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A common expectation is that career productivity peaks rather early and then gradually declines with seniority.
But whether this holds true is still an open question. Here we investigate the productivity trajectories of almost
8500 scientists from over 50 disciplines using methods from time-series analysis, dimensionality reduction,
and network science, showing that there exist six universal productivity patterns in research. Based on clusters
of productivity trajectories and network representations where researchers with similar productivity patterns
are connected, we identify constant, u-shaped, decreasing, periodic-like, increasing, and canonical productivity
patterns, with the latter two describing almost three-fourths of researchers. In fact, we find that canonical curves
are the most prevalent, but contrary to expectations, productivity peaks occur much more frequently around
midcareer rather than early. These results outline the boundaries of possible career paths in science and caution
against the adoption of stereotypes in tenure and funding decisions.
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I. INTRODUCTION

Scientific productivity is routinely used to measure and
assess the performance of researchers, as it quantifies their
contributions to the scientific community through scholarly
publications [1]. When combined with other indicators of
research quality, productivity plays an important role in de-
termining job placement [2], promotions to tenured positions
[3], funding allocation [4,5], and in mapping the develop-
ment of science [6,7]. Given its importance, understanding
productivity patterns over the course of scientific careers has
been a long-standing priority for researchers from various
disciplines, and Lehman’s monograph is considered a seminal
work in this regard [8]. In 1953, he observed that the aggre-
gated contributions of scientists, musical composers, artists,
and writers exhibit a pattern of rapid early career growth
followed by a gradual decline in productivity as their careers
progressed. This pattern has been consistently observed in
various contexts and datasets, and it is often referred to as the
“canonical productivity narrative” [8–19].

But the notion that there is a universal pattern of produc-
tivity across scientific disciplines and demographic groups has
been significantly challenged by recent research. Indeed, stud-
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ies have found evidence for a variety of productivity patterns,
including constant [12,17], decreasing [13,20,21], increasing
[17], and periodic-like [11,22,23]. However, many studies
have used aggregated data, which may introduce bias due to
the “compositional fallacy” [15]—a common issue that arises
when trying to infer typical productivity trajectories based on
average behavior across many individuals. Other studies have
been restricted to a reduced set of career years in specific fields
of knowledge [20,21] and have often relied on linear regres-
sion models [14,17,20,21,23], which may not fully capture the
complexity of productivity patterns. Some authors have also
proposed generative models of productivity curves [14,15,24]
but have been unable to validate these patterns with empirical
evidence.

Large-scale studies that investigate individual shapes of
productivity trajectories are scarce, with the work of Way
et al. [25] being one of the few exceptions. Using data from
over 2000 computer science faculty members in the U.S. and
Canada, they applied a segmented linear model composed of
two continuous lines to each researcher’s career to evaluate
the universality of the canonical productivity narrative. Re-
search has found that almost half of the careers in this dataset
is consistent with strictly constant, increasing, or decreasing
productivity trajectories. Conversely, only 20% of the trajec-
tories have been found to exhibit early growth followed by a
slow decline in productivity, thus suggesting that the canonical
narrative may not be as prevalent as previously thought. How-
ever, the use of piecewise regressions limits the emergence of
possible nonlinear patterns such as periodic trajectories, and
the focus on computer science may limit the generalization
of these conclusions to other academic disciplines. Addition-
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ally, research so far has ignored that structural changes in
the scientific enterprise—such as the increase in scientific
collaboration [26] and pressure to produce in large quantities
[27–29]—may impact the research culture of different cohorts
and their productivity trajectories.

Here we investigate the productivity trajectories of over
8000 scientists from the elite of the Brazilian research com-
munity, spanning more than 50 research disciplines. We
employ a coherent data-driven approach that combines meth-
ods from time-series analysis, dimensionality reduction, and
network science to cluster productivity trajectories based
on their pairwise similarities. Unlike most previous works,
our approach considers trajectories individually, accounts for
discipline-specific inflation of productivity [18,30,31], the
noisy nature of individual productivity trajectories, and pos-
sible cohort effects. Importantly, we do not explicitly assume
one or a set of predetermined shapes for the productivity
curves, which allows us to discern the natural emergence of
universal patterns of productivity in scientific careers. Our
research identifies productivity patterns that have been only
qualitatively hypothesized [23] or found in studies based on
aggregated data [12,13,17,20,21,23]. In particular, we identify
six categories of productivity trajectories: constant, u-shaped,
decreasing, periodic, increasing, and canonical, with the latter
two categories describing almost three-fourths of researchers.
Increasing trajectories are much more frequent among early
career researchers than among senior researchers (45% vs
19%), while canonical curves are much more prevalent among
senior researchers than among younger scholars (65% vs
27%). However, the initial career years of senior researchers
are categorized as increasing trajectories with slightly less
prevalence than those found for younger researchers. Only a
small fraction of senior researchers with initially increasing
productivity trends is able to maintain this pattern, while the
majority of the remainder progresses to canonical trajectories.
This result highlights the importance of considering cohort
and size effects when investigating productivity trajectories,
and it indicates that young researchers characterized by in-
creasing trajectories may also progress to canonical patterns
in the future.

