
Physics Reports 1017 (2023) 1–96
Contents lists available at ScienceDirect

Physics Reports

journal homepage: www.elsevier.com/locate/physrep

Signal propagation in complex networks
Peng Ji a,b,c,∗, Jiachen Ye a,d,∗, Yu Mu e, Wei Lin f,g,h, Yang Tian i,j,
Chittaranjan Hens k, Matjaž Perc l,m,n,o,p, Yang Tang q,g, Jie Sun r, Jürgen Kurths s,t,f

a Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
b Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education, Shanghai 200433, China
c MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200433, China
d CMA-FDU Joint Laboratory of Marine Meteorology, Institute of Atmospheric Sciences, Fudan University, Shanghai 200433, China
e Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence
Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
f Research Institute of Intelligent Complex Systems and MOE Frontiers Center for Brain Science, Fudan
University, Shanghai 200433, China
g Shanghai Artificial Intelligence Laboratory, Shanghai 200232, China
h School of Mathematical Sciences, SCMS, and CCSB, Fudan University, Shanghai 200433, China
i Department of Psychology & Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing 100084, China
j Laboratory of Advanced Computing and Storage, Central Research Institute, 2012 Laboratories, Huawei Technologies Co.
Ltd., Beijing 100084, China
k Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology,
Gachibowli, Hyderabad 500032, India
l Faculty of Natural Sciences and Mathematics, University of Maribor, Korosška cesta 160, 2000 Maribor, Slovenia
m Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404332, Taiwan
n Alma Mater Europaea, Slovenska ulica 17, 2000 Maribor, Slovenia
o Complexity Science Hub Vienna, Josefstädterstraße 39, 1080 Vienna, Austria
p Department of Physics, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, Republic of Korea
q Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and
Technology, Shanghai 200237, China
r Theory Lab, Central Research Institute, 2012 Labs, Huawei Technologies Co., Ltd., Sha Tin, 999077, Hong Kong Special
Administrative Region of China
s Potsdam Institute for Climate Impact Research (PIK), 14473 Potsdam, Germany
t Department of Physics, Humboldt University, 12489 Berlin, Germany

a r t i c l e i n f o

Article history:
Received 28 March 2023
Accepted 29 March 2023
Available online xxxx

Keywords:
Signal propagation
Complex networks
Nonlinear dynamics

a b s t r a c t

Signal propagation in complex networks drives epidemics, is responsible for information
going viral, promotes trust and facilitates moral behavior in social groups, enables
the development of misinformation detection algorithms, and it is the main pillar
supporting the fascinating cognitive abilities of the brain, to name just some examples.
The geometry of signal propagation is determined as much by the network topology as it
is by the diverse forms of nonlinear interactions that may take place between the nodes.
Advances are therefore often system dependent and have limited translational potential
across domains. Given over two decades worth of research on the subject, the time
is thus certainly ripe, indeed the need is urgent, for a comprehensive review of signal
propagation in complex networks. We here first survey different models that determine
the nature of interactions between the nodes, including epidemic models, Kuramoto
models, diffusion models, cascading failure models, and models describing neuronal
dynamics. Secondly, we cover different types of complex networks and their topologies,
including temporal networks, multilayer networks, and neural networks. Next, we cover
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network time series analysis techniques that make use of signal propagation, includ-
ing network correlation analysis, information transfer and nonlinear correlation tools,
network reconstruction, source localization and link prediction, as well as approaches
based on artificial intelligence. Lastly, we review applications in epidemiology, social
dynamics, neuroscience, engineering, and robotics. Taken together, we thus provide the
reader with an up-to-date review of the complexities associated with the network’s
role in propagating signals in the hope of better harnessing this to devise innovative
applications across engineering, the social and natural sciences as well as to inspire
future research.

© 2023 Elsevier B.V. All rights reserved.

