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a b s t r a c t

Atrial fibrillation (AF) is the most common arrhythmia type and its early stage is paroxys-
mal atrial fibrillation (PAF). PAF affects negatively the quality of life by causing dyspnea,
chest pain, feeling of excessive fatigue, and dizziness. In this study, our aim is to predict the
onset of paroxysmal atrial fibrillation (PAF) events so that patients can take precautions
to prevent PAF events. We use an open data from Physionet, Atrial Fibrillation Prediction
Database. We construct our approach based on the heart rate variability (HRV) analysis.
Short-term HRV analysis requires 5-minute data so that each dataset was divided into 5-
minute data segments. HRV features for each segment are calculated from time-domain
measures and frequency-domainmeasures using power spectral density estimations of fast
Fourier transform, Lomb–Scargle, and wavelet transformmethods. Different combinations
of these HRV features are selected by Genetic Algorithm and then applied to k-nearest
neighbors classification algorithm. We compute the classifier performances by the 10-fold
cross-validation method. The proposed approach results in 92% sensitivity, 88% specificity
and90% accuracy in the 2.5–7.5min time interval priors to PAF event. The proposedmethod
results in better classification performance than the similar studies in literature. Comparing
the existing studies, we propose that our approach provide better tool to predict PAF
events.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Ahealthy heart beats at 60–80 times perminute [1]. Electrical impulses from the sinoatrial (SA) node spread curvaceously
to stimulate the atria and initiate contractions for the healthy beat. However, random and multiple impulses are produced
in patients with atrial fibrillation (AF), in addition to the impulses from the SA node [2]. These impulses cause fibrillation
instead of normal contractions of the atrium.

There are three types of AF: Paroxysmal AF (PAF), Persistent AF, andChronic AF. PAF is the first-stage of AF. In this situation,
AF starts suddenly and continues up to a week. If it is determined as soon as possible, the complications and the progress of
this situation can be avoided [3].

AF affects negatively the quality of life by causing dyspnea, chest pain, feeling of excessive fatigue, and dizziness [4,5].
Moreover, AF increases the risk of stroke five times, the risk of death (due to stroke) two times. Consequently, the patient care
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Fig. 1. Datasets used in the study: (A) Normal subjects (B) HRV data distant from PAF (C) HRV data close to PAF.

costs increase 1.5 times [3]. AF is very common among heart diseases with the incidence of 1–2% of the general population.
It is estimated that 2.7–6.1 million Americans and over 6million Europeans suffer from this situation [3,6]. Furthermore, the
incidence of AF is around 5–15% at the age of 80s while this is less than 0.5% at the age of 50s, which means the incidence of
AF drastically increases by the age [3].

The number of studies related to pre-detection of PAF events has been increased for 2 decades [7–19]. Zong et al. [7]
reported that the frequency of APC beats is a highlighting feature before PAF occurs of 30-min ECG signals. Langley et al. [8]
have also estimated PAF by looking at the quantities of atrial ectopic and ventricular ectopic beats using 30-min RR data. They
have stated that there is a significant increase in atrial ectopic beats before a PAF event [8]. Using 1-min, 5-min, 10-min, and
30-minRRdata, Chazal andHenegham [9] have performed early estimation of PAF byusing 1–6 correlation coefficients, time-
domain measurements, frequency-domain measurements, and P waveform and spectral densities, and they found that the
power spectral densities and Pwave characteristics of RR intervals have distinctive features. In another study, Chesnokov [10]
found that the spectral components increase statistically before PAF event while the sample entropy and approximate
entropy values decrease.Mohebbi andGhassemian [11] have used spectral, bispectral and nonlinearmeasurements obtained
from 30-min heart rate variability (HRV) data. Their results indicate that the spectral powers in the LF and HF bands increase
before PAF event. In bispectral measurements, phase couplings were observed in data distant from a PAF event, while the
phase couplings decrease as the PAF event approaches. They noted that the Poincare measurements might be a critical PAF
event indicator [11]. Boon et al. [12,13] investigated the 5-min, 10-min, 15-min, 20-min and 30-min segments of free ectopic
data and noted that the performance decreases toward the shorter segments than the 30-min segments.

Another widely used method for predicting PAF in the literature is to examine P-wave s on Electrocardiography (ECG)
[16–19]. In these studies, researchers have used P-wave duration, amplitude, P-wave change, spectral power intensities of
P-wave change and non-linear measurements of P-wave. In particular, Alcaraz et al. [17] and Artuno Martinez et al. [18]
have shown that P-wave is an effective for predicting PAF events beforehand on one-hour data segments.

