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From fireflies to cardiac cells, synchronization governs important aspects of nature, and the Kuramoto
model is the staple for research in this area. We show that generalizing the model to oscillators of
dimensions higher than 2 and introducing a positive feedback mechanism between the coupling and the
global order parameter leads to a rich and novel scenario: the synchronization transition is explosive at all
even dimensions, whilst it is mediated by a time-dependent, rhythmic, state at all odd dimensions. Such a
latter circumstance, in particular, differs from all other time-dependent states observed so far in the model.
We provide the analytic description of this novel state, which is fully corroborated by numerical
calculations. Our results can, therefore, help untangle secrets of observed time-dependent swarming and
flocking dynamics that unfold in three dimensions, and where this novel state could thus provide a fresh
perspective for as yet not understood formations.
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The raise of coordination from interactions among
components of a system is ubiquitous in biological and
social endeavors [1]. Synchronous patterns are indeed
visible almost everywhere: from animal groups (bird
flocks, fish schools, and insect swarms [1]) to neurons
in the brain [2], and play a pivotal role in various functional
aspects of real-world systems. Unraveling the essential
mechanisms behind synchronization is therefore of great
importance, and the Kuramoto model (and its various
generalizations [3–6]) are the fundamental reference for
the study of coupled phase oscillators giving rise to, among
others, explosive synchronization (ES), Chimera, and
Bellerophon states [7–12]. Almost all studies have so far
concentrated on two-dimensional oscillators, whereas some
physical problems need to be modeled by extending the
Kuramoto model to higher dimensional spaces. Examples
include the swarmalators moving in three-dimensional
spaces, and the Heisenberg model in the sense of mean
field [13–15].
On the other hand, a characteristic of many biological

and social systems is the presence of positive feedback (PF)
mechanisms between the coupling of the elementary con-
stituents and the level of coherence in the system [16–19].

Of peculiar interest is plasticity, which leads to changes in
the connection strength among individuals to achieve
efficient global states, and which is observed in neuro-
science (under the name of “Hebbian learning”) [20] as
well as in social science (under the name of “homophily”)
[21]. PF may lead the system to reach a fixed equilibrium
state, or to attain a cyclic (rhythmic) dynamics. Here, by
“rhythmic state,” we refer to a macroscopic property of the
system, where the global order parameter is time dependent
and oscillates nearly periodically, rather than slightly
vibrating around a fixed value due to finite-size effects.
States in which a system periodically switches from one
state to another are ubiquitous in nature [22]: rhythmic
neural synchronization is observed, for instance, in the
brain during several (cognitive or motorial) tasks and even
at rest [23], and various observations point to periodic
changes between synchronized and unsynchronized states
in neuronal networks [24,25], which can be as slow as the
unihemispheric sleep in some birds or marine mammals
[26] or the so-called first-night effect in humans [27], or as
fast as respiratory rhythm in various animals [28]. Cyclic
movement activities within colonies of interacting ants
[29] and the periodic dynamics of infectious diseases and
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prey-predator interactions in populations [30] are other
important examples of such rhythmic states in social
networks.
In this Letter, we considerD-dimension Kuramoto model

incorporating a PF mechanism (PFDDKM), which consti-
tutes the generalization of the D-dimension Kuramoto
model (DDKM) already considered by Chandra, Girvan,
and Ott in Ref. [15]. Namely, in our model the coupling
strength throughwhich each phase oscillator interplays with
all the others is positively correlated with the global order
parameter. The result is that an oscillating state emerges
spontaneously (and surprisingly) when D is odd, whereas
the transition to synchronization displays always an explo-
sive nature when D is even.
Let us then begin by considering an ensemble of N phase

oscillators in the plane. Each oscillator’s phase θi is
ruled by

_θi ¼ ωi þ
λ

N
αi
XN
j¼1

sinðθj − θiÞ; ð1Þ

where i ¼ 1 � � �N. ωi and θi are, respectively, the natural
frequency and the instantaneous phase of the ith oscil-
lators, and λ is the overall coupling strength. In analogy
with Ref. [31], the parameter αi is here defined as
the global coherence level in the system: αi ¼ R ¼
jð1=NÞPN