Contents

1. Introduction and motivation ................................................................................................................................................................... 3
2. Basic model systems ............................................................................................................................................................................... 6

2.1. Epidemic models.......................................................................................................................................................................... 6
2.1.1. Metapopulation models............................................................................................................................................... 7
2.1.2. Agent-based models..................................................................................................................................................... 11

2.2. Kuramoto model .......................................................................................................................................................................... 12
2.2.1. Traveling wave state .................................................................................................................................................... 13
2.2.2. Perturbation propagation ............................................................................................................................................ 15

2.3. Diffusion models .......................................................................................................................................................................... 16
2.3.1. Random walks .............................................................................................................................................................. 16
2.3.2. Reaction–diffusion process.......................................................................................................................................... 20
2.3.3. Percolation process ...................................................................................................................................................... 22

2.4. Cascading failures ........................................................................................................................................................................ 23
2.4.1. Load-capacity model .................................................................................................................................................... 24
2.4.2. Fraction threshold model ............................................................................................................................................ 25

2.5. Neuroscience dynamics............................................................................................................................................................... 26
2.5.1. Neural networks as dynamical systems .................................................................................................................... 26
2.5.2. Synergies between neural dynamics and data analysis .......................................................................................... 27

3. Complex networks.................................................................................................................................................................................... 28
3.1. Temporal networks...................................................................................................................................................................... 28

3.1.1. Diffusion speed ............................................................................................................................................................. 30
3.1.2. Epidemic spreading...................................................................................................................................................... 31

3.2. Spatiotemporal signal propagation ............................................................................................................................................ 33
3.3. Multilayer networks .................................................................................................................................................................... 34

3.3.1. Epidemic spreading...................................................................................................................................................... 34
3.3.2. Cascading failures......................................................................................................................................................... 36

3.4. Control on networks.................................................................................................................................................................... 38
3.4.1. Static topology .............................................................................................................................................................. 39
3.4.2. Dynamic topology ........................................................................................................................................................ 39

3.5. Graph neural networks ............................................................................................................................................................... 41
4. Network time series analysis techniques .............................................................................................................................................. 41

4.1. Information transfer and nonlinear correlation tools ............................................................................................................. 41
4.2. Network reconstruction .............................................................................................................................................................. 45
4.3. Source localization and link prediction..................................................................................................................................... 52

4.3.1. Link prediction.............................................................................................................................................................. 53
4.3.2. Source localization ....................................................................................................................................................... 55

4.4. AI driven time series analysis .................................................................................................................................................... 56
4.4.1. Time series processing................................................................................................................................................. 56
4.4.2. Time series forecasting ................................................................................................................................................ 57

5. Applications............................................................................................................................................................................................... 59
5.1. Epidemic ....................................................................................................................................................................................... 59

5.1.1. Agent-based models..................................................................................................................................................... 59
5.1.2. Metapopulation models............................................................................................................................................... 60

5.2. Social dynamics............................................................................................................................................................................ 61
5.2.1. Opinion formation........................................................................................................................................................ 61
5.2.2. Human cooperation ..................................................................................................................................................... 62
5.2.3. Other models ................................................................................................................................................................ 63

5.3. Neuroscience ................................................................................................................................................................................ 63
5.3.1. Circuit neuroscience..................................................................................................................................................... 63
5.3.2. Propagation directions: Bottom-up, top-down......................................................................................................... 64
2



P. Ji, J. Ye, Y. Mu et al. Physics Reports 1017 (2023) 1–96

t
c
u
c
C
o

i
s
o
e
m
b
e
c
r
c
s
e

n
o

o
s
o
s
t
m
e
f
i
T
n
d
s
t
t
t
c

p
q
g

5.3.3. Propagation in time: Sequential activation............................................................................................................... 65
5.4. Power grids................................................................................................................................................................................... 66

5.4.1. Dynamical perturbations ............................................................................................................................................. 66
5.4.2. Structural perturbation................................................................................................................................................ 69

5.5. Robot swarms............................................................................................................................................................................... 69
5.5.1. Collective behaviors in robot swarms ....................................................................................................................... 69
5.5.2. Swarm attack ................................................................................................................................................................ 72