In this study, we attempt to construct a complex expert system to predict better the onset of the PAF events based
on the HRV so that patients can take precautions to prevent PAF events. For this aim, we use a free and open data from
Physionet, Atrial Fibrillation Prediction Database (AFPDB). The database contains 30-minute ECG datasets from 49 normal
subjects, 25 PAF patients having a PAF event just after recording the data, 25 PAF patients having no immediate experience
after recording the data. Each dataset is divided into 5-minute data segments and then HRV features for each segment are
calculated from time-domain measures and frequency-domain measures using power spectral density estimations of fast
Fourier transform, Lomb–Scargle, andwavelet transformmethods. Different combinations of theseHRV features are selected
by Genetic Algorithm (GA) and then applied to k-nearest Neighbors classification algorithm. Then, we compute the classifier
performances by the 10-fold cross-validation method.

2. Materials and methods

2.1. Data

We use the Atrial Fibrillation Prediction Database (AFPDB), which is free and open to all researchers on Phsionet.org
website [20]. All ECG datasets in the database are sampled by the sampling rate of 128 Hz, digitized by a resolution of 12 bits
and included 30-minute ECG records. The database consists of two parts: 50 datasets from normal subjects and 50 datasets
from patients with PAF. The PAF datasets are also divided into two parts: (1) 25 data just before a PAF event and (2) 25 data
with no PAF events 45 min before or after the recording. The general representation of the data is given in Fig. 1.

Nonetheless, the dataset numbered ‘n27’ among normal datasets is excluded from the study because it has excessive
noise. This case has been reported in similar studies [21]. As a result, in this study, 49 datasets from normal subjects, 25
datasets from PAF patients with an event and 25 datasets from PAF patients with no near event are included.

2.1.1. Data segmentation
Standards of HRV analysis were determined by the Task Force group in 1996, a 5-minute recording period is recom-

mended for short-term HRV analysis and a 24-hour recording period is recommended for long-term HRV analysis [22]. In
order to determine more precise time before the PAF event, short-term (5-minute) HRV analysis is preferred. Based on this
approach, all 30-min segments of data were divided into 10 5-minute segments with 50% overlap as shown in Fig. 2.

For all the HRV data segments, we calculate the HRV features and the classifier performances.
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Fig. 2. Representation of HRV data divided into 10 parts of 5 min.

Fig. 3. An example of HRV signal: (a) Original HRV signal (b) Signal after the cubic spline method (c) Signal without a trend.

2.1.2. Data pre-processing
HRV data is an unevenly sampled data and contains non-stationary components and noises [22]. Some feature extraction

methods require evenly sampled data (FFT &Wavelet) and/or free of non-stationary components (FFT). In order to make the
data evenly sampled one, a re-sampling (interpolation) method should be used. Since the upper-frequency limit of HRV data
is defined as 0.5 Hz, the HRV data can be resampledwith the sampling rate of 1 to 10Hz in the literature [23]. In some frontier
studies, it has been argued that the appropriate sampling frequency is 4 Hz or 7 Hz [23,24]. The resampling frequency was
chosen as 7 Hz in this study. We prefer the Cubic Spline method because it is widely used due to its continuity and smooth
transitions [25,26].

HRV data have a non-stationary structure that has linear or more complex trends. Since these trends are very influential
in HRV measurements, these trends should be eliminated [23,27] or discarded [28]. The Smoothness Priors method is a
popular method among the most common de-trending methods. Researchers prefer this method because it can be used on
HRV data [27], its Matlab code is readily available, and it is easy to use. Using the second-order derivative expressions, the
stationary data are expressed as follows:

xstationary = x − H θ̂λ =

(
I −

(
I + λDT

2D2
)−1
)
x (1)

where x is HRV data, D2 is the second order difference operator, λ is the regulatory parameter (λ = 10), and xstationary is
the signal without trends. A detailed information about this method can be found in [28]. An example HRV data, its trend
component and stationary signal are shown in Fig. 3.

2.2. The HRV analysis

The HRV analysis has become a very popular method for researchers. It has been used in the diagnosis of many diseases
and the description of the functions of the autonomic nervous system and cardiovascular systems [29–34]. HRV features
are calculated from time-domain, frequency-domain, and nonlinear measurements. Each feature vector is expressed as a
dimension, which forms a d-dimensional feature space. All of the features obtained from the 5-minute segments of data are
defined briefly below.
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2.2.1. The HRV time-domain features
HRV time-domain features allow data to be examined statistically. It is the easiest method among the HRV measure-

ments [24,35]. The HRV time-domain features are defined as follows [22]:
AVNN (or ŔR) is the average HRV value; SDNN is the standard deviation of the HRV data; SDSD is the standard deviation

of the differences of consecutive HRV data; RMSSD is the root mean square value of consecutive HRV data; NN50 is the
total number of consecutive HRV data differences greater than 50 ms; NN20 is the total number of consecutive HRV data
differences greater than 20 ms; pNN50 is the ratio of NN50 value; and pNN20 is the ratio of NN20 value.

