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A wealth of evidence shows that real-world networks are endowed with the small-world property, i.e.,
that the maximal distance between any two of their nodes scales logarithmically rather than linearly with
their size. In addition, most social networks are organized so that no individual is more than six connections
apart from any other, an empirical regularity known as the six degrees of separation. Why social networks
have this ultrasmall-world organization, whereby the graph’s diameter is independent of the network size
over several orders of magnitude, is still unknown. We show that the “six degrees of separation” is the
property featured by the equilibrium state of any network where individuals weigh between their aspiration
to improve their centrality and the costs incurred in forming and maintaining connections. We show,
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moreover, that the emergence of such a regularity is compatible with all other features, such as clustering
and scale-freeness, that normally characterize the structure of social networks. Thus, our results show how
simple evolutionary rules of the kind traditionally associated with human cooperation and altruism can also
account for the emergence of one of the most intriguing attributes of social networks.

DOI: 10.1103/PhysRevX.13.021032 Subject Areas: Complex Systems

I. INTRODUCTION

In the short story Chains (1929), the Hungarian writer
Frigyes Karinthy described a game where a group of people
were discussing how themembers of the human societywere
closer together than ever before. To prove this point, one
participant proposes that any person out of the entire Earth
population (around 1.8 billion at that time) could be reached
using nothing except each personal network of acquaint-
ances, betting that the resulting chain would be of no more
than five individuals. The story coined the expression “six
degrees of separation” to reflect the idea that all people of the
world are six or fewer social connections apart from each
other. The concept was later generalized to that of “small-
world” networks, where the maximal social distance (the
diameter of the network) scales logarithmically, rather than
linearly, with the size of the population [1].
After early studies on the structure of social networks by

Gurevitch [2] and de Sola Pool and Kochen [3], Milgram
performed his 1967 famous set of experiments on social
distancing [4] (see alsoRef. [5])where, with a limited sample
of 1000 individuals, it was shown that people in the U.S. are
indeed connected by a small number of acquaintances. Later
on, Dodds et al. recreated Milgram’s experiments with
Internet email users [6] by tracking 24 163 chains aimed
at 18 targets from13 countries and confirmed that the average
number of steps in the chains was around six. Furthermore,
many experiments conducted at a planetary scale on various
social networks verified the ubiquitous character of this
feature: (i) a 2007 study by Leskovec and Horvitz (with a
dataset of 30 billion conversations among 240 million
MicrosoftMessenger users) revealed the average path length
to be six [7] (see also Ref. [8]), (ii) the average degree of
separation between two randomly selected Twitter users was
found to be 3.435 [9], and (iii) Facebook’s network in 2011
(721million users with 69 billion friendship links) displayed
an average distance between nodes of 4.74 [10].
Such abundant and consistent evidence points to the

fact that the structure of these networks radically differs
from either that of regular networks (where the diameter
scales linearly with the size) and that of classical small-
world networks (where, instead, the scaling law is loga-
rithmic) [1]. A clear explanation of the mechanisms
through which social networks organize into ultrasmall-
world states (where the diameter does not depend on the
system size over several orders of magnitude) is, however,
still missing. Why does such a collective property emerge?
What are its fundamental mechanisms? Why is the

common shortest path length between units of a social
network six, rather than five or seven or any other number,
implying an average distance which is also not far from six?
We here answer these questions in exact terms, by

adopting a game theoretical approach for describing the
network evolution, a line of studies which started almost
five decades ago by Myerson [11] analyzing cooperation
structures in a wide class of games. A couple of decades
later, games on adaptive networks were introduced, for
instance, by Jackson and Wolinsky [12], with the purpose
of studying the stability and efficiency of social and
economic networks when self-interested individuals could
form or sever links with others. Further on, the influential
work by Nowak andMay [13] showed how spatial structure
could provide an evolutionary escape hatch for cooperation
in social dilemmas. Coevolutionary networks have then
been considered in a series of works where players could
improve their topological position, for example, by cutting
links to defectors or rewiring their links to gain larger
payoffs [14–19]. Related research also covered game theo-
retical models as the basis for cooperation on networks [20],
for network formation and growth [21–24], as well as for
agents to achieve a position of high centrality while mini-
mizing the number of contacts they have to maintain [25].
So far, the few available studies on ultrasmall-world