6. Conclusion ................................................................................................................................................................................................. 74
Declaration of competing interest.......................................................................................................................................................... 76
Acknowledgments .................................................................................................................................................................................... 76
References ................................................................................................................................................................................................. 76

1. Introduction and motivation

Collective behavior is the hallmark of complex systems, and as such, it has attracted much attention during the past
wo decades [1–9]. It is an emergent phenomenon that is due to the interactions between many units that make up
omplex systems, be it neurons in the brain or ants in an anthill, as well as due to external disturbances that often act
pon them. Most importantly, collective behavior is often universal in nature, such that models describing very different
omplex systems share qualitatively identical spatiotemporal dynamics and phase transitions leading up to it [10–13].
onsequently, as physicists, we can reach a deeper understanding and appreciation of complex systems through the lens
f collective behavior.
For the study of collective behavior, signal propagation is a commonly used metric to discern the processes that are

nvolved and their impact across time and space. In fact, the propagation of signals is the very lifeline of collective behavior,
ince it enables the proper functioning of complex systems in nature, social systems, and engineering. With the advent
f complex systems science, or complexity science, we have witnessed significant advances in this field, both from an
xperimental and a theoretical point of view. For example, the propagation of neuronal activity in a healthy brain across
ultiple spatio-temporal scales empowers fascinating cognitive abilities, while failures or changes in this propagation can
e utilized to diagnose disease [10,13]. Similarly, in social systems, modeling opinion dynamics across social networks
ntails a cognitive process that determines how a group of agents shapes their opinion, and in man-made systems, the
ascading failures in power grids can lead to rolling or even total large-scale monster blackouts [14–16]. Even in swarm
obotics, which relies strongly on collective behavior, errors or attacks could easily give rise to damage or disrupt formation
ontrol and cooperative manipulation [17]. Finally, also in the brain system of the zebrafish, bottom-up and top-down
ignal propagation, starting from presynaptic neurons to downstream postsynaptic neurons, might be the key for the
mergence of elementary functions at behavioral and cognitive level [18].
From a theoretical point of view, there are two different approaches we can use to study signal propagation complex

etworks. One is modeling-driven, based on the interplay between structure and dynamics, to generate various patterns
f propagation. The other is data-driven, as an inverse problem to reveal hidden patterns from empirical data.
(i) Let us firstly consider modeling-driven methods. Fundamentally, the effective and often highly efficient realization

f signal propagation is achieved by means of a complex interplay between the structure and dynamics of the underlying
ystem [12]. Various dynamical models determine the nature of interactions between nodes. For example, the dynamics
f hosts or pathogens characterizes how a disease spreads over contact networks, and agent-based models address the
tochastic properties of the spreading process [19]. The Kuramoto model with positive and negative coupling allows for
he emergence of traveling waves, pattern formation, and even Chimera states [20,21]. Load-capacity models reveal the
echanism behind cascading failures, where a failure of one part could trigger further failures of other parts and finally
ndanger the whole system [14,16]. Neuronal modeling is aimed at describing macroscopic activity patterns that arise
rom the interactions between excitatory and inhibitory neurons. For example, synaptic and external excitatory inputs
nteract and helps us understand the neuronal pathway from single-neuron physiology to behavior in Larval zebrafish [22].
he topological connections between nodes provide the underlying platform for signal propagation, and various types of
etworks have been studied frequently and in much detail. Temporal networks, for example, could speed-up or slow-
own the spreading process depending on the nature of the waiting time distribution, and they could also allow the
ystem to become controllable, even if the corresponding static network is uncontrollable [23–25]. The interplay between
he internal dynamics and the network degrees jointly determines the response time of spatiotemporal propagation, and
he self-consistent linear response theory can determine the separate contribution of topology and the dynamics towards
he observed spatiotemporal propagation patterns [10,13]. Namely, both the topological and the dynamical properties are
rucial for inducing distinctive patterns of propagation, such as traveling waves, spiral waves, chaos, sources, and sinks.
(ii) Besides modeling-driven methods, the quantification of propagating features from empirical data, as an inverse

roblem, can reveal typically or at least often hidden underlying topological-dynamical relations [26]. A fundamental
uestion in the data-driven analysis of complex systems is to address, to what extent, two components are related
iven observational data. Various theoretical and computational methods have been developed to serve as tools to infer
3
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Nomenclature

