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Frequency-difference-dependent stochastic resonance in neural systems
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Biological neurons receive multiple noisy oscillatory signals, and their dynamical response to the superposition
of these signals is of fundamental importance for information processing in the brain. Here we study the response
of neural systems to the weak envelope modulation signal, which is superimposed by two periodic signals with
different frequencies. We show that stochastic resonance occurs at the beat frequency in neural systems at the
single-neuron as well as the population level. The performance of this frequency-difference-dependent stochastic
resonance is influenced by both the beat frequency and the two forcing frequencies. Compared to a single neuron,
a population of neurons is more efficient in detecting the information carried by the weak envelope modulation
signal at the beat frequency. Furthermore, an appropriate fine-tuning of the excitation-inhibition balance can
further optimize the response of a neural ensemble to the superimposed signal. Our results thus introduce and
provide insights into the generation and modulation mechanism of the frequency-difference-dependent stochastic
resonance in neural systems.
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I. INTRODUCTION

Cortical neurons operate in noisy environments and display
highly irregular firing [1]. Recent theoretical studies have
revealed the functional importance of noise in modulating
neurodynamics. In particular, neurons driven by an appropriate
level of stochastic fluctuations have been shown to exhibit sev-
eral counterintuitive behaviors, such as stochastic resonance
(SR) [2–8], inverse SR [9–12], coherence resonance [8,13–15],
synchronization [16–20], and energy optimization [21,22].
Among them, the most studied noise-induced phenomenon
is the SR, which originally refers to the enhancement of
information transfer in a nonlinear system at an optimal
noise level in the presence of a weak periodic signal [23,24].
Remarkably, evidence of SR has been demonstrated in many
experimental studies [25–27], indicating that noise may indeed
participate into the signal transduction in neural systems.

The classical SR studies in neuroscience have mainly
focused on neural systems driven by an isolated periodic
force [2–8]. Later investigations have confirmed that the
similar SR behaviors can also be observed in neural systems
with multiple periodic components [28–32]. For instance, a
neuron subject to the mixed periodic signals with harmonic
frequencies of a fundamental frequency shows the maximal
response to the fundamental frequency at an intermediate
noise level [28–31,33]. This phenomenon is called the “ghost
SR” (GSR), because it appears at the fundamental frequency
missing in the input signals. When input signals are rendered
inharmonic by applying a frequency shift equally to all of
them, a more generalized GSR behavior can be observed at a
linear shift in the response frequency [28,29]. These findings
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might be biologically critical and yield good agreements with
well-designed experiments [34–36].

Nevertheless, biological neurons may receive more compli-
cated multiple oscillatory signals from various brain regions
with different frequencies, ranging from several to hundreds
of Hz [37–39]. Mathematically, the temporal superposition
of these multiple periodic signals may form a slow envelope
modulation signal with the frequency character related to their
beat frequencies. It is still not completely established, however,
whether the slow-frequency neural information carried by such
kind of envelope modulation signal can be stably processed by
the brain. Here we show that neural systems can successfully
detect the slow-frequency neural information carried by weak
envelope modulation signal via the mechanism of SR occurring
at the beat frequency. The currently reported SR behavior does
not depend on the fundamental frequency, and may thus have
important biological applications.

The paper is organized as follows. First, the detailed
descriptions of the model are introduced in Sec. II. In Sec. III,
we provide the results at the single-neuron level and then
extend them to the population level. Finally, we summarize
this work and briefly discuss the biological implications of our
findings in Sec. IV.