j¼1 e
iθj j ∀ i ¼ 1;…; N. In Eq. (1), the oscillator

i is associated to the two-dimensional unit vector σi ∈ R2×1

with components ðcos θi; sin θiÞ, which obeys

_σi ¼ Wiσi þ
λ

N
R
XN
j¼1

½σj − ðσj · σiÞσi�; ð2Þ

with the 2 × 2 matrix Wi given by

Wi ¼
�

0 ωi

−ωi 0

�
: ð3Þ

In fact, Eq. (2) can be adopted for higher dimensions D,
with fixing σi ∈ RD×1, kσk ¼ 1, and Wi being a real
D ×D anti-symmetric matrix with element ωi

jk (for sim-
plification, ωi

jk are assumed to be independent identically
distributed variables, unless otherwise stated). In all the rest
of the Letter, the dimension D will refer, then, to the
dimension of the vectors σi ∈ RD×1. The order parameter
will be now defined as R ¼ kρkt, where

ρ ¼ 1

N

XN
i¼1

σi; ð4Þ

and k · kt stands for the time average of the Euclidean norm.
When PF is absent (i.e., when αi ¼ 1; ∀ i), Ref. [15]

already pointed out that the transitions to synchronization

characterizing odd and even dimensions are different. Our
simulations [32] are reported in Fig. 1, and unveil that PF is
actually the source of a much richer scenario: the transition
to synchronization is explosive (i.e., abrupt and discon-
tinuous, like a first order phase transition) for all even
dimensions, while at all odd dimensions it is mediated by a
time-dependent rhythmic state. What is reported here at
even dimensions extends the studies reported in Ref. [31],
where it was pointed out that PF induces explosive
synchronization (ES) for D ¼ 2. On the other hand, the
case of odd dimensions is remarkable, as R converges to
constant values close to 0 or 1 for low and high values of λ,
respectively, but in between the coherent and incoherent
states R is time dependent and displays a rhythmic
dynamics.
The observation of such a novel phenomenology

induced us to perform several analytical studies, which
are summarized here below. Due to space limitations, we
here limited ourselves to give an account of the main results
of our derivations, while the interested reader is addressed
to the Supplemental Material [33] files where all details are
reported.
The first step is to provide a static analytic prediction of

the PFDDKM scenario at D ¼ 3. In the limit of N → þ∞,
indeed, and following a similar approach as that used in
Ref. [15], it is easy to verify (see [33] for all details) that
when ωi

jk ∼ Normð0; 1Þ the order parameter satisfies
FðλR;RÞ ¼ 1 [notice that for DDKM one has instead
Fðλ; RÞ ¼ 1] where Fðλ; RÞ is defined as:

Fðλ; RÞ ¼ λ

2

Z
1

−1

Z
∞

−∞

e−ðμλRÞ2=2
ð2πÞ3=2

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμ2 − 2Þ2 þ 4μ2ξ2

p
2

s
dξdμ: ð5Þ

Analogously, for D ¼ 2, R satisfies GðλR;RÞ ¼ 1 [while
for DDKM one would have Gðλ; RÞ ¼ 1], where Gðλ; RÞ is
defined as

0 2 4 6
0

0.5

1

0 2 4 6
0

0.5

1
(a) (b)

FIG. 1. The transition to synchronization. R vs λ (see text for
definitions) for even D (a) and odd D (b). The used values of D
are reported in the legends in both panels. ωi

jk ∼ Uð−1; 1Þ.
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Gðλ; RÞ ¼ λ

Z
1

−1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p e−ðλRxÞ2=2ffiffiffiffiffiffi
2π

p dx: ð6Þ

A comprehensive comparison of DDKM and PFDDKM
can therefore be drawn. In particular, Fig. 2 reports the
solutions of Eqs. (6) and (6) together with the numerical
simulations of Eq. (2). It is easy to see that the theoretical
predictions are extremely accurate, and they even demon-
strate that the introduction of PF at D ¼ 2 [Fig. 2(b)]
induces a first-order-like transition from coherence to
incoherence. Yet, at this stage, the observed time-dependent
(oscillatory) state is elusive [Fig. 2(d)], and therefore one
needs to resort to other nonstatic methods.
Following the approach of Ref. [34], one can indeed

obtain a reduced system. In that approach, one considers α
as being a real-valued D-dimensional vector such that
jαðW; 0Þj < 1, and which satisfies the following equation

∂α
∂t ¼

1

2
ð1þ kαk2ÞλRρ − λRðρ · αÞαþWα; ð7Þ

where k · k is the Euclidean norm, until otherwise stated. It
is easy to show (see [33] for full details) that, at D ¼ 3, the
order parameter is