states have focused on finding the relationship between the
scaling properties of distances in a graph and those of the
node’s degree distribution. It was indeed proved that scale-
free networks with degree distribution pðkÞ ∼ k−γ and 2 <
γ < 3 (as it is observed in all real-world networks) display a
scaling of the diameter as D ∼ ln lnN [26], which departs
from the classic logarithmic scaling of small-world net-
works and yet maintains an explicit dependence on the
network size N. On the other hand, scale-free networks
featuring an asymptotically invariant shortest path (called
Mandala networks [27]) may be synthesized, which how-
ever have an associated value of γ strictly equal to 2 and
therefore do not match any case observed in the real world.
Rather than being dependent on global (i.e., degree

distribution) scaling properties, in this article we show
that the mechanism behind such observed regularity can
be found, instead, in a dynamic evolution of the network.
Precisely, we rigourously show that, when a simple
compensation rule between the cost incurred by nodes in
maintaining connections and the benefit accrued by the
chosen links is governing the evolution of a network, the
asymptotic equilibrium state (a Nash equilibrium where no
further actions would produce more benefit than cost [28])
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features a diameter which does not depend on the system’s
size, and is equal to six. In other words, we theorematically
prove that any network where nodes strive to increase their
centrality by forming connections if and only if their cost is
smaller than the payoff tends to evolve into an ultrasmall-
world state endowed with the six degree of separation
property, irrespective of its initial structure. Our study points
out, therefore, that evolutionary rules of the kind traditionally
associatedwith human cooperation and altruism [29–33] can
in fact account also for the emergence of this attribute of
social networks. Furthermore, we show that such a global
network feature can emerge even from situations where
individuals have access to only partial information on the
overall structure of connections, which is indeed the case in
almost all social networks.

II. RESULTS

A. Game theoretical model for network evolution

Consider the general case which is schematically
depicted in Fig. 1, where the N nodes of a network V

are rational agents of a game. At each step m of the game,
each agent v ∈ V selects (independently of the choices
made by the other agents at the same step) a potential
neighborhood N vðmÞ made of kvðmÞ other nodes of V.
The agent then decides whether it is more profitable to
form connections with the nodes in N vðmÞ or to remain
connected with the nodes in N vðm − 1Þ. The decision is
based on a balance between the payoff and the cost
functions associated with the change of neighborhood.
As for the cost function, we assume that node v pays a

unitary cost c > 0 to maintain a connection with each node
u belonging to its neighborhood (and that node u cannot
refuse the connection paid for by v). Moreover, to be as
generic as possible, we assume the unitary cost either to be
a constant or to depend on the network size as c ¼ cðNÞ.
As for the benefit function, if agents are rational, it is

logical to assume that their goal is to increase their
importance within the network. This can be naturally
framed in terms of betweenness centrality [34], which
indeed provides a measure of the influence exerted by a
node on the information flow within a network. This is
defined as follows. First of all, if v and s are two nodes of a
connected network, the distance lðv; sÞ is taken to be the
number of edges forming the shortest path between them.
Then, the betweenness centrality (or degree of mediation)
Bv is taken to be

P
s≠v≠t½σstðvÞ=σst�, where s; t ∈ V are all

possible pairs of different vertices that do not match with v,
σstðvÞ is the number of shortest paths between the vertices s
and t passing through the vertex v, and σst is the total
number of shortest paths between the vertices s and t.
Bv quantifies how relevant the intermediary role played

by v in the graph is. However, one immediately realizes that
the contribution in Bv of the shortest paths in which v is the
unique intermediary between s and t is equal to that of
paths in which v is just one of a long chain of intermedi-
aries. To account for such a difference, one may adopt a
generic weighted version of the betweenness centrality
WBCðvÞ which is defined as

WBCðvÞ ¼
X
s≠v≠t

σstðvÞ
σst

· f½lðs; tÞ�; ð1Þ

where f is a strictly decreasing function of its argument (as
longer paths must contribute less). One can think of Eq. (1)
as follows: each pair s, t of vertices creates some utility,
which is then distributed equally among all shortest paths
from s to t, and then each intermediary vertex in each path
obtains a fraction equal to f½lðs; tÞ�=σst.
With these simple rules in mind, the N agents play the

game. When the game converges to a Nash equilibrium
(a configuration where no agent has anything to gain by
changing its own neighborhood, as all of them have already
attained their optimal adjacency), we can demonstrate
rigorously that the obtained structure is endowed with
the six degrees of separation attribute.