II. MODEL

Let us consider a single neuron driven by two periodic
signals with an arbitrary difference in frequency [Fig. 1]. The
dynamics of the neuron is described by the Hodgkin-Huxley
(HH) model, with details as follows [40,41]:

C
dV

dt
= − INa − IK − IL + Iapp + Inoise. (1)

Here V is the membrane potential, C is the membrane ca-
pacitance per unit area, and INa = GNam

3
∞h(V − ENa), IK =

GKn4(V − EK), and IL = GL(V − EL) represent sodium,
potassium, and leakage currents through the membrane,
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FIG. 1. Schematic presentation of the model. The HH neuron is
driven by both the noise current (black) and two sinusoidal signals
with frequencies f1 (blue) and f2 (red). The superposition of these
two periodic signals forms a relatively slow envelope modulation
signal (green) at the beat frequency f0.

respectively. The noise current is modeled as Inoise = I0 +√
Dξ (t), where I0 is the bias current, ξ (t) is the Gaussian

white noise with zero mean and unit variance (here the unit of
ξ (t) is μA ms1/2/cm2), and D is a dimensionless parameter
denoting the noise intensity. The applied current consists of
two periodic signals, which are

Iapp = A1 sin(2πf1t) + A2 sin(2πf2t), (2)

where A1 and A2 represent signal amplitudes of these two
periodic signals, f1 and f2 are their forcing frequencies, and the
beat frequency is defined as f0 = |f2 − f1|. As schematically
shown in Fig. 1, the superposition of these two periodic signals
forms an envelope modulation signal with a slow frequency at
f0 (green signal).

In the HH neuron, three gating variables, x (x = m, n, and
h), obey the following equation [41]:

dx

dt
= αx(1 − x) − βxx, (3)

with rate functions given by

αm = 0.1
25 − V

exp[(25 − V )/10] − 1
,

βm = 4 exp [−V/18],

αn = 0.01
10 − V

exp[(10 − V )/10] − 1
,

βn = 0.125 exp[−V/80],

αh = 0.07 exp[−V/20],

βh = 1

exp[(30 − V )/10] + 1
. (4)

In simulations, we use the following parameters for the HH
neuron [41]: C = 1 μF/cm2, GNa = 120 ms/cm2, ENa = 115
mV, GK = 36 ms/cm2, EK = −12 mV, GL = 0.3 ms/cm2,
and EL = 10 mV. Unless otherwise noted, we set I0 =
1 μA/cm2 and A1 = A2 = 0.6 μA/cm2. In the absence
of noise, the applied current is too weak to excite the
HH neuron for different frequency combinations considered
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FIG. 2. A typical example of the stochastic oscillation in the HH
neuron, with parameters: f1 = 73 Hz, f2 = 80 Hz, and D = 2.5.
(a) The trace of the membrane potential V (black) and the envelope
modulation signal (green). For better visualizing, the amplitude of
envelope modulation signal is magnified five times with an offset
of 80 μA/cm2. (b) PSD of the spike train (50 s). In panel (b), the
red asterisk represents the power at the beat frequency, f0 = 7 Hz,
whereas black circles denote the powers at two forcing frequencies
f1 and f2.

in this work. The model is integrated using the Euler-
Maruyama method with a time step h = 0.01 ms [42]. All
computer codes will be available to download from ModelDB
(https://senselab.med.yale.edu/ModelDB/).

III. RESULTS

We first set out to examine whether the oscillation char-
acteristic at the beat frequency can be exhibited in the
spike train generated by the HH neuron. Figure 2 shows
an example of the stochastic oscillation of the HH neuron,
with forcing frequencies f1 = 73 Hz and f2 = 80 Hz. Due
to the existence of stochastic fluctuations, the HH neuron
displays irregular firing, but its firing pattern roughly matches
with the waveform of the superimposed signal [Fig. 2(a)].
By further estimating the power spectral density (PSD) of
spike train using the fast Fourier transform, we identify three
main power peaks located at the beat frequency f0 = 7 Hz as
well as two forcing frequencies f1 = 73 Hz and f1 = 80 Hz
[Fig. 2(b)], respectively. Besides, several other power peaks
located at multiples of these two forcing frequencies can also
be observed (data not shown). These findings indicate that
neural information at the beat frequency carried by the weak
envelope modulation signal can be successfully detected in the
spike train of the HH neuron.

We next ask whether the SR-type behavior can be observed
at the beat frequency in a single neuron. To address this, we
quantify the capability of information transfer by using the
signal-to-noise ratio (SNR). In the present study, the SNR is
estimated from the PSD, defined as [3,8]: SNR = [S(f0) −
N (f0)]/N (f0), where S(f0) is the power at the beat frequency
f0 and N (f0) is the averaged power at nearby frequencies.
For each experimental setting, we carry out 50 realizations of
simulations and report the averaged SNR as the final result.