2.2.2. The HRV frequency-domain features
Different frequency components in the HRV indicate both sympathetic and parasympathetic changes in the autonomic

nervous system. In the literature related to short-term HRV analysis, there are three frequency bands: very low frequency
(VLF) (0–0.04 Hz), low frequency (LF) (0.04–0.15 Hz) and high frequency (HF) (0.15–0.40 Hz) [22]. In the long-term HRV
analysis, there is an extra ultra-low frequency band (ULF) (0–0.0033Hz) and the lower limit of VLF is changed to 0.0033Hz. In
HRV analysis, power spectral density (PSD) of these frequency bands are used as possible features. We use three alternatives
for determining the frequency-domain features: Fast Fourier Transform, Lomb and Wavelet-based approaches.

2.2.2.1. Fast Fourier Transform. Fast Fourier transform (FFT) is a fast and efficient method to calculate the discrete Fourier
transform (DFT). The DFT of the x signal, which is sampled at N equally spaced intervals and its time-domain mean and
variance do not change during the time, can be found at:

X (k) =

N−1∑
n=0

(
x (n) e

−j2πkn
N

)
(2)

k = 0, ∓1, ∓2, . . . ,∓ (N − 1).
The direct calculation of DFT increases the number of operations too much if the N sequence length in the equation is

high. A solution to this problem is the Fast Fourier Transform (FFT) method, which makes the calculation faster and yields
the same result [36]. Power spectral density can be calculated as:

Px =
1
N

N−1∑
k=0

|X (k)|2 =
1
N

N−1∑
k=0

⏐⏐⏐⏐⏐
N−1∑
n=0

(
x (n) e

−j2πkn
N

)⏐⏐⏐⏐⏐
2

(3)

where X(k) values are selected to the corresponding frequency band. Because of the requirements of the method, x must
be an evenly-sampled and stationary signal. Therefore, resampled and detrended HRV data can be used in calculating PSD
using FFT.

2.2.2.2. Lomb–Scargle Periodogram. The Lomb–Scargle Periodogram (LS) is amethod of calculating the PSDwithout the need
for resampling and eliminating trends [24,37–39]. The LS algorithm was found by Lomb [37] and improved by Scargle [38]
as follows:

P (w) =
1

2σ 2

⎧⎪⎨⎪⎩
[∑N−1

i=0

(
xi − x́

)
cos (w (ti − τ))

]2
∑N−1

i=0 cos2 (w (ti − τ))
+

[∑N−1
i=0

(
xi − x́

)
sin (w (ti − τ))

]2
∑N−1

i=0 sin2 (w (ti − τ))

⎫⎪⎬⎪⎭ (4)

τ ≡
1
2w

tan−1

(∑N
i=1 sin (wti)∑N
i=1 cos (wti)

)
(5)

where w = 2π f , τ is the offset value, x is the signal to which the method is applied, x́ is the mean value of the signal, ti is
the ith sampling time, σ 2 is the variance value of the samples.

Scargle [39] has proved that the resultant periodogram values have the same probability distribution as the uniformly
distributed data. The Fourier Transform and the Lomb algorithm give similar results when tested both numerically and
theoretically.

2.2.2.3. Wavelet packet transform. The wavelet transform is an appropriate method for non-stationary signals, which allows
analysis of the sudden changes in the spectrum [40,41]. All sub packages are applied to the algorithm in the wavelet packet
transform and only low-frequency packages are applied to the algorithm in the discrete wavelet transform. The wavelet
packet transform (WPT) gives a more detailed analysis of high-frequency components of the signal.

The choice of the mother wavelet function is important in wavelet transforms. Daubechies wavelet functions give better
results on ECG and HRV signals [29,42]. Therefore, in this study, 7-level wavelet packet transformations are obtained by
using Daubechies 4 wavelet function.
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Table 1
Confusion matrix.

Actual value
Near PAF event No near-PAF event

Predicted value Near PAF event TP True positive FP False positive
No near-PAF event FN False negative TN True negative

Table 2
Grouping of data.
CLASS Group 1 Group 2

Positive Experienced PAF event Experienced PAF event
Negative Did not experience PAF event+ Normal subjects Did not experience PAF event

Table 3
k-NN performance results for Time + FFT measurements. Group 1 includes all subjects including normal subjects and patients with PAF where Group 2
includes only patients with PAF.
Segments Group 1 Group 2
(min) k SEN (%) SPE (%) NEG (%) POS (%) ACC (%) k SEN (%) SPE (%) NEG (%) POS (%) ACC (%)

