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1Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
2School of Cognitive Science, Institute for Research in Fundamental Sciences (IPM), P.O. Box 1954851167, Tehran, Iran

3Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, SI-2000 Maribor, Slovenia
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Shared upstream dynamical processes are frequently the source of common inputs in various physical and
biological systems. However, due to finite signal transmission speeds and differences in the distance to the
source, time shifts between otherwise common inputs are unavoidable. Since common inputs can be a source
of correlation between the elements of multi-unit dynamical systems, regardless of whether these elements are
directly connected with one another or not, it is of importance to understand their impact on synchronization.
As a canonical model that is representative for a variety of different dynamical systems, we study limit-cycle
oscillators that are driven by stochastic time-shifted common inputs. We show that if the oscillators are coupled,
time shifts in stochastic common inputs do not simply shift the distribution of the phase differences, but rather the
distribution actually changes as a result. The best synchronization is therefore achieved at a precise intermediate
value of the time shift, which is due to a resonance-like effect with the most probable phase difference that is
determined by the deterministic dynamics.

DOI: 10.1103/PhysRevE.95.032207

I. INTRODUCTION

Synchronization has been observed in a wide variety of
physical and biological systems, and it is indeed a universal
phenomenon in nonlinear sciences [1,2]. The functionality
of systems often depends on the degree of synchronization,
with examples including power grid systems [3–5], Josephson
junction arrays [6,7], cardiac pacemaker cells [8,9], and
gamma rhythms in nervous systems [10–12], to name but a
few examples. The subject is an evergreen field of research
in statistical physics, attracting recurrent attention in relation
to chaotic systems, neuronal dynamics, and network science
[13–23].

The coordination of activity of nonlinear oscillators is
conventionally assigned to the presence of attractive inter-
actions between them [24]. However, synchronization among
coupled oscillators in the presence of delayed interactions is
more challenging to understand [25–29]. Delayed interactions
between coupled oscillators are in general attributed to
finite information transmission speeds. As has been shown
before, such interactions can change attractive coupling to a
repulsive coupling and vice versa, and thus crucially affect
the emergence of synchronization in networks of coupled
oscillators [30–34].

But regardless of presence of direct interactions between
the oscillators, synchronization is still attainable through a
common input. The presence of such inputs evokes statistical
correlations between the oscillators, which can ultimately lead
to synchronization [35–41]. In studies of the synchronization
through common inputs, signal transmission delays can be
ignored if the common source affects the target oscillators
through equidistant routes, but of course not if the distances to
the downstream oscillators differ. In the latter case, the input
cross-correlation function for every pair of oscillators peaks at
a different time that depends on the specific time shift. As yet,
this realistic setup constitutes an important unsolved problem
in the realm of synchronization among nonlinear oscillators.

In this paper, we therefore study the emergence of phase
synchronization among limit-cycle oscillators that are driven
by time-shifted common inputs. In particular, we determine
the effects on the output cross-correlation function of two
oscillators when they receive time-shifted common inputs and
the time shift is smaller than the period of oscillation of the
oscillators. If the oscillators are uncoupled, we show that the
effect of a time-shifted common input is simply a shift in
the output cross-correlation function. For coupled oscillators,
however, time shifts in the common inputs nontrivially affect
the output correlation so that in addition to the shift, the
correlation function and the distribution function for the phase
difference of the oscillators are dependent on the input time
shift. We show analytically and confirm numerically that the
degree of synchrony depends on the time shift of common
inputs, such that optimal synchronization is obtained only
when the common inputs are differentially shifted by a nonzero
time lag.

II. MATHEMATICAL FRAMEWORK

We consider two bidirectionally coupled oscillators with
state vector Xi , (i = 1,2), which evolves according to

Ẋ1(t) = F(X1(t),I1)

+ εg12G12(X1(t),X2(t)) +
√

Dεξ (t),

Ẋ2(t) = F(X2(t),I2)

+ εg21G21(X2(t),X1(t)) +
√

Dεξ (t − τs), (1)

where vector function F (Xi,Ii) describes the inherent dynamic
of the isolated oscillators (gij = 0). We assume that the isolated
oscillators have a stable limit cycle XLC(t) = XLC(t + T ) with
the period T , which is controlled by the scalar parameter
Ii . Gij determines the interaction function whose strength
is defined by g12. The last terms in the equations describe
common stochastic input to the two oscillators where ξ (t) is
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Gaussian white noise with zero mean and unit variance and
D determines the noise intensity. τs is the key parameter of
the present study, which is assumed to be smaller than the
period of the oscillation of the two oscillators (τs < T ) and
determines the time shift between the two stochastic inputs;
i.e., the second neuron receives exactly the same stochastic
input to the first neuron, but with a time shift equal to τs .
Both the interaction term and stochastic inputs are scaled
with the small parameter ε � 1. Furthermore the oscillators
are assumed to be in general nonidentical due to the small
difference in their control parameter I1 − I2 = ε�I .