Figure 3(a) shows the SNR value versus the noise intensity
D for different beat frequencies. With increasing D, each
SNR curve first rises and then drops, and the maximal SNR
value is achieved at an intermediate noise level. Consistently,
we observe that the membrane potential of the neuron
matches well with the waveform of superimposed signal at
an intermediate noise level and exhibits a poor performance
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FIG. 3. Response of a single HH neuron to different values of D and f0. (a) SNR versus D for different beat frequencies. (b) Typical trace
of the membrane potential V (blue) and the corresponding envelope modulation signal (green) at different noise levels. For better visualizing,
the amplitude of envelope modulation signal is magnified five times with an offset of 80 μA/cm2. (c) Maximal SNR as a function of f0. (d)
SNR in the (D,f0) panel. In panel (d), each white circle refers to the maximal SNR point for corresponding f0, the magenta asterisk denotes
the maximal SNR point in the (D,f0) panel, and the region between two black dashed lines denotes the optimal noise regime. The unit of the
beat frequency f0 is Hz. In all simulations, we set f1 = 73 Hz and f2 = f1 + f0. In panel (b), the beat frequency is fixed at f0 = 0.8 Hz, and
three noise intensities are: D = 0.2, D = 1.0, and D = 4.0, respectively.

when the neuron driven by either low or high level of stochastic
fluctuations [see Fig. 3(b)]. These findings demonstrate the
occurrence of SR and indicate that beat-frequency related
neural information carried by the weak envelope modulation
signal can be well detected with the help of noise. Since this
type of SR occurs at the beat frequency, we term it as the
frequency-difference-dependent SR in this study. Interestingly,
we find that each SNR curve shows the maximal response
to its corresponding beat frequency f0 at almost the similar
noise level [Fig. 3(a)]. For a fixed forcing frequency f1,
this observation suggests that the optimal noise-enhanced
region might be not impacted by the beat frequency in the
frequency-difference-dependent SR.

To explore the effects of beat frequency on the perfor-
mance of frequency-difference-dependent SR, we calculate
the maximal SNR at the corresponding optimal noise intensity
for different f0. As we see in Fig. 3(c), the maximal SNR
gradually decreases with the increase in f0, suggesting that
the HH neuron may show a better performance at a relatively
smaller beat frequency. By further presenting the SNR value
in the (D,f0) panel, we observe that strong neural response
mainly appears at the small beat frequency range within
optimal noise-enhanced regime [Fig. 3(d)]. These results
provide consistent evidence that the performance of frequency-
difference-dependent SR is especially sensitive to small beat

frequency. In the brain, we presume that neurons may use this
mechanism to discriminate multiple oscillatory signals with
fine frequency distinctions.

In reality, the performance of frequency-difference-
dependent SR is also significantly influenced by the absolute
sizes of two forcing frequencies. In Figs. 4(a)–4(c), we plot
the SNR value in the (f1,f2) panel at three different levels of
neuronal noise. For each noise intensity, the neuron responds
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FIG. 4. Dependence of the SNR on two forcing frequencies f1

and f2 at different levels of neuronal noise. From panels (a)–(c),
three noise intensities considered here are: D = 0.4, D = 1.0, and
D = 2.5, respectively.
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FIG. 5. Response of a single HH neuron to different values of D

and I0, with f1 = 73 Hz and f2 = 3 Hz. Five bias currents considered
here are: I0 = 0, 0.5, 1.0, 1.5, and 2.0 μA/cm2, from bottom to top,
respectively.

optimally to the superimposed signal at a special frequency
range (40–90 Hz) within the γ band. This phenomenon is
the so-called frequency sensitivity, which has been reported
in neural systems and might be due to the cooperation of the
intrinsic oscillation of neurons and the external periodic input
signals [5,6,8]. Since the input current has as sinusoidal form,
both the mean and the variance do not change as the frequency
of the current changes, and accordingly, the same effects
would be observed if normalizing the injected inputs by the
input frequency. Furthermore, we observe that such frequency
sensitivity is shaped by the neuronal noise [see Figs. 4(a)–4(c)].
At an intermediate level of noise, the HH neuron exhibits a
wider frequency-sensitivity range than those for both low and
high noise levels. We highlight these findings because neural
oscillations in the γ band have been widely observed in the
brain and are believed to play an important role in enhancing
information transmission between groups of neurons [43,44]
and to be associated with many higher cognitive tasks [45–48].