(a)

(b)

FIG. 1. Thegame theoretical framework. The structure of a social
network evolves following simple rules of a game. (a) At each step
of the game, the individuals forming part of the network (like the
red woman in the picture) have to decide whether to stay with the
neighborhood formedby their actual friends or to change to another
neighborhood formed by potential new friends. The current and
new neighborhoods may overlap (in our picture, the blue man and
the yellowwoman aremembers of both sets). The decision is based
on a careful evaluation of the cost incurred and of the benefit gained
with the change. (b) The decision is merely utilitarian. If the benefit
is not overcoming the cost, then individuals maintain their current
neighborhood (left-hand picture). If, on the contrary, the payoff
exceeds the cost, then individuals relinquish their current neigh-
borhood and move to the new one (right-hand picture). The
structure of the network then evolves until converging to its Nash
equilibrium (if it exists), i.e., to the configuration where no changes
of neighborhood are allowed, as no individual has anything to gain
in abandoning acquaintances.
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B. 2-independent sets and the emergence
of ultrasmall-world states

Before we demonstrate our main results, we first need
to introduce the concept of 2-independence of network’s
nodes. In traditional graph theory, a 1-independent set (or
internally stable set, or anticlique) S is a set of vertices such
that any pair of them is not connected by a graph’s edge.
This is to say that each edge in the graph has at most one
end point in S. As a consequence, any two vertices of S are
at a distance which is strictly larger than one.
One can now generalize the latter definition and desig-

nate as an l-independent set Sl the set of the network’s
nodes such that the distance between any pair of its mem-
bers is larger than l [35]. It follows that nodes belonging to
Sl do not necessarily belong to Slþ1 (see Fig. 2 for an
illustrative sketch of the comparison between a 2-indepen-
dent set and a classical 1-independent set).
Why are 2-independent sets important in our frame-

work? This can be understood by looking at Fig. 3. In
Fig. 3(a), the three vertices 1,2,7 are originally part of a
1-independent set. Now, if vertex 7 forms the yellow edges
(7,1) and (7,2), it is removed from the set but it does not
change the distance between nodes 1 and 2. It only
contributes to the multiplicity of shortest paths between
nodes 1 and 2. As the number of alternative shortest paths
may be very large in large sized networks, the minimum
possible benefit obtained from gluing a 1-independent set
(as node 7 would do by forming edges with nodes 1 and 2)
may be very small with the growth of the network’s size.
From the latter point it follows that the presence of

independent sets of large size may be compatible with
the Nash equilibrium.
A totally different situation occurs when we consider

2-independent sets, as in Fig. 3(b). Indeed, when
forming the yellow connections with nodes 1 and 2,
vertex 7 is actually reducing their distance from at least
3 down to 2. Therefore, regardless of which other edge
exists in the network involving vertices 1 and 2, vertex
7 receives a minimum benefit equal to fð2Þ. This is
equally valid for any other vertex of the 2-independent
set which would form edges with all other members of
the set: it would receive at least the same benefit from
each pair of nodes in the set. Therefore, the minimal
benefit obtained from gluing a 2-independence set of
size x is ðx−1

2
Þfð2Þ, which may be rather substantial. For

this reason, sizable 2-independent sets cannot exist in
the Nash equilibrium.
The process of gluing large size 2-independence sets is

precisely what regulates the spontaneous emergence of
the six degrees of separation. Namely, it can be proved
theorematically that such a process determines that

(i) at the Nash equilibrium the graph necessarily con-
tains at least a vertex v whose degree k scales as the
cube root of the system’s size i.e., k ∼

ffiffiffiffi
N3

p
, and

(ii) node v is at the center of the network and displays
the remarkable property of being at a distance of no
more than 3 from any other node of the graph.

FIG. 2. l-independence of nodes. Sketch of a generic graph,
with node A at the center. The first, second, and third neighbors of
node A are, respectively, located within the yellow, pink, and gray
region. The l-independent set of a graph is the set of nodes such
that the distance between any two of them is larger than l. The
black nodes (A, B, C, and D) form the 2-independent set of the
graph, as all of them are at a distance larger than 2 from each
other. The black nodes together with the ones depicted in light
blue form, instead, the 1-independent set. Note that the light
blue nodes do not participate in the 2-independent set. Finally,
the red nodes belong neither to the 1-independent set nor to the
2-independent set.