List of Abbreviations

ABM Agent-based model
ABR Rate of actual human biting
ADN Activity-driven network
AES Advanced Encryption Standard
ASTGCN Attention-based spatiotemporal graph convolutional network
BSG Balanced sequence generator
BT Bluetooth
CCG Cross-correlograms
CNN Convolutional neural network
COVID Corona virus disease
CR Contact rate
CRLI Cluster representation learning
CT Continuous time
DM Dorsal medial area
DMD Dynamic mode decomposition
DRM Distributed robust maximization
DT Discrete time
EOE End of the epidemic
ER Erdos–Renyi
EWS Early-warning signals
GAEs Graph auto-encoders
GAN Generative adversarial network
GCN Graph convolutional network
GE Graph embedding
GLEaM Global epidemic and mobility model
GRNs Gene regulatory networks
HETS Hybrid event-triggered strategy
HMF Heterogeneous mean-field
IATA International Air Transport Association
IT Inferior temporal cortex
KM Kumamoto model
LBS Location-based services
LIF Leaky-integrate and fire
LSTM Long short-term memory
MAS Multi-agent simulation
MFPT Mean first passage time
MMCA Microscopic Markov chain approach
MMS Multimedia messaging system
MPC Mobile phone-call
MT Medial temporal area
N-BEATS Neural basis expansion analysis for interpretable time series
NE Neighbor exchange
NIMFA N-intertwined mean-field analysis
NPI Non-pharmaceutical interventions
OAG Official Aviation Guide
RA Robust nucleus of the arcopallium
RD Reaction-diffusion
4
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RGC Retina ganglion cells
RNN Recurrent neural network
RW Random walks
RWC Random walk centrality
SARS-CoV-2 Severe acute respiratory syndrome coronavirus 2
SEIR Susceptible–exposed–infected–recovered
SF Scale-free
SIR Susceptible–infected–recovered
SIS Susceptible–infected–susceptible
SMNs Social media networks
SSE Superspreading events
STCN Self-supervised time series clustering network
STDP Spike timing-dependent plasticity
StemGNN Spectral temporal graph neural network
STSGCN Spatiotemporal synchronous graph convolutional network
SW Small-world
TB Tuberculosis
TDOA Time difference of arrival
TI Turing instability
tnGAN Three network- based form of generative adversarial network
TOA Time of arrival
TW Traveling wave
USL Unsupervised saliency subsequence learning
W-MSR Weighted mean subsequence reduction
ZIKV ZIKA virus

List of Symbols

a Activity
A Adjacency matrix
BS Basin stability
c(·) Concentration
C Capacity
E Number of exposed agents
E(·) Energy function
G0(·) Generating function
GC Granger causality
H Entropy
I Number of infected agents
I(·; ·) Mutual Information
L Laplacian matrix/Load
K Coupling strength
M Inertia coefficient
N Network size
P(·) Probability
S Number of susceptible agents
t Time
T Length of time
TE Transfer Entropy
X Indicator function
Y Reduced admittance
� Tolerance parameter
5
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� Infection rate

 Euler constant
�ij Kronecker symbol
�(·) Dirac delta function
� Perturbation strength
� Characteristic length
� Phase
�(·) Heaviside function
� Eigenvalue
� Recovery probability/Average
� Frequency
� Noise
� Ratio of circumference to diameter
�(·; ·) Correlation coefficient
� Standard deviation
� Time delay
� Perturbation frequency
! Natural frequency

 Locking frequency
⟨·⟩ Ensemble average

the causality between components, ranging from basic linear correlation measures to more sophisticated information-
theoretical quantities, thereby forming the cornerstone of extracting the structural backbone of complex networked
dynamics [27]. Inferring the topology of connectivity and extracting important variables at different scales has a great
potential for exploring biophysically plausible circuit arrangements for neuronal signal propagation [28]. In addition to
inferring methods, link prediction and source localization methods have also been developed and applied frequently, for
example to find the source of wireless sensor networks, or the source of disease or information dissemination based on
incomplete information and network structure [29–31].