To examine the effects of the bias current on the perfor-
mance of frequency-difference-dependent SR, we plot the
SNR value as a function of D for different values of I0. It
should be noted that, for all bias currents considered here, the
applied current is maintained to be subthreshold. As shown in
Fig. 5, each SNR curve displays a bell-shaped curve, further
implying that the frequency-difference-dependent SR is an
inherent property of the HH neuron driven by the subthreshold
stimulus. Theoretically, with the increasing of the bias current
I0, the membrane potential of the HH neuron is pushed close
to its firing threshold, thus requiring a relatively low level
of neuronal noise to trigger action potential. As a result, we
observe that the SNR curve is shifted to the top left as I0 grows,
and a stronger maximal response to the superimposed signal
is achieved at a relatively weaker optimal noise level for the
HH neuron.

So far, we have identified the occurrence of frequency-
difference-dependent SR at the single-neuron level. A natural
question is whether the similar SR can be also observed at
the population level. To answer this, we establish a random
neuronal network composed of 80 excitatory and 20 inhibitory
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FIG. 6. Typical response of the network at different noise levels.
(a) Spike raster and (b) the corresponding PSD of the network
activities. From top to bottom, three noise intensities are: D = 0.3,
D = 1.0, and D = 3.0. Other parameters are set as f1 = 73 Hz, f2 =
80 Hz, wE = 0.03 ms/cm2, and wI = 0.15 ms/cm2 in simulations. In
panel (b), the red asterisk represents the power at the beat frequency,
f0 = 7 Hz, whereas black circles denote the powers at two forcing
frequencies f1 and f2.

neurons with a connection density p = 0.1. The dynamic of
neurons is simulated using the HH model. For each neuron,
we also incorporate the conductance-based synaptic current
into the model, given as: Isyn = gE(VE − V ) + gI(VI − V ),
where VE = 60 mV and VI = −20 mV are excitatory and
inhibitory synaptic reversal potentials, and gE and gI are their
corresponding synaptic conductances. Whenever a neuron
receives a presynaptic spike, its synaptic conductance is
updated according to gE ← gE + wE for an excitatory spike
and gI ← gI + wI for an inhibitory spike. In other time,
these two synaptic conductances decay in an exponential
manner with fixed time constants τE = 5 ms and τI = 10 ms.
Parameters wE and wI represent the synaptic strengths of
excitatory and inhibitory synapses. The mean firing rate s(t)
measured in 0.1-ms bin size is employed to estimate the PSD
of network activities, which is further utilized to calculate the
SNR at the beat frequency.

Figure 6(a) illustrates three typical spike raster diagrams
for different noise intensities. When the noise level is low,
neurons in the network generate few scattered spikes due to
weak stochastic fluctuations. In this case, a part of neural
information is lost during the transmission, leading to a small
power peak at the beat frequency [Fig. 6(b), top panel].
As the noise intensity increases, stochastic fluctuations from
noise start to affect neuronal firing. For an appropriate noise
level, the collective firing of neurons responds well to the
waveform of superimposed signal. As a consequence, a large
power peak can be observed at the beat frequency [Fig. 6(b),
middle panel]. However, if the neuronal noise is too strong,
the applied current is almost drowned in noise, and neuronal
firing is determined by both strong noise current and synaptic
interaction. Under this condition, the network exhibits fast
γ oscillations and neural information carried by the low-
frequency envelope modulation signal cannot be directly read
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FIG. 7. Population response under different conditions. (a) The
SNR value as a function of D, with fixed synaptic strengths wE = 0.03
ms/cm2 and wI = 0.15 ms/cm2. (b) Dependence of SNR on the
relative strength of excitatory and inhibitory synapses wE/wI, with
parameters wE = 0.03 ms/cm2 and D = 0.55. In simulations, we set
two forcing frequencies as f1 = 73 Hz and f2 = 80 Hz.

from the collective firing of neurons [Fig. 6(b), bottom panel].
Consistent with previous findings, the association of increased
information retrieved from the network with increased γ power
might support the notion of γ oscillations playing a role
in information processing for networks with strong synaptic
interactions [49].