0.0–5.0 17 12.0 100 77.1 100 77.8 7 64.0 76.0 67.9 72.7 70.0
2.5–7.5 5 44.0 95.9 83.5 76.6 82.8 5 56.0 84.0 65.6 77.8 70.0
5.0–10.0 3 44.0 91.9 82.9 64.7 79.8 3 60.0 84.0 67.7 78.9 72.0
7.5–12.5 13 8.0 100 76.3 100 76.8 7 72.0 52.0 65.0 60.0 62.0
10.0–15.0 7 40.0 93.2 82.1 66.7 79.8 11 76.0 60.0 71.4 65.5 68.0
12.5–17.5 11 12.0 97.3 76.6 60.0 75.8 11 56.0 68.0 60.7 63.6 62.0
15.0–20.0 13 12.0 100 77.1 100 77.8 9 64.0 68.0 65.4 66.7 66.0
17.5–22.5 13 24.0 90.3 79.1 75.0 78.8 13 64.0 56.0 60.9 59.3 60.0
20.0–25.0 11 8.0 98.6 76.0 66.7 75.8 1 64.0 64.0 64.0 64.0 64.0
22.5–27.5 17 4.0 100 75.5 100 75.8 19 76.0 36.0 60.0 54.3 56.0

It is a frequently used measure of wavelet entropy calculation in wavelet transforms [43,44]. The calculation of wavelet
entropy is as follows

WENTROPY = −

∑
j∈f

(
C2
j∑N

j=1 C
2
j

log2

(
C2
j∑N

j=1 C
2
j

))
(6)

where Cj denotes the jth coefficient of the last wavelet level.

2.3. Feature selection

Some of the features have a negative effect on the classifier performance to discriminate classes, which is called curse-of-
dimensionality [45]. A feature selectionmethod is applied to avoid this effect and to find the best representative features [46].
In this study, we use the genetic algorithm (GA) for the future selection.

The GA is an optimization method based on fundamentals of the reproduction of generations and the survival of
individuals. In the GA, variables are converted to a sequence of a certain-length binary sequence. Every bit in GA expresses
the corresponding feature. For example, if the bit is ‘‘1’’ at the kth bit, that feature is included in the study. If it is ‘‘0’’, this
feature will not be included in the study. The fitness function is the most important part of the GA because new individuals
are formed based on this function, and defined as follows [47]:

Fitness Function = FN + FP (7)

where FN is the number of misclassified PAF-event subjects as non-PAF-event subjects and FP is the number of misclassified
non-PAF-event subjects as PAF-event subjects in the classifier.

2.4. k-nearest neighbor classifier

The k-nearest neighbor is one of the simplest classifiers among many classifier algorithms in data mining. This classifier
does not need a training phase and the data is stored only.While classifying the test data, the datum is assigned to the class of
the majority class of k-nearest neighbors [45]. The distances between the test sample and all stored samples are sorted in an
ascending order and the neighborhoods are determined. The most commonly used distance measure is Euclidean distance
defined as follows:

D (x, y) =

√ n∑
k=1

(xk − yk)2 (8)
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Table 4
k-NN performance results for Time+ FFT+ GA. Group 1 includes all subjects including normal subjects and patients with PAF where Group 2 includes only
patients with PAF.
Segments Group 1 Group 2
(min) k SEN

(%)
SPE
(%)

NEG
(%)

POS
(%)

ACC
(%)

Selected features k SEN
(%)

SPE
(%)

NEG
(%)

POS
(%)

ACC
(%)

