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A collective-risk social dilemma implies that personal endowments will be lost if contributions to the common
pool within a group are too small. Failure to reach the collective target thus has dire consequences for all
group members, independently of their strategies. Wanting to move away from unfavorable locations is therefore
anything but surprising. Inspired by these observations, we here propose and study a collective-risk social
dilemma where players are allowed to move if the collective failure becomes too probable. More precisely, this
so-called risk-driven migration is launched depending on the difference between the actual contributions and the
declared target. Mobility therefore becomes an inherent property that is utilized in an entirely self-organizing
manner. We show that under these assumptions cooperation is promoted much more effectively than under the
action of manually determined migration rates. For the latter, we in fact identify parameter regions where the
evolution of cooperation is greatly inhibited. Moreover, we find unexpected spatial patterns where cooperators
that do not form compact clusters outperform those that do, and where defectors are able to utilize strikingly
different ways of invasion. The presented results support the recently revealed importance of percolation for
the successful evolution of public cooperation, while at the same time revealing surprisingly simple methods of
self-organization towards socially desirable states.
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I. INTRODUCTION

Our remarkable other-regarding abilities are believed to
have evolved because alone we would have difficulties rearing
offspring that survived [1]. Between-group conflicts are also
cited frequently in that regard [2]. Although today the main
challenges appear to be different, cooperation and in-group
solidarity are still very much desired and indeed urgently
needed behavioral traits [3]. Were it not for them, the
preservation of natural resources for future generations, the
provisioning of health and social care, as well as many other
amenities we have come to take for granted, would be greatly
challenged. The “tragedy of the commons” [4] can be averted
only if we manage to withstand the temptations of free riding
on the efforts of others, and if we succeed in fully realizing
the global long-term implications of our shortsighted behavior
that is aimed only at maximizing our current well-being [5].
History teaches us that this is a formidable task, mainly because
it goes against our natural instincts.

Theoretical insights on the subject are to a large extent
due to evolutionary game theory [6,7], which has proven time
and again to be a very competent framework for the study
of the evolution of cooperation [8]. Different branches of
science, ranging from biology, sociology, and economics to
mathematics and physics, converge on this particular problem,
as evidenced by reviews that comprehensively describe recent
advances [9–14]. The public goods game, in particular, is
frequently considered as the paradigm that succinctly captures
the essential social dilemma that emerges as a consequence
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of group and individual interests being inherently different
[15]. Governed by group interactions, the public goods game
requires that players decide simultaneously whether they wish
to contribute to the common pool or not. Regardless of the
chosen strategy, each member of the group receives an equal
share of the public good after the initial investments are
multiplied by a synergy factor that takes into account the
added value of collaborative efforts. As generally framed
in coevolutionary models [14,16], recent research on the
spatial public goods game [17] highlighted appropriate partner
selection [18,19], diversity [20–23], the critical mass [24],
heterogeneous wealth distribution [25], the introduction of
punishment [26–28] and reward [29], network modularity [30],
coordinated investments [31] and conditional strategies [32],
or the joker effect [33,34] as viable ways to promote the
evolution of public cooperation.

Although deceptively similar to the public goods game,
the collective-risk social dilemma captures more vividly an
additional important feature of “problems of the commons”
[35], which is that failure to reach a declared global target can
have severe long-term consequences. Opting out of carbon
emission reduction to harvest short-term economic benefits is
a typical example. The blueprint of the game is as follows.
All players are considered to have an initial endowment,
and cooperation means contributing a fraction of it to the
common pool. Defectors do not contribute. The risk level is
determined by a collective target that should be reached with
individual investments. If a group fails to reach this target,
all members of the group lose their remaining endowments
with a certain probability, while otherwise the endowments
are retained. Most importantly, the risk of collective failures
has been identified as a potent promoter of responsible social
behavior [35–39]. Here we employ the collective-risk social
dilemma, where the risk is a dynamically changing group-
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performance-dependent quantity, which can be fine-tuned by
a single parameter β that interpolates between a steplike and
a flat risk function.