(a) (b)

FIG. 3. Independence of nodes and Nash equilibrium. (a) When
only black links are considered, vertices 1,2,7 form a 1-independent
set. For consistency with Fig. 2, nodes 1 and 2 are colored in light
blue. As vertex 7 forms the yellow edges (7, 1) and (7, 2) it is
removed from the 1-independent set (this change is depicted by
coloring the lowest part of the node in yellow), but the two new
connections do not remove nodes 1 and 2 from the 1-independent
set, since they only contribute to themultiplicity of the shortest paths
between 1 and 2. (b)When only black links are considered, vertices
1,2,7 form a 2-independent set. As the yellow connections are
formed, vertex 7 reduces the distance between nodes 1 and 2 from at
least 3 down to 2. As a consequence, nodes 1 and 2 can only be part
of a 1-independent set. For this reason, the upper half of nodes 1
and 2 is depicted in black, indicating that these nodes initially
belonged to the 2-independent set, and the lower half in light
blue, indicating that by receiving the connections from node 7,
they become members of a 1-independent set. Node 7 is half
colored in black (as it initially belonged to the 2-independent set)
and half in yellow (as the two new connections remove it from
all independent sets).
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The latter implies that the shortest path between any pair of
nodes i, j in the graph will be smaller than or equal to 6, as
there will be maximum three edges forming the shortest
path from i to v and maximum three edges also to form the
shortest path from v to j. Therefore, the diameter D of the
network will be exactly 6.
The proofs of the theorems and lemmas involved are

available in the Supplemental Material (SM) [36].

C. Illustrative case

For the sake of a better illustration, let us now focus on
the case described as follows.

(i) The agents start the game when they are already
connected by means of a pristine graph where, in
addition, there exists at least one node with suffi-
ciently high degree.

(ii) Each agent v adopts as benefit function

WBCðvÞ ¼
X
s≠v≠t

σstðvÞ
σst

·
1

lðs; tÞα ; ð2Þ

with α being a strictly positive parameter. Compar-
ing with Eq. (1), this means that the weighting factor
is f½lðs; tÞ� ¼ 1=lðs; tÞα, and that Eq. (2) coincides,
for α ¼ 1, with the classical weighted betweenness
centrality [34].

(iii) Agents sequentially add new connections to their
neighborhood if and only if there is a positive
balance between the extra utility brought by the
new connections and the extra cost.

In practice, at each step m of the game, the potential
neighborhood N vðmÞ of each agent v ∈ V is equal to
N vðm − 1Þ plus p other nodes. The p new edges are then
added only if ΔWBCðvÞ ≥ pc, i.e., only if the extra
weighted betweenness centrality is larger than or equal
to the extra cost pc.
When no agent is able to incorporate any further edge,

the network is said to have reached its asymptotic equi-
librium. It should be remarked that such a final state cannot
formally be associated to a Nash equilibrium, because the
option of removing existing links is not contemplated in the
game, and therefore there is no certainty that agents, in their
asymptotic states, are in their optimal adjacency configu-
ration. In this respect, it is worth highlighting that another
mechanism (beyond that of link addition and deletion) that
one can consider at the basis of the emergence of the six
degrees of separation is that of link rewiring, which would
actually imply the invariance of the network density during
its evolution toward the asymptotic equilibrium. We plan to
report on the effects of this latter mechanism elsewhere.
The following theorem can be proved.
(i) If v is a node of the pristine graph with k original

connections, and
(ii) if H ∈ f3; 4; 5;…g is some integer number strictly

larger than 2, and

(iii) if, for the considered values of c and α, the inequality

�
1

2α
−

1

ðH þ 2Þα
�
k ≥ c ð3Þ

is satisfied, then, in the equilibrium state of the
network, the node v is linked to all other nodes of
the graph by no more than H links, implying that
the diameter of the equilibrium network does not
exceed 2H.