Selected features

0.0–5.0 1 64.0 90.5 88.2 69.6 83.8 RMSSD, NN20, pNN20,
FFT_VLF, FFT_HF

3 92.0 88.0 91.7 88.5 90.0 RMSSD, FFT_VLF, F
FT_LF, FFT_TOTAL

2.5–7.5 5 44.0 95.9 83.5 78.6 82.8 Mean, RMSSD, HH50, NN20,
FFT_LF/HF, FFT_TOTAL

5 72.0 92.0 76.7 90.0 82.0 SDNN, pNN20, FFT_LF,
FFT_HF, FFT_TOTAL

5.0–10.0 5 52.0 94.6 85.4 76.5 83.8 Mean, SDNN, RMSSD, NN20,
FFT_VLF, FFT_LF, FFT_LF/HF

5 76.0 76.0 76.0 76.0 76.0 SDNN, RMSSD, NN20,
FFT_HF, FFT_TOTAL

7.5–12.5 5 28.0 95.9 79.8 70.0 78.8 Mean, SDSD, NN50,
pNN50, pNN20

5 68.0 64.0 66.7 65.4 66.0 Mean, SDNN,
FFT_LF, FFT_HF

10.0–15.0 3 56.0 90.5 85.9 66.7 81.8 SDNN, RMSSD, pNN20,
FFT_VLF, FFT_LF, FFT_TOTAL

13 64.0 80.0 69.0 76.2 72.0 SDNN, RMSSD,
FFT_VLF, FFT_TOTAL

12.5–17.5 3 44.0 91.9 82.9 64.7 79.8 SDNN, pNN20, FFT_VLF,
FFT_LF, FFT_HF,
FFT_LF/HF, FFT_TOTAL

13 72.0 56.0 66.7 62.0 64.0 Mean, SDNN,
RMSSD, FFT_HF

15.0–20.0 15 12.0 98.6 76.8 75.0 76.8 NN50, NN20, pNN20, FFT_VLF 3 60.0 80.0 66.7 75.0 70.0 SDNN, RMSSD,
FFT_VLF, FFT_HF

17.5–22.5 11 24.0 98.6 79.3 85.7 79.8 SDNN, NN50, pNN50, pNN20,
FFT_VLF, FFT_LF, FFT_HF

9 72.0 52.0 65.0 60.0 62.0 SDNN, RMSSD, NN50, NN20,
pNN20, FFT_VLF, FFT_LF,
FFT_TOTAL

20.0–25.0 11 32.0 97.3 80.9 80.0 80.8 NN20, pNN50, pNN20,
FFT_LF, FFT_TOTAL

3 76.0 60.0 71.4 65.5 68.0 SDNN, NN50, NN20, pNN50

22.5–27.5 5 28.0 94.6 79.5 63.6 77.8 Mean, NN50, FFT_VLF,
FFT_LF, FFT_HF

5 68.0 52.0 61.9 58.6 60.0 SDNN, RMSSD,
FFT_HF, FFT_TOTAL

Table 5
k-NN performance results for Time + LOMB measurements (NaN: there is no value). Group 1 includes all subjects including normal subjects and patients
with PAF where Group 2 includes only patients with PAF.
Segments Group 1 Group 2
(min) k SEN (%) SPE (%) NEG (%) POS (%) ACC (%) k SEN (%) SPE (%) NEG (%) POS (%) ACC (%)

0.0–5.0 7 12.0 98.6 76.8 75.0 76.8 9 64.0 76.0 67.9 72.7 70.0
2.5–7.5 5 28.0 98.6 80.2 87.3 80.8 7 56.0 84.0 65.6 77.8 70.0
5.0–10.0 15 16.0 100 77.9 100 78.8 9 56.0 76.0 63.3 70.0 66.0
7.5–12.5 11 0.0 100 74.7 NaN 74.7 15 52.0 76.0 61.0 68.4 64.0
10.0–15.0 7 24.0 94.6 78.7 60.0 76.8 9 64.0 64.0 64.0 64.0 64.0
12.5–17.5 7 16.0 94.6 76.9 50.0 74.7 7 72.0 60.0 67.2 64.3 66.0
15.0–20.0 11 4.0 100 75.5 100 75.8 15 44.0 80.0 58.8 68.8 62.0
17.5–22.5 13 12.0 98.6 66.8 75.0 76.8 1 52.0 72.0 60.0 65.0 62.0
20.0–25.0 13 4.0 100 75.5 100 75.8 1 64.0 64.0 64.0 64.0 64.0
22.5–27.5 7 20.0 98.6 78.5 83.3 78.8 3 48.0 72.0 58.1 63.2 60.0

2.5. The classifier performance

In order to compute the classifier performance, data are divided into test and train clusters using the cross-validation
methods of the holdout, the k-fold, the re-substitution, or the leave-one-out. In this study, we compute the classifier
performance by using the k-fold cross-validation method, where the data are divided into k parts, one of these parts is
used for testing while the remaining k − 1 parts are used for training. The values of TP, TN, FP, and FN are computed as
shown in Table 1. This process is repeated k times to determine overall values of TP, TN, FP, and FN [45]. where TP is the
number of subjects who actually have a near PAF event and determined correctly, FN is the number of subjects who actually
have a near PAF event but misclassified as no near PAF event, TN is the number of subjects who actually do not have a
near-PAF event and determined correctly, and FP is the number of subjects who actually do not have a near-PAF event but
misclassified as near-PAF event. After computing these values, performance measures of sensitivity (SEN), specificity (SPE),
positive predictivity (POS), negative predictivity (NEG), and accuracy (ACC) can be calculated as follows:

SEN =
TP

TP + FN
(9)

SPE =
TN

TN + FP
(10)

NEG =
TN

TN + FN
(11)

POS =
TP

TP + FP
(12)
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Table 6
k-NN performance results for Time + LOMB + GA. Group 1 includes all subjects including normal subjects and patients with PAF where Group 2 includes
only patients with PAF.
Segments Group 1 Group 2
(min) k SEN

(%)
SPE
(%)

NEG
(%)

POS
(%)

ACC
(%)

Selected features k SEN
(%)

SPE
(%)

NEG
(%)

POS
(%)

ACC
(%)