Consideration of structured populations, as pioneered by
Nowak and May [40], also suggests mobility as an inherent
property of players that adds another layer of reality to
the study. Clearly attesting to this fact is the overwhelming
attention mobility has received, both in games governed by
pairwise [41–55] as well as, although to a much lesser extent,
in games governed by group interactions [56–58]. Indeed,
being free and mobile is one of the hallmarks of modern
societies. However, family and friend ties, traveling and
adaptation costs, as well as all the other difficulties that can be
associated with migration act as strong inhibitors of changing
location. Here we take this into account by introducing and
studying so-called risk-driven migration. The main premise
lies in the assumption that we are forced to migrate by the
immediate (possibly unfavorable) environment rather than this
being the consequence of our explicit desire to do so. As
noted, the risk depends on the difference between the actual
contributions and the declared target in each group, which
changes dynamically as do the spatial patterns. Players are
aware of this risk, and they are more likely to move the
higher the risk. This is significantly different from previous
studies, where, for example, success-driven migration [47]
or identical migration rates for all players were assumed
[42,44]. In our case migration is a self-organizing process that
depends only on the risk each individual is exposed to. Thus,
unlike in previous game-theoretical models, it does not require
additional parameters, nor does it assume additional cognitive
skills that would be needed by players to estimate the income at
potential new locations. As we will show in what follows, this
self-organizing risk-driven migration outperforms previous
migratory actions, and it leads to spatial patterns that enable
cooperators to optimally exploit their mutually beneficial
behavior. Before presenting the main results, however, we
proceed with the details of the model in the next section.

II. MODEL

We consider the collective-risk social dilemma on a square
lattice of size L × L with periodic boundary conditions.
Each site can either be empty or occupied by a cooperator
or defector. The fraction of occupied sites constitutes the
population density ρ (0 < ρ � 1), which is kept constant
during the evolutionary process. Initially thus a joint total of
ρL2 cooperators and defectors populate the lattice uniformly at
random with equal probability, and each of them is granted an
initial endowment b. Without losing generality, we use b = 1
throughout this work.

We employ asynchronous updating, such that a randomly
selected player x plays the collective-risk social dilemma
game with its eight nearest neighbors (if present), and thereby
collects its total payoff Px . Cooperators contribute an amount
c < b from the endowment to the public good, whereas
defectors contribute nothing. Due to the vacant sites there
is an obvious possibility for a different number of players
to participate in each collective-risk social dilemma. The
collective target for each group is therefore defined with
this in mind, such that T = nα, where n is the number of

active players and α (0 � α � 1) is the weighting factor that
determines the collective threshold. If the total amount of
collected contributions within a group Gi is either reached or
surpassed, each player can keep what it has not yet contributed
into the common pool. In the opposite case, if the collective
target is not reached, all group members lose their remaining
endowments with a probability ri . The corresponding risk
probability in a group is calculated according to

ri =
{(

T −nc

T

)β
if nc < T,

0 if nc � T ,
(1)

where nc is the number of cooperators in the group, while
β is a tunable parameter determining the nonlinearity of the
risk function. For β = 0 the risk function is steplike, which
was most frequently considered in previous works. For β = 1,
on the other hand, the risk function is linearly proportional to
the difference between the collective target and the collected
contributions. Evidently, β can also be larger than 1, although
in this case the collective risk is so small that the evolution of
cooperation is strongly inhibited. We therefore focus on the
unit interval of β.

Following the accumulation of the payoff, player x moves
to a randomly chosen empty site (if it exists) within its Moore
neighborhood with the probability rm = �iri/n, which simply
quantifies the average risk the player experiences by being in
its current location. If there are no empty sites within the
Moore neighborhood player x does not move. On the other
hand, to avoid long periods of isolation, players with no
neighbors must make a mandatory move, although this is a
technical detail that does not notably influence the outcome of
the game. At this point we emphasize again that this simple
definition of mobility introduces no additional parameters,
it does not assume special cognitive skills of the players,
and it cannot be subject to different mobility-time-scale
investigations. Interaction of time scales is known to play an
important role in evolutionary dynamics [59–61], yet in our
case the propensity to move can vary significantly from player
to player, and of course it varies also over time. It is in fact a
self-organizing rather than a manually adjusted process, and
as we will show, performs better even under the most adverse
conditions.

Last then, player x adopts the strategy of a randomly chosen
neighbor y with a probability

f (Py − Px) = 1

1 + exp[−(Py − Px)/κ]
, (2)

where κ denotes the amplitude of noise [11]. Taking into
account the insight of [17], we set κ = 0.5, which implies
that better performing strategies will very likely spread, yet
it is not impossible for a strategy performing worse to spread
either. It is worth pointing out that the results reported below
remain qualitatively identical if the best-takes-over rule [40]
is used for strategy updating.

