0.4   0.6   0.8   1

f C

ρ

0.6
0.7
0.75
0.8
0.9

 0.0
  
  

 0.5
  
  

 1.0

 0      0.5     1

a l

ρ

FIG. 2. (Color online) Fraction of cooperators fC in dependence
on the population density ρ for different values of r/G (see legend), as
obtained for the square lattice. Inset depicts the corresponding growth
of the fraction of active links al (occupied nearest neighbor sites) as
ρ increases. Cooperators go extinct at r = RC1 = 0.75 if ρ = 1. The
optimal population density where cooperators can dominate even
at smaller r is slightly above the percolation threshold, which is
π = 0.59.

Note that for ρ < 0.2, many players, as well as large portions
of the lattice as a whole, will still be disconnected, hence
prohibiting cooperators to form compact clusters and utilizing
this (spatial reciprocity) to protect themselves against invading
defectors. Because of the random initial state, the first strike of
defectors will always be successful, regardless of the value
of r . But further invasions are subsequently hindered by
the lack of connections between players utilizing different
strategies, and hence at low values of ρ the decay of fC

is universal for all values of r . For ρ > 0.2, however, the
outcome of the game becomes dependent on the synergy
factor. For low values of r (r/G = 0.6), the fC trend simply
continues downward as ρ increases, which indicates that new
cooperative players simply serve as easy targets for defectors.
At higher values of r , cooperators are able to utilize the
enhanced interconnectedness between them to form compact
clusters, while at the same time benefiting from the dilution
that prohibits defectors to exploit them with the same efficiency
as on a fully populated lattice. Accordingly, fC peaks at an
intermediate (optimal) value of ρ = ρo ≈ 0.62, which is a bit
higher but close to the percolation threshold of the square
lattice equaling π = 0.59 [27]. Upon further increasing ρ, the
average number of empty sites decays, and accordingly the
effective size of groups rises. Since larger groups in general
require larger synergy factors to maintain cooperation, fC

remains high at higher ρ only if the value of r is sufficiently
large, yet starts falling if r is too small. Thus, the larger
the value of r , the higher the value of ρ where fC starts
decaying. From this we argue that a population density close
to the percolation threshold offers a delicate optimum for the
successful evolution of cooperation, where the players are
connected enough to transfer the more advantageous mutually
beneficial strategy, while simultaneously the lattice is diluted
enough to annul free-riders.

With the aim of closing in on the relevance of the percolation
threshold of the interaction graph for the optimal evolution of
public cooperation, we alter the public goods game by allowing
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FIG. 3. (Color online) The optimal population density on the
square lattice decreases if strategy imitations are allowed not just
between nearest neighbors but also between all the players that
are involved in an instance of the public goods game (compare
with Fig. 2). This is because the extension of the imitation range
effectively reduces the percolation threshold. Presented is the fraction
of cooperators fC in dependence on the population density ρ for
different values or r/G (see legend). Note that such an extension
changes the behavior irrelevantly at ρ = 1, where RC1 = 0.77.

strategy transfers not just between nearest neighbors but also
between the players that are involved in all the G = 5 groups.
This effectively decreases the percolation threshold as it
increases the range of each individual player, while at the same
time negligibly affecting the outcome of the game at ρ = 1.
For ρ < 1, however, and in particular in the ρ → 0 limit, the
interaction graph will be significantly different from the one
that is utilized in the standard version of the public goods game.
Indeed, due to the significantly lower percolation threshold, the
initial decay of fC as the population density exceeds zero is
altogether missing, as can be observed by comparing results
presented in Figs. 2 and 3. More to the point, results in Fig. 3
support the conclusion that the population density close to the
percolation threshold is decisive for a successful evolution of
public cooperation. Note that for r/G = 0.5 the cooperation
density peaks at an intermediate value of ρ, which in agreement
with a lower percolation threshold of the considered lattice
occurs at a likewise lower ρ = ρo. For the same reason the
downfall of fC for higher values of r/G as ρ → 1 is somewhat
delayed if compared to the traditional version of the game.