Applying the standard phase reduction method in the
regime of weak perturbation [24,36] leads to the following
Itô stochastic differential equations, for the time evolution of
the phase variable θ (X) in the vicinity of the unperturbed limit
cycle XLC :

θ̇1(t) = ω1 + εg12 Z(θ1) · G(θ1(t),θ2(t))

+
√

DεZ(θ1) · ξ (t),

θ̇2(t) = ω2 + εg21 Z(θ2) · G(θ2(t),θ1(t))

+
√

DεZ(θ2) · ξ (t − τs), (2)

where Z(θ ) = ∇Xθ |XLC(θ ) is the phase sensitivity [42]. Since
we assumed small inhomogeneity in the bifurcation parameter
�I ∼ O(ε), the difference in natural frequencies will also be
small ω1 − ω2 = ε�ω.

We take ω1 = 1 and ω2 = 1 − ε�ω and define the time-
shifted phase difference as θ (t) = θ1(t) − θ2(t + τs). From
Eqs. (2) we obtain the evolution of θ (t) to the order of ε:

θ̇(t) = ε�ω + ε[H12(θ1(t),θ2(t))

−H21(θ2(t + τs),θ1(t + τs))]

+√
ε f (θ1(t),θ2(t + τs)) · ξ (t); (3)

here f (θ1(t),θ2(t ′)) = √
D[Z(θ1(t)) − Z(θ2(t ′))] and

Hij (θi(t),θj (t)) = gij Z(θi(t)) · G(θi(t),θj (t)). We assume
θi(t) = t + ϕi(t) where the first term t captures the intrinsic
dynamics of isolated oscillators and the second term is slowly

varying deviation from natural oscillations. Averaging the
equation over one period [43], we have

dϕ(t)

dt
= ε�ω + ε[H̄12(ϕ) − H̄21(−ϕ)]

+√
εf̄ (ϕ − τs)η(t), (4)

where ϕ = ϕ1 − ϕ2 and the averaged functions H̄ij and

f̄ are defined as H̄ij (θi(t),θj (t)) = 1
2π

∫ 2π

0 dtHij (θi(t),θj (t))

and f̄ (ϕ − τs) =
√

1
2π

∫ 2π

0 dt[f (θ1(t),θ2(t + τs))]2 (see the
Appendix). Note that in the above equation the lag in the
common inputs τs acts like a delay in the connections with a
change of variable ϕ → ϕ + τs . We finally derive the Fokker-
Planck equation for the distribution of the phase differences of
the two oscillators, described by Eq. (4):

∂ρ

∂t
(ϕ,t) = −ε

∂

∂ϕ
[(ϕ)ρ(ϕ,t)]

+ ε
∂2

∂ϕ2
(f̄ (ϕ − τs)ρ(φ,t)), (5)

where (ϕ) = �ω + [H̄12(ϕ) − H̄21(−ϕ)] and ρ(ϕ,t) depicts
the distribution of ϕ. The stationary distribution of the phase
differences can be calculated by letting ∂ρ/∂t = 0:

ρ0(ϕ) = eM(ϕ)

Nf̄ (ϕ − τs)

[
e−M(2π) − 1∫ 2π

0 e−M(x) dx

∫ ϕ

0
e−M(x) dx + 1

]
,

(6)

where M(ϕ) = ∫ ϕ

0
(x)

f̄ (x−τs ) dx and N is a normalization factor.
In the following the analytical results are obtained by calcu-
lation of the stationary distribution function from the above
equation (see the Appendix for the details of derivations).

III. RESULTS

To check the validity of the Eq. (4) and the correspond-
ing solution of the Fokker-Planck equation (6), we take
Z(θ ) = 1 − cos(θ ), which is the canonical form of the phase
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FIG. 1. (a) Phase difference distribution function of two identical uncoupled oscillators, receiving a fully correlated Gaussian white noise
with different time shifts shown above the plots. (b) Same results for nonidentical oscillators with the frequency mismatch �ω = 0.5. Here
D = 0.5, and τs is −2,−1,0,1,2 from left to right.
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FIG. 2. (a) Phase difference distribution function of two coupled oscillators in the locked mode, receiving a fully correlated Gaussian white
noise with different time shifts shown above each plot. (b) Same results for oscillators in the running mode. The results shown by gray bar plots
are calculated by numeric integration of Eq. (3), and the solid lines show the analytical result given by Eq. (6). The vertical dashed lines in (a)
show the fixed point of Eq. (3). Other parameters are D = 0.5 and �ω = 0.2 for the locked case, and �ω = −0.1 for the running case.

sensitivity for the type I oscillators near SNIC bifurcation [44].
Furthermore, we assume the oscillators are pulse-coupled, i.e.,
Gij = �nδ(t − tnj ) in which δ is Dirac’s delta function and tnj
is the instant of θj = 2πn. Pulse coupling approximation for
interaction between oscillators is valid in the systems where the
interaction term activates over a time which is small compared
to period of the oscillation [9,45–47]. To assess the degree
of synchrony regardless of the value of the phase lag we use
the synchronization index γ 2 = 〈cos ϕ〉2 + 〈sin ϕ〉2, where the
brackets denote the averaging over time [48].