In the light of the wealth of modeling-driven and data-driven methods, and even though remarkable surveys and
erspective works have been published on related subjects, a comprehensive contemporary review of signal propagation
n complex networks has ample potential to guide as well as to motivate future research in this very vibrant field.

This review is organized as follows. We begin by discussing the multiscale modeling of disease spreading, the Kuramoto
odel, random walks, reaction–diffusion and percolation processes, and models for cascading failures, in Section 2.
ll these models, at least to some extent, allow for the emergence of signal propagation. In Section 3, we review the
opological factors that significantly influence signal propagation, including temporal and multilayer networks. There, we
lso present a general theoretical framework for the interplay between dynamics and topology, and the recent research
edicated to the control of various types of networks. In Section 4, we review recent techniques that reveal signal
ropagation from measured data, including information transfer and artificial intelligence techniques. In Section 5, we
ummarize relevant applications concerning epidemics, social dynamics, neuroscience, power grids, and robotics. Finally,
e conclude with a summary and a discussion of promising directions for future research.

. Basic model systems

.1. Epidemic models

The dynamics of hosts or pathogens on top of contact networks can characterize how a disease spreads. However, the
etwork’s high-dimensionality feature makes the analytical calculation more challenging. There are various approaches
o modeling disease spread in intricate networks. Modeling through a metapopulation network is one of them which
an capture the mobility of the populations from one patch to another. Thus a metapopulation is typically defined as
collection of subpopulations that are related because the agents or hosts are mobile. In ecological systems where

ecolonization, maintaining variety, and extinction equilibrium of specific species are explored, metapopulation models are
ell-studied [32–38]. Due to the rapid development of transportation systems, it is necessary to study how an epidemic
preads by taking into account human movement (diffusion) at different scales [39–45], where hosts or people interact,
pread the disease, and then either recover from it or get rid of it. On the other hand, agent-based models (ABM) or
ndividual-based stochastic models are developed based on ‘‘bottom-up’’ setup similar to Cellular Automata [44–52]. These
odels represent how individuals (or agents) interact with one another and with their surroundings, while being trained

o act in certain ways. These methods address the stochastic character of the epidemic process, which may help them
6
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etting beyond the limits of the traditional deterministic method. Here the agents observe their environment and adapt
heir behavior accordingly. Such agent-based, disaggregate models have been researched for the past 20 years to examine
he disease spread across social networks [48,53,54].

.1.1. Metapopulation models
For recent epidemics such as the SARS outbreak in 2003 [55], H1N1 disease in 2009 [56], and COVID-19 [57,58],

here the normal time scale to disseminate the disease from one country to another is within few months, mobility or
ispersal becomes a crucial component. It is possible to ignore the movement of the diseased people from one patch to
nother in a well-mixed, homogeneous population, but this is not always the case. One is motivated to take into account
he reaction–diffusion dynamics [59], in which the particles/hosts/humans interact (‘‘react’’) within a community and
‘diffuse’’ (mobility) within shorter time scales. Thus, a metapopulation model is captured by the numbers of patches (N),
links representing the movement of the agents/humans, and the interaction mechanism in a patch governed by disease
dynamics.