To quantitatively validate the above observation, we further
illustrate the relationship between the SNR value and the noise
intensity D in Fig. 7(a). As expected, a bell-shaped SNR curve
is observed with the increase of D, indicating that the network
shows the best response to the superimposed signal at the
beat frequency for an optimal noise level. However, due to
stochastic fluctuations introduced by synaptic interaction, we
find that the optimal noise-enhanced region at the population
level is shifted toward lower noise intensity [Figs. 3 and 7(a)].
Such finding demonstrates that the frequency-difference-
dependent SR can indeed appear at the population level. More
importantly, the maximal SNR value at the population level is
much larger than that at the single-neuron level [Figs. 3 and
7(a)], suggesting that the collective firing of neurons might be
more efficient to detect and transmit the low-frequency neural
information carried by the weak envelope modulation signal.
Note that this finding might be especially suitable for a single
neuron in the network, which does not generally fire on every
periodic cycle due to heterogeneous feedback inhibition [50],
even when the two driven frequencies fall into the γ band.

Finally, we also find that the relative strength of excitatory
and inhibitory synapses plays a critical role in regulating
the performance of frequency-difference-dependent SR at the
population level [Fig. 7(b)]. For a fixed noise level, our results
reveal that the optimal network response to the envelope
modulation signal at the beat frequency is achieved at an
intermediate relative strength. From the theoretical perspec-
tive, this is because a fine balance between excitation and
inhibition prevents excessive neuronal firing and contributes
to network stability, thus supporting stable and robust weak
signal detection and transmission.

IV. DISCUSSION

In summary, we have examined the stochastic dynamics of
neural systems driven by two periodic signals with arbitrary
difference in frequency. We observed that the frequency-
difference-dependent SR occurs at both the single-neuron and
population levels. Our simulations showed that the perfor-
mance of frequency-difference-dependent SR does not only
rely on the relative size of beat frequency but is also impacted
by the absolute sizes of two forcing frequencies. By analyzing
the frequency-sensitivity of neurons, we identified a special
frequency range (40–90 Hz) within the γ band. At an interme-
diate noise level, the neuron shows relatively strong response
to external periodic signals when their frequencies fall into this
special range. This finding is of importance because γ neural
oscillations have been believed to modulate and enhance signal
transmission [43,44] and have been linked to many higher
cognitive tasks [45–48]. Remarkably, we found that population
response of neural ensembles is more efficient than that of
a single neuron to detect the neural information carried by
the envelope modulation signal at the beat frequency. Further
investigations reveled that a fine excitation-inhibition balance
can improve the network response to the envelope modulation
signal at the beat frequency. These results shed insights
into the functional roles of stochastic noise in promoting
the signal transduction for the beat-frequency related neural
information.

Dynamical response of neurons to noisy oscillatory inputs
is fundamental for neural information processing [51–53].
Our results confirm that neural systems can also respond
to the weak frequency-difference information through the
mechanism of SR. This finding might offer important bi-
ological implications, because realistic neurons are often
simultaneously driven by multiple oscillatory signals with
different frequencies [37–39]. After a long time of evolution,
it is reasonable to suppose that our brain might have the
abilities to use neuronal noise to achieve stable transmission for
frequency-difference information, which can be further used
by the brain to perform higher cognitive tasks. We hope that
predictions from our model investigation can inspire testable
hypotheses for electrophysiological experiments in the future.
Further work on this topic includes investigating the neuronal
response to multiple suprathreshold periodic signals and
investigating possible roles of frequency-difference-dependent
SR in regulating complicated neurodynamics [17,54,55].
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