In what follows, we present these results in detail, and then
discuss the influence of funding allocation, tenure positions,
and job security in research on the emergence of productivity
patterns. We also caution against widely held but fixed and
oversimplified assumptions associated with scientific careers,
in the hope that the reported universal patterns will open the
door for more inclusive and improved evaluation of research
productivity.

II. RESULTS

Our results are based on the academic curricula of 8493
Brazilian researchers from 56 disciplines who hold the CNPq
Research Productivity Fellowship (see Methods for details).
This traditional fellowship aims to support the scientific enter-
prise and has been awarded to scholars producing high-quality
research since the 1970s. Scholars holding this fellowship are
commonly considered among the elite of Brazilian scientists.
All curricula vitae were collected from the Lattes platform
(Plataforma Lattes, a widely used governmental curriculum

platform in Brazil) where CNPq fellows are required to keep
their complete and up-to-date records for maintaining or ap-
plying for the fellowship. Compared to other databases often
used in science of science studies, our dataset has the main
advantage of not suffering from author name disambiguation
issues as well as it offers a systematic coverage of scientists
across the country. We construct raw time series of yearly pro-
ductivity (number of publications per year) for all researchers,
assuming that each career starts after doctorate completion.
The researchers in our study have career lengths of at least ten
years (the same threshold used by Way et al. [25]), and the
median career length is 17 years (Fig. S1 in the Supplemental
Material [32]).

We do not directly use raw productivity series in our anal-
ysis. Instead, we take into account three characteristics that
may hinder the identification of the most common produc-
tivity curves: inflation, different scales, and the noisy nature
of productivity series. Scientific productivity has been rising
worldwide over the years [18,30,31], and the researchers in
our study show an overall increase in productivity of ap-
proximately 0.8 papers per year per decade. This inflation is
also discipline-specific (Figs. S2 and S3 in the Supplemental
Material [32]). To account for inflation effects, we first deflate
the productivity series using the yearly average values of each
discipline [33], such that the deflated productivity represents
the re-scaled number of papers per year as if they were
published in 2015. Second, to make productivity trajectories
comparable among researchers, we calculate standard score
values (z scores) of productivity relative to each researcher
from the deflated productivity series. The z scores quantify
how many standard deviation units researchers perform above
or below their own average productivity and make all time
series comparable in scale. Productivity series also have an
intrinsic noisy nature that reflects the complex processes in-
volved in producing and publishing scientific papers. The
publication year often does not mark the actual completion
time of an article, as most papers are not promptly accepted
for publication. Thus, lastly, we apply a Gaussian filter to
the z score productivity series to account for these random
fluctuations.

After obtaining deflated, standardized, and smoothed pro-
ductivity curves, we apply the dynamic time warping (DTW)
algorithm [34] to estimate the similarities among all pairs of
researchers’ trajectories. The DTW is a shape-based dissimi-
larity measure that allows the comparison of time series with
different lengths and nonoptimal alignment—crucial features
for comparing researchers with different career lengths and
patterns that can be shifted in time. Next, we use the DTW
dissimilarity matrix along with the uniform manifold ap-
proximation and projection (UMAP) method [35] to create a
network representation of the similarities among researchers’
trajectories. UMAP is a state-of-the-art dimensionality re-
duction technique based on the mathematical grounds of
Riemannian geometry and algebraic topology capable of bal-
ancing the emphasis between local and global structures [35].
In short, it creates a graph representation from a dissimilar-
ity matrix of high-dimensional datapoints and projects them
into a lower-dimensional space using a force-directed layout
algorithm. We focus only on the first step of the UMAP algo-
rithm, mapping our dissimilarity matrix into a network where
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FIG. 1. Clustering patterns of researchers’ productivity curves. The central panel displays a network representation, where each node
represents a researcher and weighted edges connect those with similar productivity trajectories. Ten distinct communities, represented by
different colors and labeled 1 to 10, are identified and correspond to groups of researchers with similar productivity patterns. The surrounding
panels display the productivity curves of researchers in each community, with the black curves representing the average behavior of each
cluster. The lengths of researchers’ careers in each group are scaled to the unit interval and the numbers and fractions of researchers in each
group are shown within each panel. The ten clusters are further grouped into six categories: constant (cluster 1), u-shaped (cluster 2), decreasing
(cluster 3), periodic-like (cluster 4), increasing (clusters 5 and 6), and canonical-like (clusters 7 to 10) curves. Increasing and canonical-like
patterns describe almost three-fourths of the researchers in our study, while periodic-like curves are the least common. Clusters and nodes that
are close together share similar productivity patterns (see Ref. [43] for an interactive visualization).

researchers are represented as nodes and weighted edges con-
nect researchers with similar productivity trajectories. Finally,
we apply the Infomap algorithm to identify the community
structure of the network created by UMAP, which corresponds
to groups of researchers with similar productivity trajectories.
A similar approach has been recently and successfully used
by Lee et al. [36] to cluster extracellular spike waveforms in a
Neuroscience context. All steps used to cluster productivity
trajectories are further detailed in the Methods section and
illustrated in Fig. S4 in the Supplemental Material [32].