In practice, the theorem guarantees that the asymptotic
state of a network evolving from an initial condition that
satisfies condition (3) is an ultrasmall-world state (and, for
H ¼ 3, also the emergence of the six degrees of separation
property).
The proof of the theorem (see SM for details [36]) is

given by contradiction i.e., by supposing that there is a node
u in the final state of the network whose distance from v is
at least H þ 1, i.e., lðu; vÞ ≥ H þ 1. To better illustrate the
situation, we depict in Fig. 4(a) the case in which nodes v
and u are separated by a distance H þ 1. In that circum-
stance, the nodes directly connected to v (the neighbors
of v) may be found at either H (the light blue node), or
H þ 1 (the green node), or H þ 2 (the red nodes) edges
from u. Looking at the figure, it is easy to understand that

(a)

(b)

FIG. 4. The emergence of the ultrasmall-world state. (a) Sketch
of a hypothetical network where nodes v and u are separated by a
distance H þ 1. The neighbors of v are then at either H (the light
blue node), orH þ 1 (the green node s), orH þ 2 (the red nodes)
edges from u. For a better visualization, paths of different lengths
are marked with the corresponding colors. (b) A direct (yellow)
link is added between v and u. Our study demonstrates rigorously
(see Theorem 3 of the SM [36]) that the network configuration of
(a) is incompatible with an equilibrium state. Note that, at
variance with the case depicted in Fig. 2, here distances between
nodes depend on the value of the parameter H.

WHY ARE THERE SIX DEGREES OF SEPARATION IN A … PHYS. REV. X 13, 021032 (2023)

021032-5



all network’s shortest paths which end in u and start
in either the green or the light blue node cannot pass
through v. Therefore, the only contribution to the benefit
function of v from shortest paths ending in u is coming
from those paths which start in the red nodes, the neighbors
of v that are at distance H þ 2 from u.
When one, instead, includes a direct link between v and

u [the yellow link in Fig. 4(b)], then the shortest path
between any neighbor of v (denoted by w) and u becomes
w − v − u, since H ≥ 3. Calculating then the value of
ΔWBCðvÞ corresponding to the addition of such a link,
and recalling that the equilibrium requires ΔWBCðvÞ to be
smaller than the cost c, one easily gets to an expression
which is in explicit contradiction with condition (3) (see the
SM for full details [36]).

D. Realistic case

We remark that our approach is valid independently of
the specific degree distribution properties of the pristine
graph. However, the maximum degree of a node in a
scale-free network generated by the preferential attach-
ment method [37] is known to scale as

ffiffiffiffi
N

p
[38,39] and this

implies that, for these networks, condition (3) is (from a
given size on) always verified for any value of fixed cost c
and any value of α, thus making them very good candidates
for initializing the formation of ultrasmall-world structures.
Therefore, to illustrate power and generality of the above

theorem, we perform a massive numerical trial by initializing
our game on networks of N nodes generated with the
Barabási-Albert (BA) algorithm[37], forα ¼ 1 (i.e., adopting
as benefit the weighted betweenness centrality), H ¼ 3, and
c ¼ 0.15

ffiffiffiffi
N

p
(to ensure a coherent scaling of the cost with

that of the maximum degree in the network). With
these stipulations, condition (3) becomes 0.3k ≥ 0.15

ffiffiffiffi
N

p
.

As k ≈ 2
ffiffiffiffi
N

p
[38,39], this means that condition (3) is verified

at each value of N, and one then expects that the diameter at
equilibrium would not exceed 6.
It is important to remark here that estimating the benefit

function (2) requires the retrieval of the global structure of
the network’s pathways at each step of the game. However,
such information is in general not available to the agents of
real social networks. Indeed, computing Eq. (2) becomes
prohibitively costly as the size of the network increases,
requiring (with the fastest existing algorithms) OðNLÞ
operations (L being the total number of links in the
network) [40,41].
For this reason, it is much more realistic and much less

computationally demanding to assume that agents use only
local information. We then consider a scenario wherein at
each step m of the game, a (large degree) node v is chosen.
v incorporates an edge with another node u if
(a) 0.3k ≥ c, where k is the degree of v,
(b) the distance between u and v is larger than 3.
In this way, it is only required to check that the subgraph

formed by v and its first and second neighbors has zero

overlapwith the subgraph formedbyu and its first neighbors,
and themethod is not hurting for the knowledge of the overall
shortest paths’ structure. At the same time, the adoption of
local information makes our study’s main claims even
stronger, because it proves that a global network property
(the network diameter) may emerge as a result of a game in
which agents share only local information, which is what
actually happens in almost all real circumstances.
Note that, if an edge connecting u and v is added, the

above conditions imply that ΔWBCðvÞ ≥ c. Indeed, if the
node u satisfies condition (b), it can easily be shown (using
the same arguments as in the SM for the proof of the
theorem [36]) that the maximum contribution to v of the
shortest paths between u and a neighbor of v is 1=5. Adding
the new edge, such a contribution raises to 1=2, and this
means that