Reaction–diffusion models: mean-field approach. Analogous to the chemical rate equations, one can express disease
dynamics as follows [59] B → A; and B + A → 2B: Here B acts as an infected agent and converts the susceptibles
agent A into B with the infection rate � and the infected agents become susceptible (A) with a recovery probability �.
he networks are considered heterogeneous, in which each node contains the agents A and B. The diffusion from one
ode to another depends on the inverse degree of the source node. Two types of reactions can be considered: either (I)
n the same nodes, agent A will react with the rate � to all the B agents, or (II) Each agent will have a finite number
f contacts, i.e the reactions rate is rescaled concerning the population size. In the heterogeneous mean-field approach
HMF) the nodes with the same degree are considered statistically equivalent. In this backdrop, if xi is the number of A
agents confined in a node having degree d and yi is the number of B agents confined in a node having degree d, one can

write �A;d =
1
Nd

P
i xi; and �B;d =

1
Nd

P
i yi; where the sum runs over all nodes having degree d which is Nd. Thus,

�d = �A;d + �B;d. In this setup, the HMF for the degree class d can be written as (say for agents B)

@t�B;d = −�B;d + d
X
d′

P(d′
|d)

1
d′

�
(1 − �)�B;d′ + ��d′

�
; (1)

where the first term represents the diffusion process, and the second term is coming due to the contribution of the
neighbors. Here P(d′

|d) is the probability that vertices d and d′ are connected. Here �d is the reaction term for generating
new agents. Similarly, one can design the dynamical rate equations for particles A in any given degree class. The non-zero

infection exists if the total density of particles crosses the value
⟨d⟩2

⟨d2⟩
�

�
. Thus, firm heterogeneity of networks suppresses

the phase transition in the thermodynamic limit as �c → 0. For the type (I) process, the transmissibility is independent
of the population size, whereas it is inversely proportional for the type (II) process. On the other hand, the invasion
threshold has been studied in the presence of a heterogeneous coupling pattern [60]. Here the basic reaction–diffusion
model is derived, in presence of traffic-dependent as well as population-dependent mobility. It is also shown that temporal
infection in the same degree block (statistically equivalent degree nodes) is independent of the arrangement of the
initial infection. On the other hand, in a deterministic setup, multipatch SEIR dynamics (Susceptible–Exposed–Infective–
Removed) can be captured by [44,61] Ṡi = �(1 − Si) − Si

PN
j=1 �ijIj, Ėi = Si

PN
j=1 �ijIj − (� + �)Ei, İi = �Ii − (� + 
 )Ii,

nd Ri = 1 − Si − Ei − Ii. Note that, here the diffusive flux is not considered assuming the movement from one patch to
nother is short lasting. Here �ij is the per capita infection rate when an individual of the i th patch is infected by the
ndividual of the j th patch. The eigenvalue of the matrix encoding the interaction pattern determines the synchronous
omogeneous solution. A more mechanistic approach, based on individual movement patterns has also been established
n which the dynamics of an individual who stays in a patch is currently in the same patch or migrating to another one
s considered [32,33]. For two patch systems, the equivalence of the parameters of standard phenomenological models of
oupling, and mechanistic models are analytically studied in these works.
To capture the propagation pattern, particularly, the arrival time t1 of infection, a more realistic metapopulation

etwork is developed in which the SIS dynamics is applied on top of the network [62,63]. If the cause of the first
nfection and the connectivity pattern is known a priori, it is possible to statistically determine when epidemics will
trike a city. Assume a disease propagates from city A (population NA) to city B (population NB) and at time t = 0, city
has I0 = 1 infection. If the passenger flux is w, then the probability of the arrival time (t1) of epidemics in the city
is Pb(t1) = [1 − (1 − p)I0(t1)]

Qn−1
i=1 (1 − p)I0(i�t); where t1 = n�t , p =

w

NA
�t is the jump probability, and �t is the

iscrete step [62]. Assuming the initial infection is small, and the infection at A is large enough (at t = t1) one can

each a Gumbel distribution P(t)dt =
w

NA
exp

�
�t −

w

NA�
e�t
�
�(t)dt , where �(t) is the Heaviside function and � is the

spreading rate. The average arrival time can be calculated as ⟨t1⟩ =
1
�

[ln(
NA�

w
) − 
 ], where 
 is the Euler constant. For

a one-dimensional (1-D) chain, where the flux (wi) is drawn from a random distribution, the average arrival time can be

written as � (n) ≡ ln
�Qn−1

i=0
Ni�e−


�
, where Ni is the size of the population of the i th city. For a general transportation
wi