Selected features

0.0–5.0 1 64.0 90.5 88.2 69.6 83.8 RMSSD, pNN20, LOMB_LF,
LOMB_HF, LOMB_LF/HF

5 84.0 88.0 84.6 87.5 86.0 SDNN, RMSSD,
LOMB_LF/HF

2.5–7.5 7 36.0 97.3 81.8 81.8 81.8 Mean, SDNN, RMSSD, SDSD,
NN50, NN20, pNN50, pNN20,
LOMB_HF, LOMB_LF/HF

3 76.0 88.0 78.6 86.4 82.0 SDNN, pNN20,
LOMB_VLF

5.0–10.0 15 24.0 97.3 79.1 75.0 79.1 Mean, SDNN, RMSSD, SDSD,
LOMB_HF, LOMB_LF/HF

5 64.0 84.0 70.0 80.0 74.0 SDNN, RMSSD,
pNN20, LOMB_HF

7.5–12.5 5 32.0 94.6 80.5 66.7 80.5 Mean, RMSSD, SDSD, pNN20 11 68.0 68.0 68.0 68.0 68.0 LOMB_HF
10.0–15.0 7 24.0 98.6 79.3 85.7 79.8 NN50, pNN50, LOMB_LF 9 68.0 76.0 70.4 73.9 72.0 SDNN
12.5–17.5 5 32.0 93.2 80.2 61.5 77.8 RMSSD, NN50, NN20, pNN20,

LOMB_HF, LOMB_LF/HF
3 48.0 88.0 62.9 80.0 68.0 LOMB_LF, LOMB_HF

15.0–20.0 15 20.0 97.3 78.3 71.4 77.8 SDNN, RMSSD, NN50, pNN50,
pNN20, LOMB_HF, LOMB_LF/HF

1 68.0 76.0 70.4 73.9 72.0 SDSD, LOMB_LF/HF

17.5–22.5 5 20.0 97.3 78.3 71.4 77.8 Mean 3 76.0 60.0 71.4 65.5 68.0 SDNN, NN50, pNN50, pNN20,
LOMB_HF, LOMB_LF/HF

20.0–25.0 5 32.0 95.9 80.7 72.7 79.8 SDNN, NN20,
LOMB_HF, LOMB_LF/HF

3 64.0 80.0 69.0 76.2 72.0 RMSSD, NN20,
LOMB_HF, LOMB_LF/HF

22.5–27.5 7 40.0 95.9 82.6 76.9 81.8 SDNN, LOMB_VLF,
LOMB_HF, LOMB_LF/HF

3 72.0 60.0 68.2 64.3 66.0 SDNN, LOMB_LF, LOMB_HF,
LOMB_LF/HF, LOMB_TOTAL

Table 7
k-NN performance results for Time + Wavelet measurements. Group 1 includes all subjects including normal subjects and patients with PAF where Group
2 includes only patients with PAF.
Segments Group 1 Group 2
(min) k SEN (%) SPE (%) NEG (%) POS (%) ACC (%) k SEN (%) SPE (%) NEG (%) POS (%) ACC (%)

0.0–5.0 13 36.0 95.9 81.6 75.0 80.8 7 64.0 80.0 69.0 76.2 72.0
2.5–7.5 3 44.0 91.9 82.9 64.7 79.8 9 52.0 88.0 64.7 81.3 70.0
5.0–10.0 5 36.0 91.9 81.0 60.0 77.8 9 76.0 72.0 75.0 73.1 74.0
7.5–12.5 5 4.0 100 75.5 100 75.8 19 88.0 36.0 75.0 57.9 62.0
10.0–15.0 3 40.0 87.8 81.3 52.6 75.8 13 52.0 52.0 52.0 52.0 62.0
12.5–17.5 11 4.0 100 75.5 100 75.8 3 52.0 64.0 57.1 59.1 58.0
15.0–20.0 13 8.0 98.6 76.0 66.7 75.8 7 68.0 52.0 61.9 58.6 60.0
17.5–22.5 9 20.0 97.2 78.3 71.4 77.8 1 60.0 72.0 64.3 68.2 66.0
20.0–25.0 7 20.0 95.9 78.0 62.5 76.8 13 84.0 40.0 71.4 58.5 62.0
22.5–27.5 9 4.0 100 75.5 100 75.8 9 72.0 52.0 65.0 60.0 62.0

ACC =
TP + TN

TP + FN + FP + TN
(13)

3. Results and discussion

In this study, AFPDB data obtained from Physionet website (which contains ECG datasets from 49 normal subjects, 25
patients having following PAF event and 25 patients having no near PAF event) were used to predict a PAF event before its
onset. Short-term (5-minute) HRV analysis is used to calculate time-domain measures (8 features) and frequency-domain
measures (18 features) for 10 time-segments. Using these features, we investigatedwhich 5-min segment (or segments) can
indicate a possible near PAF event.