ρ ¼
Z

dWGðWÞα̂ðW; tÞ
�
2kαkð1þ kαk2Þ

þ ð1 − kαk2Þ2 log 1 − kαk
1 − kαk

��
4kαk2; ð8Þ

where GðWÞ is the probability density function (PDF) of
W. The hat notation indicates normalization: for α ∈ Rn×1

one has α̂ ¼ α=kαk.
While it is hard, in our case, to acquire a simpler

representation of the reduced system (like the one obtained
in Ref. [35]), one can still numerically simulate the
dynamics of Eqs. (7) and (8). In particular, in Fig. 3 we
report the results obtained for ωi

jk sampled from a uniform
distribution Uð−1; 1Þ. Figure 3 compares the solution of
Eq. (7) and Eq. (8) (for the integration of the reduced
system, we used 73 equidistant samples of ωi

jk ∈ ½−1; 1�)
with that of the full system Eq. (2). One can see that the
oscillatory states are now recovered by the reduction
technique.
Going back to Fig. 1(b), one also sees that oscillations in

R are not at all limited to the case D ¼ 3. Rather, the
backward phase transition diagrams at odd values of D
display all the same feature: after a critical λB the system
runs into an oscillatory state. In general, with D being
larger, the system requires higher coupling strengths to
sustain synchronized behaviors. For the case of D being
odd, the oscillations in R affect the system for a shorter and
shorter range of λ as D increases: as the critical order
parameter Rλ0þ (R at λ0þ) becomes smaller, the transition at
higher D displays features similar to those of ES.
We now move to investigate the microscopic details

behind the observed oscillations in R, and focus on the case
D ¼ 3, for which one can write Wiσi ¼ ωi × σi, where ωi

has elements ð−ωi
23;ω

i
13;−ωi

12Þ. Figure 4 illustrates the
features of four typical system’s phases in terms of four
characteristic quantities: the local coherence ϕi ¼ ρ · σi=R,
the local coherence speed _ϕi, the average speed h _ϕii, and
the standard deviation of the speed stdð _ϕiÞ (with averages
being performed over 200 time steps). When compared to
Fig. 3, the four phases displayed in Fig. 4 correspond to the
following: uncoupled oscillators [λ ¼ 0, Figs. 4(a1)–4(a4)],
the initial plateau at R ∼ 0.5 [λ ¼ 0.1, Figs. 4(b1)–4(b4)],
the oscillating state [λ ¼ 1.5, Figs. 4(c1)–4(c4)], and the
final fully coherent state [λ ¼ 2.0, Figs. 4(d1)–4(d4)]. It is
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FIG. 2. Comparison between the DDKM and the PFDDKM
models. R vs λ for (a) the DDKM at D ¼ 2, (b) the PFDDKM
at D ¼ 2, (c) the DDKM at D ¼ 3, (d) the PFDDKM at D ¼ 3.
The red curves are the solutions of Eqs. (5) and (6), the blue
points are simulation results from Eq. (2) with N ¼ 5000, and
ωi
jk ∼ Normð0; 1Þ. In the simulations of the forward (backward)

transition, λ is gradually increased from 0 to 5 (is gradually
decreased from 5 to 0) with steps δλ ¼ 5 × 10−6. The shadowed
area is the hysteresis (unstable) region.
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FIG. 3. Comparison between the full and the reduced systems.
R vs λ at D ¼ 3. λ is here gradually decreased from 3 to 0 with
step δλ ¼ 5 × 10−6. (a) Simulation of the full system Eq. (2).
(b) Simulation of the reduced system, from Eqs. (7) and (8).
ωi
jk ∼ Uð−1; 1Þ. In both panels, the inset reports the time

evolution of R at λ ¼ 0.
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worth noticing that, in all cases, h _ϕii is almost vanishing,
which means that each oscillator is fixed if averaged in
time. Moreover, one sees that stdð _ϕiÞ is also almost
vanishing for λ ¼ 0.1 and λ ¼ 2.0, which implies that
oscillators are almost fixed on the sphere both in the final
coherent state (as one could easily expect) and in the initial
static plateau. ϕi and _ϕi, instead, vary dramatically for
λ ¼ 0 and for λ ¼ 1.5. Furthermore, at λ ¼ 0 (i.e., for
uncoupled oscillators), larger values of stdð·Þ characterize
oscillators at larger kωik, which indeed rotate faster along
ω̂i (here, ω̂i ¼ ωi=kωik) with an angular frequency
of kωik.
Remarkably, this does not happen, instead, at λ ¼ 1.5,