While the final low-dimensional embeddings produced by
UMAP are not deterministic (meaning that UMAP yields
similar but different embeddings), the network created in its
first step is always the same for a fixed dataset. However, the
Infomap algorithm is based on probability flows of random
walks on the network and produces similar but different net-
work partitions in each run. To account for this nondeterminis-
tic nature, we run 1000 realizations of the Infomap algorithm
and observe that all partitions are qualitatively comparable.
The number of detected communities ranges from 7 to 14, but
almost 85% of all realizations yield from 9 to 11 communities,
with 10 being the most common number of partitions (34%,
Fig. S5 in the Supplemental Material [32]). We select the

best partition as the one with the largest silhouette score [37]
among all realizations with 10 communities (see Methods
for details). We use Infomap because it is one of the best-
performing methods for detecting planted partitions in bench-
mark graphs [38–40], particularly for undirected and weighted
networks as in our case. However, deterministic community
detection methods such as the Louvain [41] and the Leiden
[42] also generate similar clustering patterns (Figs. S6 and S7
in the Supplemental Material [32]), but with lower silhouette
scores (Fig. S8 in the Supplemental Material [32]).

The central panel of Fig. 1 displays the network represen-
tation produced by UMAP, with different colors indicating the
ten communities detected by Infomap’s best partition. Sur-
rounding the network visualization, we plot the productivity
trajectories of all researchers in each group, as well as the
average behavior of each cluster (labeled 1 to 10). We also
re-scale the lengths of researchers’ careers in each group to
the unit interval to better visualize trajectories with different
lengths. Productivity trajectories in each group display very
similar shapes and the silhouette score of the clustering is sig-
nificantly higher than values obtained by shuffling trajectories
among clusters (Fig. S8 in the Supplemental Material [32]).
Our best partition not only generates internally consistent
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groups, but it also yields a significantly higher silhouette
score compared to null models in which artificial careers are
generated from a binomial distribution and the shuffling of
productivity trajectories of each researcher (Fig. S8 in the
Supplemental Material [32]). This network representation pre-
serves both local and global structures of the dissimilarity
matrix (Fig. S9 in the Supplemental Material [32]), meaning
that nodes and clusters that are close together share similar
productivity patterns. For example, clusters 7–10 all have an
average behavior marked by a peak in productivity and appear
adjacent to each other in the network. In contrast, clusters 3
and 6 represent opposite behaviors (increasing versus decreas-
ing trends) and are therefore located far apart. When visually
inspecting productivity patterns over the network representa-
tion (see Ref. [43] for an interactive visualization), we also
observe that nodes located close to the frontiers between two
or more communities often display more complex produc-
tivity patterns that may resemble a mixture of the average
behavior of adjacent clusters.

Our analysis uncovers a diverse set of productivity tra-
jectories that go beyond the canonical narrative and include
patterns that were only conjectured or observed in studies
using aggregated data [12,13,17,20,21,23]. A detailed exam-
ination of the trajectories and their derivatives (Fig. S10 in
the Supplemental Material [32]) allows us to group the ten
clusters into six categories: constant (cluster 1), u-shaped
(cluster 2), decreasing (cluster 3), periodic-like (cluster 4),
increasing (clusters 5 and 6), and canonical-like (clusters 7
to 10) curves. Constant trajectories, which make up 6.4% of
researchers, are characterized by stable or slightly decreasing
productivity. U-shaped trajectories, accounting for 6.3% of
researchers, show a decline before an increase in productiv-
ity. Decreasing trajectories, representing 7.8% of researchers,
exhibit a sharp decline in the first half of careers followed
by an almost constant plateau in productivity. Periodic-like
trajectories, which constitute 5.5% of researchers, have a
peak before midcareer followed by a decline before another
increase in productivity. Together, these patterns represent
slightly more than a quarter of researchers, with periodic-
like patterns being the least common. As a result, increasing
and canonical-like patterns describe almost three-fourths of
the researchers in our study. Specifically, 35% of researchers
display increasing curves, which are divided into two clusters:
one where productivity always increases over careers (cluster
6) and the other exhibiting growing trends with declining rates
or approaching a plateau (cluster 5). Canonical-like curves,
broadly defined here as careers containing a single peak in
productivity (clusters 7 to 10), are the most frequent type of
trajectory, comprising 39% of researchers in our dataset. We
use the term canonical-like because Lehman’s definition is
more restrictive, assuming the canonical narrative as “curves
of creativity that rise rapidly in early maturity and then decline
slowly after attaining an earlier maximum” [8]. Although this
definition is qualitative, one may interpret that solely cluster
7 strictly meets Lehman’s definition, as it is the only cluster
that shows a maximum before midcareer (Fig. S11 in the
Supplemental Material [32]). The peak positions are indeed
one of the most distinct behaviors among clusters 7 to 10, and
the reason they emerge as separated clusters (Table S1 in the
Supplemental Material [32]).