For this purpose, we tried to find out answers for two questions: ‘‘how many minutes before a PAF event were required
to predict among all normal subjects and patients with PAF?’’ as a first question (Group 1) and ‘‘how many minutes before
a PAF event were required to predict among all patients with PAF?’’ as a second question (Group 2) as shown in Table 2.
For this purpose, GA selects the combinations of 5-minute HRV features of time-domain and frequency-domain measures
and applies to the inputs of the k-nearest Neighbors classifier. Datasets used in the study divided into 10 time-segments
of 5-minute HRV data. The neighborhood value of k was applied as odd numbers from 1 to 19. As a result, the study was
repeated 10 (time-segments) × 2 (groups) × 10 (k = 1, 3, 5, . . ., 19) × 2 (apply all features and only selected features by
GA) × 3 (feature combinations of Time + FFT, Time + Lomb, Time + Wavelet) = 1200 times and classifier performances
were recorded.

For each 5-minute data segment, the following 26 HRV time-domain and frequency-domain features were computed
separately: MEAN, SDNN, RMSSD, SDSD, NN50, NN20, pNN50, pNN20, FFT_VLF, FFT_LF, FFT_HF, FFT_LF/HF, FFT_TOTAL,
LOMB_VLF, LOMB_LF, LOMB_HF, LOMB_LF/HF, LOMB_TOTAL, Wave_VLF, Wave_LF, Wave_HF, Wave_LF/HF, Wave_TOTAL,
Ent_VLF, Ent_LF, and Ent_HF.
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Table 8
k-NN performance results for Time+Wavelet+ GA. Group 1 includes all subjects including normal subjects and patients with PAF where Group 2 includes
only patients with PAF.
Segments Group 1 Group 2
(min) k SEN

(%)
SPE
(%)

NEG
(%)

POS
(%)

ACC
(%)

Selected features k SEN
(%)

SPE
(%)

NEG
(%)

POS
(%)

ACC
(%)

Selected features

0.0–5.0 7 64.0 87.8 87.8 64.0 81.8 SDNN, RMSSD, Wave_HF,
Wave_TOTAL, Ent_LF

1 84.0 84.0 84.0 84.0 84.0 SDNN, NN50

2.5–7.5 7 36.0 97.3 81.8 81.8 81.8 Mean, SDNN, RMSSD, pNN50,
pNN20, Wave_LF,
Wave_TOTAL, Ent_HF

3 72.0 88.0 75.6 85.7 80.0 SDNN, RMSSD, pNN20,
Wave_TOTAL

5.0–10.0 13 48.0 91.9 84.0 66.7 80.8 Mean, SDNN, RMSSD, Wave_HF,
Wave_LF/HF, Wave_TOTAL

5 80.0 72.0 78.3 74.1 76.0 SDNN, Wave_VLF, Wave_HF,
Wave_LF/HF, Ent_LF, Ent_HF

7.5–12.5 5 32.0 94.6 80.5 66.7 78.8 Mean, RMSSD, SDSD,
pNN20, Wave_VLF

3 84.0 64.0 80.0 70.0 74.0 NN20, pNN50, Wave_LF/HF

10.0–15.0 11 12.0 98.6 76.8 75.0 76.8 RMSSD, NN20, pNN50,
Wave_VLF, Wave_LF, Ent_LF

7 72.0 76.0 73.1 75.0 74.0 SDNN, Ent_HF

12.5–17.5 1 52.0 86.5 84.2 56.5 77.8 NN20, pNN20, Ent_VLF, Ent_LF,
Ent_HF

1 60.0 68.0 63.0 65.2 64.0 SDSD, NN20, pNN50, Wave_LF,
Wave_LF/HF, Ent_VLF

15.0–20.0 3 48.0 89.2 83.5 60.0 78.8 SDNN, NN50, NN20, pNN20,
Wave_LF/HF, Ent_LF, Ent_HF

9 76.0 60.0 71.4 65.5 68.0 SDNN, RMSSD, Wave_VLF,
Wave_HF, Ent_VLF, Ent_LF

17.5–22.5 9 16.0 100 77.9 100 78.7 RMSSD, NN50, NN20, Wave_LF,
Wave_HF, Wave_TOTAL, Ent_LF,
Ent_HF

1 72.0 72.0 72.0 72.0 72.0 SDNN, RMSSD, pNN20, Wave_VLF,
Wave_LF, Ent_VLF, Ent_HF

20.0–25.0 9 40.0 94.6 82.4 71.4 80.8 RMSSD, NN50, Wave_HF,
Wave_TOTAL

5 64.0 76.0 67.9 72.7 70.0 RMSSD, NN50, pNN50, Wave_LF,
Wave_HF, Wave_TOTAL,
Ent_VLF, Ent_HF

22.5–27.5 9 4.0 100 75.5 100 75.8 SDSD, pNN50, Wave_LF,
Wave_HF, Wave_LF/HF,
Wave_TOTAL

15 84.0 40.0 71.4 58.3 62.0 RMSSD, NN50, pNN50, Wave_VLF,
Wave_LF, Ent_VLF

Table 9
Literature review.
Literature Database Data length (min) Features Cross-validation Results (%)