i.e., when oscillations in R occur. There, one can see that
those oscillators with middle kωik are the ones exhibiting
larger values of stdð·Þ, which is of particular interest
because one could expect instead to have the oscillators
with larger kωik unlocked. See [33] for more microscopic
details of the oscillatory state at λ ¼ 1.5.
The latter fact suggests to perform further microscopic

investigations. Indeed, the probability density function
(PDF) of speeds kωik considered so far is a unimodal
function, implying that a large fraction of oscillators have

middle frequencies. In order to investigate the role that
different oscillators play in determining the rhythmic state,
a uniform speed distribution Urðωi; d; wÞ is considered.
This corresponds to sorting the speeds kωik from a uniform
distribution Uðd − w; dþ wÞ, with ω̂i following an iso-
tropic distribution Uðω̂iÞ. This way, the limit w → 0
corresponds to a narrow distribution, while in the limit
w → d, the PDF is wide and uniform. We then set d ¼ 0.5,
and study the effect of varying w. The results for D ¼ 3 are
reported in Fig. 5(a), and it is seen that wider ranges of kωik
(i.e., larger w) are indeed able to remove the presence of the
intermediate oscillatory states, and oscillations are almost
vanishing for w ¼ 0.5. The general conclusion is therefore
that rhythmicity in the PFDDKM is strongly influenced by
the properties (such as unimodality) of the PDF of the
speeds kωik.
The next interesting question is whether or not oscil-

latory states may occur for w ¼ 0.5. To answer this point,
we generalized our model and considered αi ¼ Rγ in
Eq. (1), with γ being a real number. In Fig. 5(b), we report
the simulations of the new system for D ¼ 3, and one sees
that the scenario is actually extremely rich: as γ increases,
the transition can be continuous (γ ¼ 1.0), mediated by the
oscillatory state (γ ¼ 2.0), or first-order-like (γ ¼ 3.0).
Compared to other nonstationary states found in

Kuramoto-like models, such as the Bellerophon state
[10,36–39] (in which the oscillators form quantized clus-
ters) or the Chimera state [40–42] (in which the oscillators
form two groups, coherent and incoherent respectively), the
rhythmic state observed in PFDDKM at odd dimensions
appears to be essentially different. First, it conflicts with
ES which is found at any even dimension. Second, it does
not require bimodal distributions in the system’s natural
frequencies, as instead Bellerophon state does. Third, it is
essentially due to large fluctuations of those oscillators with
middle frequency.
Taken together, we have fully characterized the dynam-

ics of a D-dimensional Kuramoto model in the presence of
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FIG. 4. Microscopic details of the observed rhythmic states.
Snapshots at t ¼ 2 × 104 of the local coherence ϕi [(a1),(b1),
(c1),(d1)], the local coherence speed _ϕi [(a2),(b2),(c2),(d2)],
the average speed h _ϕii [(a3),(b3),(c3),(d3)], and the standard
deviation stdð _ϕiÞ [(a4),(b4),(c4),(d4)] vs kωik. See the main text
for all definitions. ωi

jk ∼ Uð−1; 1Þ, D ¼ 3 and the values of λ
used in the simulations are reported in the bottom of each block
of panels.
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FIG. 5. The role of the probability density function of speeds.
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with step δλ ¼ 2 × 10−6. The color code is reported in the legend.
(b) R vs λ as it results from simulations of Eq. (1) with αi ¼ Rγ ,
D ¼ 3, and w ¼ 0.5 (see text for definitions). The five used
values of γ are reported in the legend.
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an PF coupling. We have reported evidence that PF leads to
explosive synchronization at all even dimensions of the
model, thus generalizing previous results forD ¼ 2. At odd
dimensions, we have shown that the transition to synchro-
nization is mediated by a time-dependent, rhythmic state
that was not previously observed in coupled phase oscil-
lators. Therein, the natural frequency plays a key role as
oscillators are grouped spontaneously in three groups
consisting of low, middle, and high frequency oscillators.
We have also found two important conditions that affect the
emergence of oscillations, namely the distribution of kωik
and the introduction of PF. We have shown that distribu-
tions with a clear peak of kωik promote oscillations, as
does the strength of PF. Importantly, the later condition is
more important as it is the most fundamental difference
between even and odd D.
Our research could find applicability in better under-

standing swarming and related collective phenomena in
three dimensions [1], in particular where PF mechanism
plays a key role, such as in fish schools or murmurations
under predation [29,43].
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