ΔWBCðvÞ ≥ 0.3k;

where k is the number of connections of v. Therefore, if
condition (a) holds, then condition ΔWBCðvÞ ≥ c is also

FIG. 5. The emergence of the six degrees of separation.
Ensemble average hDi versus N for different sets of networks.
Light blue line: BA scale-free networks that are used as initial
conditions for the evolution of the game. Green line: networks
generated at the equilibrium state of the game. Red line: networks
constructed by randomly adding to the initial condition of each
game the same number of links needed to reach the game
equilibrium. A horizontal black dashed line is positioned at
hDi ¼ 6 to indicate that the network’s structure obtained at the
equilibrium features the ultrasmall-world property, with the
concurrent emergence of the six degrees of separation. Inset:
log-lin plot of hDi versus N. The logarithmic scaling of the light
blue and red lines is clearly visible.
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satisfied. This implies that our local method is actually
more restrictive when incorporating edges, and yet suffi-
cient to give evidence of the predictions of the theorem for
nodes satisfying condition (3).
The results of our simulation trial are presented in Fig. 5.

At each value of the network size N, 10 000 different
realizations of a BA scale-free network are generated. The
ensemble average hDi of the value of the network diameter
is plotted as a light blue line in the Fig. 5, showing a small-
world behavior (a logarithmic scaling with N, well visible
in the log-lin plot of the inset).
Each of the generated networks is then taken as initial

condition for the evolution of our game, following the
conditions (a) and (b) described above, until reaching the
final, equilibrium state. hDi for the reached equilibria is
reported as a green line in the Fig. 5, and it is clearly seen
that an ultrasmall-world state emerges with hDi ¼ 6
(a value marked by a horizontal dashed line).
A legitimate objection is that adding links to a graph (and

therefore increasing the graph’s density) always results in
decreasing the network’s diameter, and therefore a proper
comparison has to be offered to assess the relevance of the
obtained results. For this purpose, in all trials we take
diligent note of the total number of links added before
reaching the equilibrium. Then, we take back the initial
condition of the specific trial, and add exactly the same
number of links, but this time in a fully random way, i.e.,
without caring about the fulfillment of the game conditions
(a) and (b). The obtained values of hDi are reported as a red
line in Fig. 5. As expected, the red line is always located
below the light blue line, but the remarkable result is that
the new network ensemble maintains exactly the same
logarithmic scaling with N (once again well visible in the
inset), which is destined to depart more and more from the
constant value characterizing ultrasmall-world states and
emerging at the equilibrium of our game.
Finally, we move to show that the mechanism proposed

by us and leading to the emergence of the six degrees of
separation is, in fact, perfectly compatible with all major
structural properties that are observed in real social net-
works, and in particular with scale-freeness in the degree
distribution and with the presence of prominent and
hierarchical clustering features. The former attribute indi-
cates that the distribution of the nodes’ degrees scales as
pðkÞ ∼ k−γ (with 2 < γ ≤ 3 in real social networks); the
latter implies that the clustering coefficient cðkÞ of a
connectivity class k (the average clustering coefficient
of all nodes with a given degree k) does depend on k as
cðkÞ ∼ k−ω [42].
To that purpose, we repeat the same extensive simu-

lations which lead us to obtain the results reported in Fig. 5,
but this time we adopt as initial conditions for each trial
networks that are originated by means of the procedure
described in Ref. [43], which indeed provides graphs
endowed with degree distributions pðkÞ ∼ k−3, with a very

high clustering value (c ∼ 0.5 for an average degree of
hki ¼ 6), and with a hierarchical structure of the clustering
described by cðkÞ ∼ k−1.
Once again, for each value of N, an ensemble of 10 000

different networks are synthesized by the technique of
Ref. [43], and each of the generated networks is taken
as initial condition for the evolution of the game, until
reaching the equilibrium state. In each trial, moreover,
note is taken of the total number of links added before
reaching the equilibrium, and a network is constructed, for

(a)

(b) (c)