The results reported in the next section have been obtained
by means of Monte Carlo simulations, which were carried out
using L = 50 and 100 different initial conditions (the same
results can of course also be obtained if using larger lattices).
As is standard practice, during one full Monte Carlo step, all
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FIG. 1. (Color online) Fraction of cooperators as a function of the
donation ratio c/b for a fixed value of β = 0.5 and different values
of α in (a), and for a fixed value of α = 0.7 and different values of β

in (b). In both panels the density of players is ρ = 0.5.

individuals will have received a chance once on average to
learn a new strategy from one of their neighbors.

III. RESULTS

Figure 1(a) shows the fraction of cooperators at equilibrium
as a function of the donation ratio c/b at β = 0.5 and ρ =
0.5 for five different values of α. It can be observed that for
each value of α the fraction of cooperators decreases with
increasing c/b. In addition, for some intermediate c/b values
the fraction of cooperators increases with increasing α. In
Fig. 1(b) we show the fraction of cooperators as a function of
the donation ratio c/b for a fixed value of α = 0.7 and five
different values of β. It can be observed that for each value of
β the fraction of cooperators decreases with increasing c/b.
At some intermediate c/b values, however, the fraction of
cooperators decreases with increasing β.

In order to explore the effects of α and β more precisely,
we show in Fig. 2 the fraction of cooperators in dependence
on α and β together for three different values of c/b. We see
that for small c/b (for example, c/b = 0.1) the fraction of
cooperators is zero when α is zero, regardless of the value
of β. In fact, in this case there is no collective risk, and
our model is identical to the traditional public goods game.
Correspondingly, defectors can have a higher payoff as long
as c/b > 0, and thus cooperators cannot survive. However, in
other parameter regions full cooperation can be achieved, even
for small α > 0 or large β [Fig. 2(a)]. When the donation ratio

becomes larger (for example, c/b = 0.3), cooperators cannot
survive for small α [Fig. 2(b)]. However, full cooperation can
still be achieved for large α, although the region shrinks. As c/b

continues to increase (for example, c/b = 0.5), cooperators
can survive only for large α and small β. For still larger c/b,
full defection is obtained irrespective of α and β (not shown
here).

From this it follows that, since for small α the risk of
collective failure is small, cooperators do not have a higher
payoff than the neighboring defectors, especially for higher
c/b. In addition, individuals are easily satisfied with their
current positions, and accordingly they do not move. In this
situation, cooperators are easily exploited by defectors and
are indeed wiped out relatively fast. But as α increases, the
risk of collective failure is increased as well. Consequently,
there is thus a higher probability that cooperators will have
a similar payoff to that of the surrounding defectors. At the
same time, the migration becomes much more probable, so
that interactions between cooperators and defectors become
less frequent. The effectiveness with which defectors exploit
cooperators therefore becomes smaller, and accordingly, the
successful evolution of public cooperation is likelier.

When α is larger, the randomly selected defectors are
more frequently dissatisfied with their current sites than their
neighboring cooperators, especially when they encounter other
defectors. Thus, clusters of defectors easily collapse in this
model because a higher fraction of them changes their position
during one Monte Carlo step. However, when β is small, a tiny
fraction of selected cooperators will move at the beginning of
the evolutionary process. These cooperators are therefore able
to form small yet supporting clusters after the defectors depart,
and they can in fact resist the invasion. More to the point,
cooperators can use the safe haven of aggregated clusters to
invade mobile defectors, ultimately resulting in an increasing
density. In agreement with this argument defectors begin
moving even more frequently, yet also less steadily. In the final
stages of the evolutionary process migrations cease and the
cooperators begin dominating the whole population. When β

becomes larger, a high fraction of randomly selected defectors
still change their locations, and quite surprisingly some of the
selected cooperators also move to nearby empty sites. This
indicates that, under such circumstances, cooperators cannot
form effective clusters as easily as they have done before. In
fact, even if some clusters succeed in forming, the mobile
defectors can destroy them effectively. As we will elaborate
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FIG. 2. (Color online) Fraction of cooperators in dependence on α and β in a contour plot form for three different donation ratios:
(a) c/b = 0.1, (b) c/b = 0.3, and (c) c/b = 0.5. In all three panels the density of players is ρ = 0.3.
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FIG. 3. (Color online) Pattern formation as observed from a prepared initial state at β = 0.2. The weighting factor related to the collective
threshold is α = 0.2 [upper row from (a) to (e)] and α = 0.9 [bottom row from (f) to (j)]. Cooperators whose focal group succeeds (fails)
to reach the collective target are denoted blue (green). Similarly, defectors whose focal group succeeds (fails) are denoted pink (yellow). For
easier referencing, the color legend is provided also on the top of the figure. The white are empty. Other parameters are ρ = 0.30, c/b = 0.5,
and L = 60. Monte Carlo steps are t = 0,3,25,40,90 for (a) to (e), and t = 0,18,30,53,465 for (f) to (j), respectively.

later, such conditions enable a dynamical equilibrium between
cooperators and defectors.