To validate the robustness of the six categories of pro-
ductivity trajectories, we perform ten realizations of our
clustering procedure using subsamples obtained by randomly
dividing our dataset into three equal-sized parts. For every part
and realization, we verify that the clusters can be categorized
into the same six patterns observed in the complete data. We
classify each researcher into one of the six categories in each
realization, allowing us to verify the consistency with the
classification obtained from the entire dataset. On average,
73% of researchers are assigned to the same category as de-
termined from the full data. The confusion matrix primarily
exhibits a diagonal pattern, with inconsistencies occurring
mainly when periodic curves are labeled as increasing or
canonical trajectories (Fig. S12A in the Supplemental Mate-
rial [32]). We also calculate the normalized entropy related
to the assignment probabilities of each pattern for every re-
searcher across the ten realizations. This analysis reveals that
80% of researchers display normalized entropy below 0.5, in-
dicating low variability in their assigned category (Fig. S12B
in the Supplemental Material [32]). Moreover, approximately
one-third of researchers exhibit zero entropy, signifying that
they are consistently assigned to a single category. We further
observe that researchers displaying higher entropy are located
in the frontier between two or more clusters (where patterns
tend to be more complex) as well as in the region of overlap
between the periodic (cluster 4) and increasing with declin-
ing rates (cluster 5) trajectories in the network representation
(Fig. S12C in the Supplemental Material [32]). These same
observations hold true when dividing the dataset into two
halves (Fig. S13 in the Supplemental Material [32]).

Additionally, we conduct a human validation where a
panel of two experts categorizes 25% of trajectories randomly
sampled from our dataset in a stratified manner. They are
introduced to an interactive application where z scores and
smoothed trajectories are individually shown. Buttons are pro-
vided for each category, and an additional button is available
when they disagree on the classification, for performing the
task. We compare these human-based labels with those de-
termined from our clustering procedure, finding an overall
agreement of 73% and a confusion matrix mostly diagonal
(Fig. S14A in the Supplemental Material [32]). Inconsis-
tencies occur primarily when experts classify decreasing
trajectories as u-shaped curves and periodic trajectories as
canonical curves. Periodic and u-shaped curves are also the
categories with the highest levels of disagreement between
the experts. Among increasing and canonical categories, the
increasing with declining rates (cluster 5) and late peak (clus-
ter 9) productivity curves are most frequently confused with
each other (Fig. S14B in the Supplemental Material [32]).
Similar to the subsampling validation analysis, disagreements
between the experts’ classification and our clustering process
occur for careers located in the frontier between two or more
clusters and in the overlapping region between periodic (clus-
ter 4) and increasing with declining rates (cluster 5) patterns
(Fig. S14C in the Supplemental Material [32]).

The prevalence of each productivity pattern may vary
among academic careers with different lengths. To examine
this potential size effect, we estimate the career size distribu-
tions of researchers in each cluster. Figure 2(a) shows that all
clusters encompass a broad range of career lengths, but with
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FIG. 2. Career length and cohort effects on the prevalence of productivity patterns. (a) Probability distributions of career lengths for each of
the ten clusters of productivity trajectories, as determined by kernel density estimation. All clusters encompass a broad range of career lengths,
but these distributions are more localized in distinct positions (Table S1 in the Supplemental Material [32]). (b) Prevalence of productivity
patterns across four categories of career length: 10–14 years, 15–19 years, 20–24 years, and greater than 24 years. The dominant pattern
among researchers with shorter careers, which also correspond to younger scholars, is the increasing productivity curve. This pattern becomes
less prevalent among researchers with longer careers, which corresponds to more experienced scholars. Canonical-like trajectories exhibit
the opposite behavior and are significantly more prevalent among senior researchers. Periodic-like curves are also more common among
researchers with long careers, while constant, u-shaped and decreasing trajectories occur more among young researchers. (c) Comparison of
the prevalence of productivity patterns in the initial career years of senior researchers with those exhibited in later career stages. The left bars
show the fractions of each productivity pattern obtained when considering the initial 14 career years of researchers with careers longer than
24 years, and the right ones show the prevalence of patterns when considering the full range of their careers. The connections between the left
and right bars indicate the migration flow among the productivity patterns. Almost half of canonical senior careers are classified as increasing
curves in their beginnings; however, only 9% of senior researchers who exhibit early career increasing productivity sustain this pattern with
career progression.