FIG. 6. Scale-free distribution and hierarchical clustering.
(a) Ensemble average hDi versus N for the three considered
ensembles of networks. Light blue line: networks generated by
the procedure of Ref. [43] and that are used as initial conditions
for the evolution of the game. Green line: the equilibrium network
states of the game. Red line: networks constructed by randomly
adding to the initial condition of each game the same number of
links needed to reach the game equilibrium. A horizontal black
dashed line is positioned at hDi ¼ 6. (b) The degree distribution
pðkÞ versus k for the set of initial conditions (light blue line)
and the set of reached equilibria (green line). N ¼ 10 000. For
visibility, the green line plotting pðkÞ at the equilibria has been
slightly vertically shifted. The black dashed line reports the
scaling pðkÞ ∼ k−3. (c) The hierarchical clustering coefficient
cðkÞ (see text for definition) versus k for the set of initial
conditions (light blue line) and the set of reached equilibria
(green line). N ¼ 10 000. For visibility, the green line plotting
cðkÞ at the equilibria has been slightly vertically shifted. The
black dashed line reports the scaling cðkÞ ∼ k−1. The small inset
reports the global clustering coefficients hCi versus N for the
three considered ensembles.
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comparison, by randomly adding exactly the same number
of links to the used initial condition.
The results are reported in Fig. 6. Precisely, Fig. 6(a)

clearly shows that the scenario obtained is identical to that
of Fig. 5: the values of hDi averaged over the ensemble of
the initial conditions (light blue line) and over the con-
structed set of networks with randomly added links (red
line) are both scaling logarithmically with N, while the
reached equilibria (green line) are ultrasmall-world states
with hDi ¼ 6 (marked by a horizontal dashed line).
Figures 6(b) and 6(c) compare, instead, the structures of

the initial conditions and that of the reached equilibria, for
N ¼ 10 000, and one immediately sees a very remarkable
fact: all other structural properties imprinted in the initial
conditions are conserved in the final state. Precisely,
Fig. 6(b) [Fig. 6(c)] reports the degree distribution pðkÞ
[the clustering coefficient cðkÞ] for the light blue case
corresponding to the used initial conditions and for the
green case corresponding to the reached equilibria, and one
immediately sees that the scaling pðkÞ ∼ k−3 [cðkÞ ∼ k−1],
highlighted by a black dashed line, is fully preserved within
the range 100–102 of the degree, i.e., across 2 orders of
magnitude, and with minimal differences occurring only at
larger degrees due to the addition of the new links that
create a few new hubs at the equilibrium. For visibility,
pðkÞ [cðkÞ] of the equilibria has even been multiplied by 2,
in order to shift the line in the Fig. 6 panels (b) and (c),
because otherwise there would be an almost complete
overlap between the light blue and the green curves.
In the small inset in Fig. 6(b), the values of the global

clustering coefficients are reported versus N for the three
ensembles. One sees that the addition of links in the process
of relaxation to equilibrium leads to a slight decrease of hCi
(from hCi ∼ 0.5 to hCi ∼ 0.42) which, however is main-
tained to a level pointing to the presence of very prominent
and important clustering features. However, the most
remarkable trait here is that the value of hCi at equilibria
is larger than that pertinent to the ensemble of networks
constructed by randomly adding to the initial conditions the
same number of links needed to reach the equilibria.

III. DISCUSSION AND OUTLOOK

The compensation of costs and benefits is certainly a
natural interaction strategy through which rational agents
determine their connections [44–49], and therefore our
study contributes to the understanding of why the six
degrees of separation is such a ubiquitous property across
vastly different social networks. It is, moreover, reasonable
to assume that a similar evolutionary principle may also
apply to the design of manmade or technological networks
[50]: take, for instance air or sea transportation networks
[51–53], in which airports or ports may increase their
volume of trades and/or tourism industry by “being in
between” the main routes of interchanges of passengers and

goods, and in doing so they are keen to incur the relative
costs of maintaining (or even enlarging) the number of local
connections.
On the other hand, the units of biological networks are in

general not rational agents, and it is not straightforward
to argue that benefits in terms of betweenness centrality
shaped, for instance, the structure of metabolic, genetic, or
brain networks along their million-year-long evolutionary
path [54–57]. However, one cannot rule out that other
compensation mechanisms could have played a pivotal role
in this case too, with different benefit functions (e.g.,
resilience to random perturbations or failures [58,59], or
local or global efficiency [60]) recouping for the cost to
form or maintain a specific adjacency structure. In neural
structures, for instance, it is well known that the functional
gains associated with link formation must offset the
associated structural costs [61–63]. Note that, for neural
structures, while this principle holds in general at evolu-
tionary and developmental timescales, it may also take
place at much shorter scales, comparable to those of social
network dynamics.
Finally, our study also sheds light on the so-called