As another evidence supporting the main message of this
work, we show in Fig. 4 the same analysis as above for the
triangular lattice, whereby as in Fig. 2 strategy imitation is
allowed only between nearest neighbors. The triangular lattice
has the percolation threshold equal to π = 0.5 [27], while the
critical r/G for cooperation extinction on a fully populated
lattice is RC1 = 0.65. As Fig. 4 illustrates, cooperators can
survive or even dominate at smaller r values. Notably, the
smallest ρ value where this can happen is slightly above the
percolation threshold. At the same time, the independence of
fC on r at small values of ρ, as well as the delayed onset of
decay of cooperator density for high values of r when ρ > π ,
validate the general features that can be understood clearly in
terms of the interplay between the evolutionary dynamics and
the properties of the interactions graph in both the ρ → 0 and
ρ → 1 limit.
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FIG. 4. (Color online) Fraction of cooperators fC in dependence
on the population density ρ for different values or r/G (see legend),
as obtained for the triangular lattice. Cooperators go extinct at r =
RC1 = 0.65 if ρ = 1. Like on the square lattice (see Fig. 2), on the
triangular lattice, too, fC is independent of r at small values of ρ,
although the deviations occur sooner (at lower ρ) because of the
lower percolation threshold. The optimal population density where
cooperators can dominate even at smaller r is ρo ≈ 0.55, which is
slightly above the percolation threshold (π = 0.5).

To understand these results, however, it is necessary to
link the evolutionary process itself with percolation. Indeed,
there exists compelling evidence that links the extinction of
cooperators in the public goods game to the directed percola-
tion universality class [28,29]. But to understand why exactly
it is that cooperators are able to percolate optimally even at
modest values of r in the vicinity of the percolation threshold,
it is instructive to examine characteristic snapshots of strategy
distributions at different values of ρ, as presented in Fig. 5.
While cooperation and defection are always depicted green
and black, respectively, the shade of green varies depending on
which cluster the different cooperators belong to. At low values
of ρ there are different shades of green inferable, indicating
that while there are clusters of cooperators in existence, these
cannot communicate with each other effectively. Remarkably,

(a) (b) (c)

FIG. 5. (Color online) Specially prepared snapshots of strategy
distributions provide evidence that only in the proximity of the
percolation threshold (b) cooperators (green) are able to fully
percolate. At lower population densities (a) this is prohibited by empty
sites (white), while at higher population densities (c) percolation is
prohibited by defectors (black). Different shades of green (there are
only four for clarity) are used for cooperators who belong to different
cooperative clusters, i.e., cooperators who cannot reach each other
by means of nearest-neighbor interactions. Note that the latter is
the natural reach of imitation on the square lattice used. Population
densities are (a) ρ = 0.4, (b) ρ = 0.71, and (c) ρ = 0.95, while
r/G = 0.8.

037101-3



BRIEF REPORTS PHYSICAL REVIEW E 85, 037101 (2012)

at high values of ρ the situation is very similar, but for an
entirely different reason. While at low values of ρ empty sites
(white) disallow cooperators to grow large compact clusters
and to communicate with each other, at high values of ρ the
defectors are the ones who break up large clusters into isolation
and thus diminish the effectiveness of spatial reciprocity
between their members. Both ways are equally effective in
maintaining a lower level of cooperation, which in Figs. 5(a)
and 5(c) is the same. In the vicinity of the percolation threshold,
however, there are just enough communication pathways
between cooperators to enable their complete percolation (a
single giant cooperative domain), yet not as many to sustain
the presence of free-riders who could effectively exploit larger
groups. Accordingly, spatial reciprocity can be taken full
advantage of and cooperation thrives. More precisely, the
global density of players should be slightly higher than π so
that the cooperators who represent only a subset of the whole
population can percolate. With this insight, we are thus able
to foretell the optimal population density for a given matrix
simply by determining its percolation threshold.

Summarizing, we have shown that the percolation threshold
of an interaction graph constitutes the optimal population

density for the evolution of public cooperation. We have
demonstrated this by presenting outcomes of the public goods
game on the square lattice with and without an extended
imitation range, as well as on the triangular lattice. We have
attributed our results to the optimization of spatial reciprocity
[15], the act by means of which connected cooperators share
both the production and the benefits of acquired goods. If the
population density is below the percolation threshold, vacant
sites impede this process by cutting short the communication
paths between cooperators. Significantly above it, however, the
higher group “crowdedness” enables an effective invasion of
defectors, which again disrupts reciprocity among cooperators
by splitting them up into isolated clusters. Presented results
offer a new understanding of the impact of population density
on social prosperity through the concept of percolation, thus
fusing together physics and social science in a mutually
rewarding way.
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