distinct median career sizes (Table S1 in the Supplemental
Material [32]). Constant and increasing curves exhibit the
smallest median career sizes (median of ∼15 years), while
canonical and periodic-like trajectories represent more se-
nior researchers (median of ∼20 years). To identify the most
common productivity pattern at each career stage, we group
academic careers into four length categories (10–14, 15–19,
20–24, and larger than 24 years) and calculate the prevalence
of each pattern. Figure 2(b) shows that increasing trajectories
are the dominant pattern for short careers, accounting for
45% of researchers in the shortest career category. However,
increasing curves become less prevalent among researchers
with longer careers, representing only 19% of researchers in
the longest career category. Canonical-like trajectories present
the opposite behavior and are much more prevalent among
researchers with longer careers. Only 27% of the researchers
with 10–14 career years display canonical-like productiv-
ity trajectories, whereas this pattern characterizes 65% of
researchers with more than 24 career years. Even when
combined, constant, u-shaped, decreasing, and periodic-like
careers occur less frequently than increasing or canonical-like
curves in all length categories. Still, we observe that constant,
u-shaped, and decreasing trajectories are relatively more com-
mon among younger researchers, while periodic-like curves
appear more often among researchers with careers longer than
14 years.

Overall, we find similar occupation trends when analyzing
the individual behavior of clusters comprising increasing and

canonical-like curves (Fig. S15 in the Supplemental Material
[32]). However, some clusters are more prevalent across the
length categories. The always-increasing pattern (cluster 6) is
more frequent than the increasing with declining rate pattern
(cluster 5) in all length categories, but especially among the
most experienced researchers. Almost all researchers exhibit-
ing increasing trajectories with careers longer than 24 years
belong to cluster 6. Among the canonical-like curves, the
middle and late-career peak patterns of clusters 8 and 9 are the
most common behaviors across all length categories, except
among the most experienced researchers, for which cluster 10
is the most common. The early stage peak behavior of cluster
8 is the rarest pattern across all categories, except for the
youngest researchers, and it is the only canonical-like curve
whose prevalence does not increase with career length. We
also obtain similar occupation trends when considering disci-
plines separately, with only biochemistry exhibiting an almost
constant fraction of increasing productivity curves across
the categories of career length. There are however apprecia-
ble differences in the prevalence of specific patterns among
disciplines (as detailed in Figs. S16 and S17 in the Supple-
mental Material [32]). For example, canonical-like curves are
8.9 times more frequent than increasing curves among the
most experienced mathematicians and only 1.4 times more
prevalent among senior biochemists. Conversely, increasing
curves are twice as common as canonical-like ones among
the youngest mathematicians and chemists and only 1.3 times
more prevalent among physicists.
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Career length is directly linked to the year of doctorate
completion of each researcher (Fig. S18 in the Supplemental
Material [32]) and serves as a proxy for grouping different
generations of scientists. Indeed, the overwhelming major-
ity of researchers with 10–14 career years concluded their
doctorates after the 2000s, while those with more than 24
career years did it before the 1990s. These groups of young
and senior scientists represent unique cohorts that are subject
to specific socioeconomic conditions, cultural environments,
knowledge base of the field, and baseline level of research
ability [14,23]. Therefore, the different prevalence of produc-
tivity curves may partially reflect the distinct research and
publication cultures of these groups. In particular, the much
higher fraction of increasing trajectories among the youngest
cohort seems to align with the increasing pressure on scholars
to produce in large quantities [27–29] and with the fact this
pressure is considered exceptionally high on young scientists
[44]. At the same time, the careers of young researchers can-
not be regarded as complete careers as even patterns emerging
after 10–14 career years may change over time. For instance,
part of the increasing patterns exhibited by young researchers
may eventually represent only the beginning of canonical-like
productivity curves. The precise identification of generational
effects in the prevalence of productivity patterns thus requires
a dataset comprising entire careers of different scientist co-
horts, which is not the case in our study.

However, we can partially test this hypothesis by analyzing
the initial career years of senior scientists and comparing the
prevalence of productivity patterns with the youngest cohort.
To do this, we apply our clustering approach to the entire
dataset, but only consider the initial 14 career years of re-
searchers with careers longer than 24 years. The best infomap
partition is again formed by ten clusters (Figs. S19 and S20
in the Supplemental Material [32]) with average patterns very
similar to those reported in Fig. 1. This allows us to group
them into the same six categories, with only the constant and
decreasing patterns (clusters 1 and 2) merged into a single
cluster (cluster 1 of Fig. S19 in the Supplemental Material
[32]). Figure 2(c) shows the prevalence of productivity pat-
terns associated with the beginning of senior careers and the
patterns they evolve to when considering the entire length of
senior careers (Fig. S21 in the Supplemental Material [32] de-
tails the transitions among individual clusters). Corroborating
our hypothesis, we observe that almost half of the senior ca-
reers classified as canonical are classified as increasing curves
in their beginnings. Only 9% of senior researchers exhibiting
early career increasing productivity sustain this pattern with
career progression. Conversely, 78% of senior researchers
with canonical-like early careers maintain this pattern in
later career stages. Moreover, about 21% of senior careers
classified as canonical show an initial part compatible with
constant/decreasing, periodic, and u-shaped patterns. These
rarer transitions are usually associated with careers localized
in the border between two or more communities, representing
thus more complex productivity patterns (see Fig. S22 in the
Supplemental Material [32] for examples).