First, we considered two uncoupled oscillators receiving a
common noise with a time shift τs . For the identical oscillators
�ω = 0, it has been shown that the oscillators synchronize
when receiving common noises [36]. Our results show that a
time shift in the inputs results in the same time shift in the
synchronized output without changing the synchrony index
[Figs. 1(a) and 3]. When the oscillators are not identical �ω 
=
0, the phase difference distribution function spreads and the
synchrony index decreases [Figs. 1(b) and 3]. In the presence of
heterogeneity (mismatch of the firing rates) the most probable
phase lag φ∗ is not zero when the inputs have a zero time
shift [49]. Interestingly this effect of heterogeneity can be
compensated by a nonzero time shift in the inputs; i.e., the
most probable phase difference of the oscillators could be
around zero despite the heterogeneity by a suitable choice
of the time lag of inputs [see Fig. 1(b) with τs � −1 and
Fig. 3(b)]. This means that the maximum zero-lag correlation
of the two nonidentical oscillators is achieved when the input
to the high-frequency oscillator is lagged. Note that in this case
changing the lag in the inputs does not change the functional
form of the distribution function and so the synchrony index.

Unlike the case of uncoupled oscillators the effect of time
lag in the inputs to the coupled oscillators is not restricted to
the shift of the distribution of the phase lags. For a system of
two coupled oscillators, two cases can be recognized. In the
first case (locked mode) the deterministic version of Eq. (4)
(with no stochastic input) has a stable fixed point, and in the

second case there is no fixed point for Eq. (4) and the system
is in the running mode. The effect of common inputs in these
two cases is shown in Figs. 2(a) and 2(b), respectively. In the
locked mode the synchrony index is no longer independent of
the time lag of the inputs and peaks when the time lag matches
the phase lag of deterministic case (Fig. 3). Accordingly,
while the location of the peak of the distribution function
shifts with changing input time lag, its maximum value and
the width of the distribution around the most probable phase
lag also changes [Fig. 2(a)]. Analytical results obtained by
the solving the stationary Fokker-Planck equation [Eq. (6)]
confirm the results of the simulation.
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FIG. 3. (a) Synchronization index versus input time shift for the
case of two identical uncoupled phase oscillators (black dashed
line), nonidentical uncoupled phase oscillators (solid black line),
coupled phase oscillators in phase-locked mode (solid gray line),
and nonidentical coupled phase oscillators in the running mode (gray
dashed line). (b) Most probable phase lag which shows the location
of the peak of the phase lag distributions in Figs. 1 and 2 is plotted
versus input time shift.
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In the running mode the results are qualitatively similar
to the locked mode except for the overall decrease in
the synchrony index and wider distribution of the phase
differences [Figs. 2(b) and 3]. Changing the time lag of the
inputs the distribution is shifted while its width and maximum
are changed. Again, the best entrainment with the maximum
synchrony index is attained in a certain value of time lag of
the inputs [τs � 1; see Figs. 2(b) and 3]. Analytical results
from Eq. (6) are again validated by the direct numeric solution
of Eq. (3).

IV. SUMMARY

Summarizing, we have studied the emergence of synchro-
nization between two limit-cycle oscillators subject to a com-
mon but time-shifted stochastic input. In addition to showing
that for uncoupled oscillators the effect of time shifts is a trivial
corresponding shift in the distribution of the phase differences
between the two oscillators, we have derived fundamental
conditions for optimal synchronization when the oscillators
are coupled. Namely, we have shown analytically that the time
shift between the inputs changes the distribution of relative
phases, and with it also the degree of synchronization in the
system. Specifically, with time shifts that are in accord with
the most probable phase difference between the oscillators due
to their deterministic dynamics, a resonance-like effect can
be observed that leads to optimally phase locked oscillators.
Due to the generality of the considered setup, we expect our
results to significantly improve our understanding of phase
synchronization in networks of nonlinear elements, especially
within the realm of multilayer networks, where common inputs
across different layers might be particularly likely [50,51].
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APPENDIX

We define θ (t) = θ1(t) − θ2(t + τs) and subtract Eqs. (2)
after shifting the time in second equation by τs to obtain the
evolution equation for θ (t) [Eq. (3)]. Then we define