SEN SPE ACC

Chazal and Henegham [9]
AFPDB 10 RR interval FFT power spectral density 5-fold 91.0 84.0 86.8
AFPDB 10 RR interval time domain measures 5-fold 90.0 59.0 77.6
AFPDB 5 P-wave power spectral density 5-fold 81.0 69.0 75.6

Hickey and Henegham [48] AFPDB 30 HRV power spectral density and PACs 5-fold 79.0 72.0 75.0
AFPDB 5 5-fold 51.0 79.0 68.0

Zong et al. [7] AFPDB 30 Number and timing of PACs Single-fold – – 80.0
Thong et al. [49] AFPDB 30 Number of PACs and paroxysmal atrial tachycardia Single-fold 68.0 86.0 78.0

Chesnokov [10]
AFPDB 30

HRV features
Single-fold 68.2 100 82.0

AFPDB 30 Single-fold 83.7 76.5 80.5
AFPDB 30 Single-fold 79.1 58.8 70.1

Mohebbi and Ghassemain [11] AFPDB 30 HRV features Single-fold 96.3 93.1 94.6

Boon et al. [12]

AFPDB 30

HRV features

Single-fold 96.4 71.4 83.9
AFPDB 30 10-fold 81.1 79.3 80.2
AFPDB 10 Single-Fold 75.1 54.3 69.6
AFPDB 10 10-fold 58.5 81.1 68.9
AFPDB 15 Single-fold 85.1 82.1 83.9
AFPDB 15 10-fold 77.4 81.1 79.3

Boon et al. [13] AFPDB 5 HRV features 10-fold 86.8 88.7 87.7
Martinez et al. [18] Own data 60 P-wave nonlinear features 2-fold 92.0 88.0 90.0
Alcaraz et al. [17] Own data 60 P-wave spectral features 2-fold – – 88.0
This Study AFPDB 5 HRV linear and nonlinear features combination 10-fold 92.0 88.0 90.0

We first computed the classifier performances with both HRV time-domain and HRV FFT-based frequency-domain
features. The obtained results are shown in Table 3. We also computed the classifier performances with some selected
features of both HRV time-domain and HRV FFT-based frequency-domain features by GA, and shown in Table 4. The highest
accuracies are obtained as 82.8% for Group 1 and 72.0% for Group 2 when all features are considered for the classifier. On the
other hand, the highest accuracies are obtained as 83.8% for Group 1 and 90.0% for Group 2 when only selected features are
applied to the classifier. Feature selection by GA increases the classifier performances.

Secondly,we computed the classifier performanceswith bothHRV time-domain andHRV Lomb-based frequency-domain
features. The obtained results are shown in Table 5. We also computed the classifier performances with some selected
features of bothHRV time-domain andHRVLomb-based frequency-domain features byGA, and shown in Table 6. The highest
accuracies are obtained as 80.8% for Group 1 and 70.0% for Group 2 when all features are considered for the classifier. On
the other hand, the highest accuracies are obtained as 83.8% for Group 1 and 86.0% for Group 2 when only selected features
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are applied to the classifier. Results indicate that the feature selection by GA plays critical role by increasing the classifier
performances.

Finally, we computed the classifier performances with both HRV time-domain and HRV Wavelet-based frequency-
domain features. The obtained results are shown in Table 7. We also computed the classifier performances with some
selected features of bothHRV time-domain andHRVWavelet-based frequency-domain features byGA, and shown in Table 8.
The highest accuracies are obtained as 80.8% for Group 1 and 74.0% for Group 2 when all features are considered for the
classifier. On the other hand, the highest accuracies are obtained as 81.8% for Group 1 and 84.0% for Group 2 when only
selected features are applied to the classifier. Results again indicate that the feature selection by GA plays critical role by
increasing the classifier performances.

As mentioned above, we used three alternatives for determining the frequency-domain features through FFT, Lomb and
Wavelet-based approaches. We reached at the best classifier performance with an accuracy of 90%, specificity of 88% and
sensitivity of 92% for the FFT-based approach.

We summarized the current literature in Table 9. It seems that there are three separate studies by using the 5-min
segments. Chazal and Henegham [9] used AFPDB database and obtained a classification performance of an accuracy of 75,6%,
specificity of 69,0% and sensitivity of 81% by using P-wave power spectral density. Hickey and Henegham [48] used the same
database and reached at a classification performance of an accuracy of 68%, specificity of 79,0% and sensitivity of 51% by
using HRV power spectral density and PACs. In a very recent study, Boon et al. [13] reconsidered the issue by using 5-min
HRV segments and obtained a performance in classification with an accuracy of 87,7%, specificity of 88,7% and sensitivity of
86,8%. Consequently, the proposed method in this study results in better classification performance than the similar studies
in literature. We may propose that our approach provide better tool to predict PAF events.
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