The behavior of senior scientists may not predict the future
for young scholars, but our findings suggest that the high
prevalence of increasing productivity patterns among young
researchers reflects the incomplete nature of their careers.

If early career researchers follow their senior counterparts,
much more researchers will likely have productivity patterns
represented by canonical curves in the future. However, we
cannot ignore the potential effects of generational differ-
ences when comparing the productivity patterns of young
researchers even with the initial career years of senior re-
searchers. Indeed, our results show that increasing patterns are
10% more common among young researchers, while periodic-
like curves are three times more frequent in the initial years
of senior careers [Figs. 2(b) and 2(c)]. At the same time,
these early differences are relatively small, suggesting that
the structural changes in the scientific enterprise [5,29,45]
may have only a minor impact on researchers’ productivity
trajectories.

III. DISCUSSION AND CONCLUSIONS

We have performed a comprehensive analysis of produc-
tivity trajectories for over 8000 researchers from 56 different
research disciplines. Unlike previous studies that have focused
on specific disciplines [19–21,25], inferred typical produc-
tivity curves from averaged behavior [8–14,16,17,19–23], or
assumed particular forms of productivity trajectories before-
hand [14,15,24,25], we have evaluated pairwise similarities
among these trajectories, and accounted for inflation, differ-
ent scales, and random fluctuations of productivity curves.
Moreover, our research uses a comprehensive dataset with
no issues involving name disambiguation that offers system-
atic coverage of Brazilian scientists across different areas
and generations, which in turn contributes to reducing the
so-called “WEIRD bias” [46] in science of science studies.
Our approach revealed clusters of productivity trajectories
that are internally consistent, more cohesive than null mod-
els, and robust against data subsampling, as well as that are
in semantic agreement with human validation. In addition,
our clustering procedure resulted in a network representa-
tion where researchers and clusters with similar productivity
patterns are closely connected. We have uncovered a range
of productivity patterns that go beyond the traditional nar-
rative and can be classified into six universal categories:
constant, u-shaped, decreasing, periodic-like, increasing, and
canonical-like curves. When combined, constant, u-shaped,
decreasing, and periodic-like curves account for slightly
more than a quarter of researchers, while the majority of
researchers, nearly three-fourths, exhibit canonical-like or in-
creasing patterns.

We have also investigated possible career length and cohort
effects on the prevalence of the different productivity patterns.
This analysis has revealed that all clusters encompass a broad
range of career lengths, but increasing productivity curves are
the dominant pattern among researchers with shorter careers,
who are also younger scholars, while canonical-like curves
are the most common pattern among senior researchers. We
have hypothesized that the higher incidence of increasing
productivity patterns among younger scholars may be linked
to changes in the scientific enterprise, such as increased col-
laboration [26,47] and pressure on scholars (particularly on
young scientists [44]) to publish in large quantities [5,29,45],
but also to the fact that early career patterns may evolve as
young researchers progress in their careers. While identifying
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clear generational effects in the prevalence of productivity
patterns would require data on the entire careers of different
scientist cohorts, we have partially tested our hypotheses by
comparing the initial career years of senior scientists with the
careers of young scholars. These results showed that almost
half of the canonical-like curves among senior researchers are
classified as increasing patterns in the beginning. Conversely,
only 9% of senior researchers who exhibited early career
increasing productivity sustained this pattern as their careers
progressed. The relatively small differences in the prevalence
of patterns observed between young researchers and the initial
career years of senior researchers suggest that the behavior
observed for senior scientists does not necessarily dictate the
career trajectory of young scholars. However, if early career
researchers follow the same trajectory as their senior counter-
parts, the prevalence of canonical-like curves is likely to be
underestimated.

But even if possibly underestimated, canonical-like
curves—broadly defined here as careers with a single peak
in productivity—are the most prevalent productivity pattern,
accounting for almost two-fifths of researchers. While this
result somehow supports the canonical narrative of scientific
productivity, we have also observed that less than 5% of
researchers in our study strictly meet Lehman’s “canonical
productivity narrative” [8] and exhibit productivity curves
that “rise rapidly in early maturity and then decline slowly
after attaining an earlier maximum” [8]. These researchers
belong to cluster 7, which is only one of four clusters that
is classified as canonical-like, have median career lengths of
17 years, and present a peak in productivity approximately 6
years after their doctorates. The other three clusters (8, 9, and
10) account for almost 90% of researchers with canonical-like
patterns, who have slightly larger median career lengths but a
peak in productivity around 12 years after their doctorates.
Although the “earlier maximum” in Lehman’s definition is
subjective, our research shows that the peak in productivity
is more likely to occur around midcareer rather than early
career. Additionally, the rise and decline in the productivity
of researchers observed in our study is much more varied than
in Lehman’s definition.