strength of weak ties phenomenon. This concept was
introduced by Granovetter who showed that the most
common way of finding a new job is through personal
contacts with distant acquaintances, and not via close
friends, as one would instead have expected [64,65].
Distant acquaintances represent links connecting different
groups of people, and therefore provide each individual
with a unique way to receive useful information about
distant groups.
Formally speaking, weak ties are links connecting nodes

that were originally located at rather large distances and
they are therefore called bridges or local bridges (see the
discussion and references in Chap. 3 of Ref. [66]). Their
importance for social interaction and communication is
strongly supported by a wide range of studies [67,68].
The formation of links connecting nodes from

2-independent sets as the key to the emergence of the
six degrees of separation describes exactly the case of a
local bridge formation, i.e., a weak tie in Granovetter’s
sense. Therefore, our model can also be viewed as the
game theoretical foundation for the strength of weak ties
phenomenon.
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l’Homme et des Vertébrés (1909); English translation as
Histology of the Nervous System of Man and Vertebrates,
translated by N. Swanson and L. Swanson (Oxford
University Press, New York, 1995).

[62] E. Bullmore and O. Sporns, The Economy of Brain
Network Organization, Nat. Rev. Neurosci. 13, 336
(2012).

[63] P. Sterling and S. Laughlin, Principles of Neural Design
(MIT Press, Cambridge, MA, 2015).

[64] M. S. Granovetter, The Strength of Weak Ties, Am. J.
Sociol. 78, 1360 (1973).

[65] M. S. Granovetter, Getting a Job: A Study of Contacts
and Careers (University of Chicago Press, Chicago,
2018).

[66] D. Easley and J. Kleinberg, Networks, Crowds, and
Markets: Reasoning about a Highly Connected World
(Cambridge University Press, Cambridge, England, 2010).

[67] R. S. Burt, Structural Holes: The Social Structure of
Competition (Harvard University Press, Cambridge, MA,
1992).

[68] R. S. Burt, Structural Holes and Good Ideas, Am. J. Sociol.
110, 349 (2004).

I. SAMOYLENKO et al. PHYS. REV. X 13, 021032 (2023)

021032-10

https://doi.org/10.1080/15427951.2005.10129097
https://doi.org/10.1103/PhysRevE.64.016132
https://doi.org/10.1103/PhysRevE.64.016132
https://doi.org/10.1080/0022250X.2001.9990249
https://doi.org/10.1126/science.1073374
https://doi.org/10.1142/S0218127407018518
https://doi.org/10.1142/S0218127407018518
https://doi.org/10.1086/428716
https://doi.org/10.1086/428716
https://doi.org/10.1016/j.biosystems.2009.10.003
https://doi.org/10.1002/sim.5408
https://doi.org/10.1038/nature15392
https://doi.org/10.1038/s41562-020-01024-1
https://doi.org/10.1038/s41562-020-01024-1
https://doi.org/10.1016/j.physrep.2012.03.001
https://doi.org/10.1016/j.physrep.2012.03.001
https://doi.org/10.1073/pnas.0407994102
https://doi.org/10.1016/j.physrep.2018.01.001
https://doi.org/10.1038/s41467-022-31911-2
https://doi.org/10.1038/35036627
https://doi.org/10.1038/nn.4502
https://doi.org/10.1038/s41380-021-01097-y
https://doi.org/10.1098/rspb.2022.0999
https://doi.org/10.1098/rspb.2022.0999
https://doi.org/10.1038/35019019
https://doi.org/10.1038/35019019
https://doi.org/10.1103/PhysRevLett.85.4626
https://doi.org/10.1103/PhysRevLett.85.4626
https://doi.org/10.1038/nature14604
https://doi.org/10.1038/nature14604
https://doi.org/10.1038/nrn3214
https://doi.org/10.1038/nrn3214
https://doi.org/10.1086/225469
https://doi.org/10.1086/225469
https://doi.org/10.1086/421787
https://doi.org/10.1086/421787