To demonstrate the leading mechanisms that determine
pattern formation for different α -β pairs, we present repre-
sentative sequences of snapshots, as obtained from prepared
initial states depicted in Figs. 3(a) and 3(f). Here, as a starting
configuration, we begin with three domains in which the
strategies are either pure C or D (the two bottom islands) or
a mixture of these two strategies (the single upper island).
To clarify the importance of the collective risk, we have
applied two different colors for each strategy in order to mark
the success of the group surrounding the focal player. More
precisely, we mark by blue (green) a cooperator whose central
group succeeds (fails) to reach the collective target. Similarly,
pink (yellow) represents defectors in the center of a successful
low-risk (unsuccessful high-risk) group.

Figure 3 shows the evolution at the same β = 0.2 value but
two different α values. At the low α = 0.2 value [Figs. 3(a) to
3(e)], the rare presence of cooperators is already able to ensure
that the group avoids risk. As Fig. 3(a) shows, blue and pink
colors are present in the mixed domains, signaling that both
strategies are in successful groups here. As a results, defectors
can exploit their advantage by keeping their endowments and
become a more successful strategy. The success of defectors
will easily drive the community into the tragedy of the
commons, which is indicated by the emergence of yellow color
here. Figure 3(b) demonstrates that only those defectors remain
successful who are in the vicinity of cooperators (pink is
present only in the neighborhood of blue or green). Meanwhile,
the initially full D island decomposes since the failure of their
groups triggers an intensive migration among these players.
When a D player reaches the bulk of the cooperative island,
as shown in Fig. 3(c), it becomes successful and can easily
invade the cooperative domain. Naturally, the initially more
successful defectors become unsuccessful due to the imitation
behind the propagation front, as illustrated in Fig. 3(d). It is
also worth mentioning that this front can move only along one

direction because cooperators may imitate the more successful
(pink) defectors but the reversed pink to blue or yellow to pink
transitions are very unlikely. Finally D prevail and distribute
homogeneously due to the permanent migration that originates
from their dissatisfaction (constant involvement in high-risk
groups).

Keeping the same β but choosing a higher α = 0.9 value, a
significantly different evolution can be observed, as illustrated
in Figs. 3(f)–3(j). Because of the higher threshold, even the
identical initial state is interpreted differently, as shown by
different colors in the mixed C + D domain in Fig. 3(f). Here,
the rare presence of cooperators cannot ensure that groups
to avoid risk, and hence both strategies are initially stuck
in “unsuccessful” groups, as evidenced by the application
of green and yellow colors. Because of the high risk both
strategies gain nothing, and hence they are neutral. The initial
coarsening thus proceeds according to the voter-model-type
dynamics [62]. Due to domain growth, when the local density
of cooperators reaches the necessary critical level as deter-
mined by the α value, cooperators become successful [turning
blue in Fig. 3(g)], which yields a higher payoff for them.
Consequently, they start invading the mixed domain, as shown
in Fig. 3(h), because their diluted distribution provides a robust
and effective formation against defection. It is important to
note that cooperators can become “successful” first at the edge
of the mixed domain, where the absence of defectors allows
them to change their status more easily. This observation
helps to understand why the diluted population of cooperators
(rather than a compact cluster) is capable of elevating the
cooperation level, which we will elaborate on later. As can be
observed in Fig. 3(i), the above mentioned diluted distribution
of cooperators can invade the full D domains, ultimately
resulting in the total victory of cooperation. The final state,
plotted in Fig. 3(j), also illustrates that the very high threshold
makes the compact C domain robust against the attack of
drifting defectors. The latter fail to exploit cooperators, and
instead change their strategy upon contact. From this point
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FIG. 4. (Color online) Pattern formation as observed from a prepared initial state at α = 0.8. The risk probability parameter is β = 0.6
[upper row from (a) to (e)] and β = 0.1 [bottom row from (f) to (j)]. The color code is the same as used in Fig. 3, i.e., cooperators whose focal
group succeeds (fails) to reach the collective target are denoted blue (green). Similarly, defectors whose focal group succeeds (fails) are denoted
pink (yellow). White sites are empty. Other parameters are ρ = 0.30, c/b = 0.5, and L = 60. Monte Carlo steps are t = 0,3,21,40,120 for (a)
to (e), and t = 0,8,40,85,380 for (f) to (j), respectively.

onwards they stop moving, which in practice results in a
growth of the cooperative domain, similar to the well-known
diffusion-limited aggregation [63].