θi(t) = t + ϕi(t), (A1)

where the first term on the right-hand side captures the
intrinsic dynamics of isolated oscillators with ωi � 1, and
the second term is slow varying deviation from natural
oscillations. Using the method of averaging [43], we substitute
Eq. (A1) into Eq. (3) and average Eq. (3) over one period.
For the second term in the right-hand side of Eq. (3) we
define

H̄ (ϕ) = 1

2π

∫ 2π

0
H (θ1(t),θ2(t)) dt

= 1

2π

∫ 2π

0
H (t + ϕ1,t + ϕ2) dt

= 1

2π

∫ 2π

0
H (t̄ ,t̄ − ϕ) dt̄, (A2)

and for the third term on the right-hand side of Eq. (3) we
should take into account the integral of the correlation term as
follows:

1

2π

∫ 2π

0

∫
dt dt ′〈[ f (θ1(t),θ2(t) + τs) · ξ (t)] × [ f (θ1(t ′),θ2(t ′) + τs) · ξ (t ′)]〉

=
∑
ij

1

2π

∫ 2π

0

∫
dt dt ′〈[ f i(θ1(t),θ2(t) + τs)ξ i(t)][ f j (θ1(t ′),θ2(t ′) + τs)ξ j (t ′)]〉

=
∑
ij

1

2π

∫ 2π

0

∫
dt dt ′[ f i(θ1(t),θ2(t) + τs)][ f j (θ1(t ′),θ2(t ′) + τs)]〈ξ i(t)ξ j (t ′)〉

=
∑

i

1

2π

∫ 2π

0

∫
dt dt ′[ f i(θ1(t),θ2(t) + τs)][ f i(θ1(t ′),θ2(t ′) + τs)]δ(t − t ′)

= 1

2π

∫ 2π

0
dt[ f (θ1(t),θ2(t) + τs)]

2 (A3)

= 1

2π

∫ 2π

0
dt[ f (t + ϕ1,t + τs + ϕ2)]2

= 1

2π

∫ 2π

0
dt̄[ f (t̄ ,t̄ − ϕ + τs)]

2. (A4)

According to Eqs. (A3) and (A4) we can define

[f̄ (ϕ − τs)]
2 = 1

2π

∫ 2π

0
dt[f (θ1(t),θ2(t) + τs)]

2, (A5)
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and using Eq. (3) and Eq. (A2) to (A5) we obtain the evolution
equation for φ = φ1 − φ2:

dϕ(t)

dt
= ε�ω + ε[H̄ (ϕ) − H̄ (−ϕ)] + √

εf̄ (ϕ − τs)η(t),

(A6)

where η(t) is another Gaussian white noise with zero mean
and unit variance. In a more compact form we would have

dϕ(t)

dt
= ε(ϕ) + √

εf̄ (ϕ − τs)η(t), (A7)

where

(ϕ) = �ω + [H̄ (ϕ) − H̄ (−ϕ)]. (A8)

The Fokker-Planck equation for the phase difference
distribution of Eq. (A7) is

∂ρ

∂t
(ϕ,t) = −ε

∂

∂ϕ
[(ϕ)ρ(ϕ,t)] + ε

∂2

∂ϕ2
[f̄ (ϕ − τs)ρ(φ,t)],

(A9)

and the steady state solution of this equation can be achieved
by solving ∂ρ(ϕ,t)/∂t = 0. Defining

R(ϕ) = f̄ (ϕ − τs)ρ(φ,t), (A10)

we can rewrite Eq. (A9) for f̄ (ϕ − τs) 
= 0 as

∂R

∂t
(ϕ,t) = −ε

∂

∂ϕ

[
(ϕ)

f̄ (ϕ − τs)
R(ϕ,t)

]
+ ε

∂2

∂ϕ2
R(φ,t).

(A11)

The general solution of Eq. (A11) is

R(ϕ) = 1

N
eM(ϕ)

[(
A

∫ ϕ

e−M(x)dx

)
+ 1

]
, (A12)

where N and A are constant which can be derived by
normalization and periodicity conditions, and

M(ϕ) =
ϕ∫
dx

(x)

f̄ (x − τs)
, (A13)

and then we derive steady state phase difference distribution
ρ0(ϕ) as Eq. (6).

To check the validity of the results we take

Z(θ ) = 1 − cos(θ ), (A14)

which is the canonical form of the phase sensitivity for the
type I oscillators near SNIC bifurcation [44] and assumed that
oscillators are pulse-coupled,

Gij = �nδ
(
t − tnj

)
, (A15)

substituting these equations in Eqs. (A1) to (A8) results in

(ϕ) = g12 − g21

2π
[1 − cos(ϕ)] (A16)

and

f̄ (ϕ − τs) =
√

[1 − cos(ϕ − τs)]. (A17)

We have then solved the integrals of Eq. (6) numerically to
obtain the analytical result for steady state phase difference
distribution which is presented in Fig. 2.
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