7
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Fig. 1. The average arrival time of infection is plotted as a function of � (analytically calculated average infection time). Each red circle corresponds
to a city. Crosses are an average over cities with the same � . The name of the city which is initially infected is also written in each of the
graphs [62,63]. The ansatz successfully determines the propagation of infection.
Source: Adapted from [62].

network, the arrival time for a target city t from the source s can be captured by � (s; t) = minPst
P

(a;b)∈Pst

�
ln
�
Na�

wab

�
−


�
.

Here Pst is the set of all possible shortest paths between s and t , and (a; b) is one of the links on the path s − t . The wab
along the shortest path provides the most accurate result. This approach has been successfully tested in air traffic networks
across the globe (Fig. 1). It differentiates between two cities in the arrival time if both are at the same topological distance
from the source of infection.

Structured metapopulation stochastic dynamics can also be developed on a multiscale network to predict the
propagation of influenza pandemics or vector-borne diseases. The multiscale network is designed by incorporating short-
range as well as long-range connections to describe the propagation. This is called a global epidemic and mobility model
(GLEaM).

Global mobility is a very complex multiscale network that varies by several orders of magnitude from short-range
commuting networks on a local scale to long-range air-traffic networks [40,56]. This type of model successfully predicts
the propagation of influenza-like epidemics. The multiscale networks are incorporated into the GLEaM model which
encodes the characteristics of structured metapopulation stochastic dynamics. The community network for local short-

range connections follows a gravity law: wij ∝
N�i N




j

f (dij)
, where f (dij) is a distance-dependent function and �; 
 are

alculated from the census data. Considering the intra- and inter-specific (mobility) transmission dynamics on local and
on-local scales, it has been shown that the global epidemic behavior is determined by the air traffic network connectivity
attern, whereas the local level of the commuting network determines the flow from hubs to the other subpopulations.
Effective Distance in metapopulation networks. Another method of predicting the propagation of contagious phenomena

n a metapopulation network is to employ a probabilistically motivated shortest path, for example, if the epidemic spreads
ver a network of air traffic, as proposed by Brockmann et al. [64]. The underlying structure of the network is constructed
hrough the air-traffic data. The impact of local-scale mobility is discarded here. The usage of ‘‘effective distance’’ translates
he spatiotemporal complex patterns of epidemic propagation into regular patterns. Here the connectivity pattern is
ncoded in the normalized matrix p. The element of this matrix such as pji quantifies the passenger flux from i to j.
he effective distance is calculated from the structure of the passenger flux matrix as dji = (1 − log pji) ≥ 1. The

logarithm comes because the effective distance is considered additive, whereas the probabilities of transition for a distance
greater than 1 are multiplicative. Finally one can calculate the directed path length �(� ) for all possible shortest paths
s Dji = min� �(� ) where � is the set of all possible effective lengths along all possible shortest paths between i and
. Thus by calculating D one can easily determine the time required to spread the disease from the location i to the
ji

8
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Fig. 2. Mobility diagram of individuals. Populations are marked by patches and people’s movements by arrows. (a) Here the transition rate from m
o k is denoted by wkm . The travel movement of the indistinguishable populations is marked by random Diffusive dispersal. (b) The bidirectional
obility incorporates the movement of individuals from their base location k to the connected locations m and back is denoted by wk

mk , and w
k
km [68].

ource: Adapted from [68].

ong-distance location j. A random walk-based computationally efficient approach (hitting time for a Markov chain) is
ecently developed to calculate the effective distance [65]. The previously developed logarithmic-based shortest path [64]
s included as a particular case of this method. This method can easily be extended to a directed weighted graph.