The influence of β, which determines the shape of the
risk probability function, is illustrated in Fig. 4, where the
same threshold parameter α = 0.8 was used for both series
of snapshots. Here we compare the evolution at β = 0.6
[upper row, from (a) to (e)] and at β = 0.1 [lower row, from
(f) to (j)]. For both initial states plotted in Figs. 4(a) and
4(f), the relatively high α value results in “unsuccessful” C

and D players in the mixed domain. Accordingly, a random
drift of both strategies starts the evolutionary process, as
described for Fig. 3(g). The randomly aggregated cooperators
can form the seed of a successful “blue” domain, but because
of the relatively high β value the neighboring defectors
will not necessarily fail and might keep their endowments.
Consequently, cooperators cannot utilize the advantage of the
high threshold and lose. As always, the pure defector domain
falls into pieces comprehensively. When a D player reaches
the pure C domain, as shown in Fig. 4(c), it can invade it
entirely and fast.

This invasion, however, is significantly different from the
one previously described for Fig. 3(d). In the present case
defectors cannot be focal players of a successful group because
of the high α but, on the other hand, can avoid risk (due to
the large value of β) and are capable of lowering the payoff
of “green” cooperators which are located at the frontier of
the full C domain. Consequently, the weakened C will adopt
the D strategy, and hence shift the invasion front further. In
contrast to the previously mentioned front propagation, the
present movement can be reversed, depending sensitively on
the β value. The final state, plotted in Fig. 4(e), is a randomly
distributed full D state.

If the same threshold is used but at lower β value, as
plotted in Figs. 4(f) to 4(j), the outcome is rather different.
As Fig. 4(g) shows, C players can aggregate randomly again
to become “successful.” Temporarily, even D players can
manage to be central players of a successful group, yet the
low β = 0.1 will result in a high risk probability for defectors

who cannot prevail. Instead, as Figs. 4(h) and 4(i) illustrate,
the rare distribution of C players prevails again. This effective
formation spreads from the edge to the center of the mixed
domain as mentioned earlier. Meanwhile, when a drifting
defector reaches the compact C domain, as shown in Fig. 4(h),
a different type of invasion can be observed. Since the threshold
is not extremely high, a defector who is surrounded by
cooperators can collect competitive payof,f which is necessary
for intrusion of the pure C phase. Behind the invasion front
a mixed phase emerges, as shown in Fig. 4(i). This mixture
of “unsuccessful” cooperators and defectors is an excellent
target for invasion by the rare distribution of cooperators, as
we have already described for the initially mixed domain. In
other words, compactly clustered cooperators will lose the
battle, but the evolutionary process will ultimately be won by
diluted cooperators later.

In the above discussed cases the final state was always
a full D or a full C phase. There are, however, parameter
values where the stationary state is a mixture of both strategies.
Here, as Fig. 5 illustrates, the diluted cooperators compete

FIG. 5. (Color online) Representative snapshot of a stationary
mixed phase, as obtained for α = 0.4, β = 0.9, c/b = 0.3, and ρ =
0.30. The color code is identical to the one used in Figs. 3 and 4.
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FIG. 6. (Color online) Fraction of cooperators as a function of the
population density ρ for a fixed value of β = 0.5 and three different
values of α in (a), and for a fixed value of α = 0.4 and three different
values of β in (b).

with temporarily aggregated defectors. At the edge of these
fronts either rare, and hence successful, defectors invade,
or dense, and therefore unsuccessful, defectors are invaded,
finally resulting in a dynamical balance of the competing
spatial patterns and the stable coexistence of the two strategies.