We have further revealed that, when focusing on the initial
career years, most researchers in our study exhibit an increas-
ing productivity pattern. This initial trend emerges among
clusters 4 to 10 and accounts for approximately 80% of them.
The high incidence of increasing productivity patterns in early
career stages can likely be attributed to the way funding and
hiring decisions are made in academia. Research has shown
that productivity plays a significant role in determining job
placement [2] and access to financial resources needed to
continue research [4,5,48–51]. Therefore, it is likely that the
prevalence of early rising trends in productivity reflects the
tendency to reward more productive researchers. However,
about half of the researchers in our sample (those belong-
ing to clusters 7–10 and 3) exhibit a decline in productivity
that is more often observed after midcareer stages. Several
hypotheses may account for this pattern. For example, the
consolidation of academic prestige in late-career stages may
reduce the urgency of maintaining high productivity [52]. The
tension between time spent performing scientific research,
which is arguably often larger for young researchers, and

administrative tasks, which in turn is usually larger for senior
researchers, may also be partly responsible for the decline in
productivity during late-career stages [17,53,54]. Parenthood
may also contribute to a drop in productivity since time spent
on research is typically reduced in such circumstances [55].
Finally, the hardly avoidable decline in intellectual potential
over time may also be related to a reduction in productivity
with career progression [15].

In conclusion, our research reveals that the scientific pro-
ductivity of a significant number of researchers increases
during their early careers and declines after reaching mid-
career. However, the presence of six universal productivity
patterns and the wide variability among different cohorts
caution against relying on stereotypes in funding and tenure
decisions. We hope that our findings will inspire further in-
vestigations into the characteristics that define each cluster
of researchers and contribute to a more comprehensive and
inclusive evaluation of scholarly performance.

IV. METHODS

A. Data

The dataset used in our study was extracted from the Lattes
Platform (Plataforma Lattes) [56]. This platform is hosted and
maintained by the Brazilian National Council for Scientific
and Technological Development (CNPq—Conselho Nacional
de Desenvolvimento Científico e Tecnológico), a governmental
agency that promotes scientific and technological research
in Brazil. The Lattes Platform contains a consolidated na-
tional database of curriculum vitae (CV), research groups, and
institutions in a standardized form. Furthermore, the Lattes
CV has become the official curriculum vitae for Brazilian
researchers and is widely used by science funding agencies
and universities in performance evaluations. The platform
contains a wide range of information for each researcher,
including basic data such as discipline, workplace history, and
current affiliation, as well as more detailed information such
as academic mentorship relationships and scientific produc-
tion records. Compared to other datasets, our data based on
the Lattes Platform has the main advantage of solving issues
related to author name disambiguation as well as ensuring
comprehensive coverage of scientists across diverse academic
disciplines.

We initially selected the CVs of the 14 487 researchers
from 88 disciplines holding the CNPq Research Productivity
Fellowship as of May 2017. The total scientific output of these
researchers comprises 1 121 652 publications. The CNPq fel-
lowship has been awarded to scholars presenting outstanding
scientific impact and innovation in their respective areas of
knowledge since the 1970s. These researchers, commonly
regarded as the elite of the Brazilian scientific community,
are required to maintain a complete and up-to-date record of
their research activities on the Lattes Platform. To construct
the productivity trajectories, we collected the yearly publi-
cation records of each researcher starting from the doctorate
completion date. We filled in missing information using the
CrossRef API (via the DOI reference of the papers) and fil-
tered out researchers with missing doctorate conclusion date
or discipline information. Additionally, we only considered
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researchers with ten or more career years, the same threshold
used by Way et al. [25].

B. Deflated, standardized, and smoothed productivity series

The volume of scientific production has been consistently
increasing over time, as observed in both individual and ag-
gregate productivity levels [18,30,31]. However, this increase
in productivity, or productivity inflation, does not affect all
disciplines equally and is likely influenced by varying pub-
lication practices among them [18,57,58]. In our study, we
found that researchers present an overall rise in productiv-
ity of approximately 0.8 papers/year per decade, and this
inflation varies among disciplines (Figs. S2 and S3 in the
Supplemental Material [32]). For example, while productivity
has increased by approximately 2.1 papers/year per decade
among researchers working in medicine, it has only risen by
approximately 0.7 papers/year per decade among physicists.
To account for this discipline-specific inflation, we followed
Petersen et al. [33] and calculated a deflated measure of pro-
ductivity defined as

p j (y) = pj (y)
μp(2015)