Another version of a metapopulation network is proposed recently. Earlier, the commuters are considered as random
alkers [62,63], which is not always true. Particularly, human mobility follows a recurrent pattern [66,67] i.e., movements
f individuals are not random. Instead, they frequently move between a few places, say from home to working-class and
omewhere between. Against this backdrop, an alternative framework is also proposed where the assumption about the
tatistical equivalence of the same degree class is relaxed [68]. Instead, the authors develop a model for the individuals
ho belong to the base location i and are currently located at n as follows:

@tS in = −
�

Nn
S in
X
m

Imn +

X
m

(wi
nmS

i
m − wi

mnS
i
n); (2)

@t I in =
�

Nn
S in
X
m

Imn − �I in +

X
m

(wi
nmI

i
m − wi

mnI
i
n): (3)

Here the dispersal dynamics follows a Markov process as X i
n 
 X i

m where i is the base location and X : S; I; R represents the
states of individuals (Fig. 2). wi

nm denotes mobility rate between the location n and m. So ordinary migration is replaced by
individual mobility. For ordinary diffusion, the speed of the traveling waves is scaled with the square root of the diffusion
rate, and it monotonically increases.

For constant return rate wi
mi = ! (rate is larger than the infection or recovery rate) the wave velocity follows

the relation as c =
2
√
6D�!

(� + 3!)
(Fig. 3). Here D =

l2

2
, where l2 is the size of the lattice. In contrast to the reaction–

iffusion process, here c saturates for ! → ∞. Therefore, constrained mobility in a bidirectional setup can restrict the
igh-frequency travel events in certain locations attached to the base locations.
Microscopic Markov Chain Approach (MMCA). A discrete-time approach can also be considered. The model is composed

f three activities: Movement, Interaction, and Return [69–71]. An individual’s choice of movement depends on the origin–
estination matrix (OD) which encodes the weights of the links connecting patches. The decision of the population to
ove in the morning is controlled by the parameter p. The interaction part encodes the reaction phase in school, as well
s in workplace. A mean-field assumption is made i.e. there is a homogeneous mixing between individuals at the same
ocations. The final step is to incorporate the recurrent model where individuals return to their residential patches. For
IR dynamics one can write

�i(t + 1) = (1 − �)�i(t) + [1 − �i(t) − ri(t)]�i(t); (4)

ri(t + 1) = ri(t) + ��i(t); (5)

where �i(t) is the fraction of infected individuals at the patch i at time t and ri is the fraction of recovered individuals at
the patch i. The probability that a susceptible node is infected living in the patch i is captured by �i(t) = (1 − p)�i(t) +

p
PN

j=1 Rij�j(t). Here �i(t) is the probability to be infected by a healthy individual irrespective of his/her residential patch,

and Rij is the element of the OD matrix. The critical invasion threshold is captured by �c =
�

�max(R)
, where the elements

f R depend on p, R and the effective infected and total population after the movement stage at time t (Fig. 4).
Recently, a deterministic metapopulation network is designed to study the spatiotemporal propagation of the spreading

and recovery process in a square lattice [72]. If the disease starts from the core, the migration supports a faster spread,
whereas if the initial infection is randomly spread in the lattice, the spreading can be stopped with a slower migration
rate.
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a
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Fig. 3. Front velocity (c(!)) as a function of the travel rate ! in comparison to ordinary reaction–diffusion dynamics (blue symbols). Mean velocities
re indicated by red (bidirectional mobility) and blue (reaction–diffusion) symbols. For large !, the front velocity saturates due to the restriction of
igh-frequency travel events.The dashed and dash-dotted lines, are the theoretical lines [68].
ource: Adapted from [68].

Fig. 4. (a) The metapopulation network of the city of Cali (Colombia). Here the city is subdivided into 22 parts (districts). The gray links signify the
movement of the people. (b) The strength of infection as a function of infection probability. A repeated MC simulation is performed for different
probabilities of moving: pd . (c) Two-dimensional phase diagram of incidence as a function of infection probability and movement probability. The
color bar in (a) represents the population strength. Solid and dashed lines are theoretical lines [69–71].
Source: Adapted from [71].
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