In what follows, it remains of interest to show how the
population density ρ influences the evolution of cooperation.
Figure 6 presents the main results to that effect. It can
be observed that the fraction of cooperators first sharply
increases and then decreases while the population density is
increased. As we have discovered recently, low population
densities can be extremely useful for the successful evolution
of cooperation [64]. Here we confirm this, although by means
of a self-organizing process, discovering that a full C phase
can be obtained for sufficiently small population densities for
different values of α [Fig. 6(a)] and β [Fig. 6(b)], even for
small α = 0.1 or large β = 0.8. In general, the region of full
cooperation increases with α and decreases with β. When the
population density approaches 1, cooperators cannot survive
under such adverse conditions. Obviously, the described
supereffective diluted formation of cooperators cannot emerge.
Nevertheless, for sufficiently favorable conditions cooperators
can defeat defectors by forming compact clusters. In the
other extreme, when the population density approaches zero,
cooperators simply cannot form sufficiently large domains,
either diluted or compact, to resist the invasion of defectors.
Accordingly, a sharp rise of defectors is unavoidable, as can
be observed in Fig. 6.

We conclude this section by comparing the efficiency of the
proposed risk-driven migration with other game-theoretical
models, where the collective-risk function is still applied to
calculate the payoff but the mobility of players is determined
(and adjusted) manually. More precisely, as an alternative
model, we apply random migration with a fixed migration rate
for each selected individual and compare the outcome with that
of the original risk-driven migration model. Figure 7 shows
clearly that risk-driven migration always performs better,
independently of the α and β values. The presented results
also evidence clearly that the cooperation level can even be
much lower if a higher fixed migration rate is used, which
implies that random mobility with a high fixed migration rate
is very detrimental for the evolution of public cooperation.
Hence, we conclude that the previous “migration undermines

FIG. 7. (Color online) (a) The fraction of cooperators as a
function of α for a fixed value of β = 0.5 and different constant
migration rates. (b) The fraction of cooperators as a function of β for
a fixed value of α = 0.5 and different constant migration rates. The
population density is ρ = 0.3 and c/b = 0.3. Also depicted in both
panels are results obtained with adaptive risk migration (ARM).

cooperation” observation [3] can be valid only if the mobility
is randomly motivated and unrelated to the performance of the
group.

IV. SUMMARY

We have proposed and studied risk-driven migration in
the collective-risk social dilemma game on a square lattice.
Since the risk was considered to be a dynamically changing
group-dependent property that is determined by the difference
between the actual contributions and the declared target in each
group, the mobility can be introduced in an elegant parameter-
free manner, subject only to the self-organization of players
according to their experience of risk on different locations.
As in previous works considering the impact of mobility
on the outcome of games governed by group interactions
[57,58], we have discovered that risk-driven migration strongly
promotes the evolution of public cooperation. Specifically,
the cooperation level increases with the collective target and
decreases with the nonlinear parameter of the risk function,
whereby complete cooperator dominance was found possible
even under extremely adverse conditions. Perhaps even more
importantly, we have described counterintuitive propagation
patterns of cooperative behavior. Quite remarkably, the often
cited compact clusters of cooperators have proven inferior to
a diluted spatial configuration of cooperators. While defectors
could easily infiltrate the former, the diluted population
was able to defend itself because upon the invasion of
defectors the income in the group dropped suddenly, so
that selfishness was unable to take hold. What is more, this
diluted phalanx of cooperators was able to invade defectors,
in turn leading to completely defector-free states. Obviously,
the spontaneous appearance of this supereffective cooperative
formation requires some portion of the lattice to be empty.
Accordingly, we have found that there exists an intermediate
range of population densities, at which the mechanism works
best. This is strongly in agreement with recent results obtained
on diluted lattices [64], where the percolation threshold was
found to be close to optimal for the evolution of public
cooperation. Yet there the conditions were given manually,
while here they have emerged spontaneously due to risk-driven
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migration. Moreover, in parameter regions where defectors
dominated, we have demonstrated two significantly different
invasion possibilities, one under conditions of abundance
where groups were in general able to meet the declared targets,
and the other under conditions of failure, where the presence
of defectors rendered the previously successful cooperators
unable to fill the common pool. We have also revealed
that the coexistence of cooperators and defectors is possible
only in relatively narrow parameter regions, where there
is a dynamical equilibrium between the diluted cooperative
domains and rare, and therefore successful, defectors and
aggregated, and therefore unsuccessful, defectors. Last, we
have compared the effectiveness of risk-driven migration to
random migration with fixed migration rates, and found that
for the latter, there exist parameter regions where the evolution

of public cooperation is in fact highly inhibited. Overall, the
self-organizing nature of risk-driven migration outperforms
manually adjusted migratory rules by a considerable margin.
Our study thus outlines how the dynamical perception of risk
can guide migratory patterns in an extremely effective manner,
such that public cooperation benefits significantly more than
is expected by virtue of the traditional “compact cooperative
cluster” hypothesis [40].
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