μp(y)
,

where pj (y) is the raw productivity of researcher j in year y
and μp(y) is the average value of productivity of his/her dis-
cipline in year y. We used the Huber robust estimator [59] for
location (as implemented in the Python package statsmodels
[60]) to estimate the average productivity of each discipline
and account for outlier observations (Fig. S23 in the Supple-
mental Material [32]). Additionally, we only estimated the
average productivity of disciplines for years containing the
publication of records of at least 50 researchers, discarding
all researchers with at least one year without their disci-
pline’s average productivity estimate. This approach yielded
our final dataset comprising the deflated productivity trajecto-
ries of 8493 researchers divided into 56 research disciplines
(Fig. S24 in the Supplemental Material [32]).

To make the deflated productivity trajectories comparable
in scale, we further standardized their values by calculating
the z score productivity Pj (y) for researcher j in year y via

Pj (y) = p j (y) − E[p j]

S[p j]
,

where E[p j] is the average and S[p j] is the standard deviation
of deflated productivity along the entire career of researcher
j. The noisy nature of productivity trajectories (Fig. S25 in
the Supplemental Material [32]) also poses a challenge in
estimating dissimilarity measures among them. These fluctu-
ations reflect the intrinsic nature of scientific publishing, as
every work goes through a time-consuming and nondetermin-
istic process of reasoning, testing, writing, and peer-review
evaluation [61]. The exact point in time a paper is pub-
lished often does not reflect the actual completion time of the
work. To address this issue, we applied a Gaussian smoothing
filter to all z score productivity series (as implemented in
the Python SciPy package [62]). This filter assigns Gaussian
weights with a standard deviation σ centered on each data
point and uses these weights to average the time-series values
through a convolution process. The parameter σ controls the

degree of smoothing and defines a time scale for averaging
the productivity values over neighboring years (Fig. S26 in
the Supplemental Material [32]). We used σ = 2 years for all
results in the main text, but similar clustering patterns were
obtained when varying σ from 1.0 to 2.5 years in half-year
intervals (Figs. S27, S28, and S29 in the Supplemental Ma-
terial [32]). By applying the Gaussian filter on the z score
productivity trajectories, we ensured that the smoothing was
uniformly applied across researchers with different productiv-
ity variability.

C. Time-series clustering

We estimated the similarities between all pairs of pre-
processed productivity trajectories using the dynamic time
warping (DTW) algorithm [34] (as implemented in the Python
package dtaidistance [63]). The DTW is a shape-based dis-
similarity measure that allows for optimal alignment of
sequences by creating a nonlinear warping path between them,
providing more flexibility for matching sequences that show
similar patterns but are shifted in time. The resulting dis-
similarity matrix was then used as a precomputed metric in
the uniform manifold approximation and projection (UMAP)
dimensionality reduction algorithm [35] (as implemented in
the Python package umap [64] and with default parameters).
UMAP first creates a fuzzy simplicial complex, which can
be represented as a weighted graph, and then projects the
data into a lower-dimensional space via a force-directed graph
layout algorithm. The first step of the algorithm thus creates
a network representation of the dissimilarity matrix, where
nodes represent researchers and weighted edges connect re-
searchers with similar productivity trajectories.

Following the recent work of Lee et al. [36] in Neuro-
science, we used only the network topological structure and
discarded the low-dimensional representation produced by
UMAP, mapping thus the clustering of time series into a
community detection problem. Specifically, we applied the
map equation [65,66] and the hierarchical map equation [67],
the so-called Infomap approach, to determine the commu-
nity structure of the UMAP network. Infomap is a network
clustering technique based on concepts of information theory
that relies on random walks as a proxy for information flow
over the network. This method is one of the best-performing
in detecting planted partitions in benchmark graphs [38–40]
and is capable of identifying network partitions (clusters
and subclusters) where the random walker is more likely
to spend time. The map equation and the hierarchical map
equation represent the theoretical limits of how concisely one
can describe an infinite random walk on the network (the
description length) with a particular partition configuration.
By minimizing the map equation or the hierarchical map
equation, Infomap uncovers the community structure of the
network. We used the Infomap implementation available in
the Python package infomap [68] with default parameters and
tested both the standard two-level model and the hierarchical
model. We verified that the hierarchical map equation more
effectively estimates the network’s modular structure (that is,
it yields smaller description lengths when compared with the
two-level model) and was therefore chosen as our clustering
algorithm. We ran 1000 realizations of the Infomap algorithm
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by varying the seed parameter in each iteration and found
visually similar community structures. However, we defined
the best network partition as the one maximizing the silhouette
coefficient [37] among all partitions with the modal number
of clusters. Finally, we verified that the Louvain [41] and
the Leiden [42] (as used by Lee et al. [36]) community de-
tection algorithms also resulted in similar clustering patterns
(Figs. S6 and S7 in the Supplemental Material [32]).
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