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a b s t r a c t

Recent decades have seen a rise in the use of physics methods to study different societal
phenomena. This development has been due to physicists venturing outside of their
traditional domains of interest, but also due to scientists from other disciplines taking
from physics the methods that have proven so successful throughout the 19th and
the 20th century. Here we characterise the field with the term ‘social physics’ and
pay our respect to intellectual mavericks who nurtured it to maturity. We do so by
reviewing the current state of the art. Starting with a set of topics that are at the heart
of modern human societies, we review research dedicated to urban development and
traffic, the functioning of financial markets, cooperation as the basis for our evolutionary
success, the structure of social networks, and the integration of intelligent machines into
these networks. We then shift our attention to a set of topics that explore potential
threats to society. These include criminal behaviour, large-scale migration, epidemics,
environmental challenges, and climate change. We end the coverage of each topic with
promising directions for future research. Based on this, we conclude that the future
for social physics is bright. Physicists studying societal phenomena are no longer a
curiosity, but rather a force to be reckoned with. Notwithstanding, it remains of the
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utmost importance that we continue to foster constructive dialogue and mutual respect
at the interfaces of different scientific disciplines.

© 2021 Elsevier B.V. All rights reserved.
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1. Prologue: The physical roots of multidisciplinarity

The present text is perhaps best described as a journey through what has become an extremely active and diverse
esearch field known under the umbrella term social physics. Before an interested reader embarks on this journey with
us, it is only fair to inform them of our motivation and rationale. Doing so, at the very least, requires (i) defining what
social physics means (to us), (ii) outlining the case for its importance, and (iii) elaborating the underlying line of thought
that connects the topics covered henceforward.

The methods of probability and statistics first flourished among social scientists who sought quantitative regularities
revealing the inner workings of society [1]. This inspired the founders of statistical physics in the 19th century to move
away from Newtonian determinism and embrace a probabilistic description of ideal gases. Today, however, physicists
are completing the circle by applying physical methods (oftentimes those of statistical physics) to quantify social
phenomena [1]. For our purposes here, we decide to adopt a broad, operational definition of social physics. Specifically,
social physics is a collection of active research topics aiming to resolve societal problems to which scientists with formal
training in physics have contributed and continue to contribute substantially. Although the precision and rigour of such a
definition may be questioned, we are in good company when relying on what physicists actually do to define (an aspect of)
physics [2]. We also believe that being inclusive and practical about what constitutes social physics makes us appreciate
more the broad position of physics in modern science.

The twentieth century has often been called ‘‘a century of physics’’ [3], and for good reasons too. The scientific method
as practised by physicists achieved enormous success on all scales of reality. On the small end of things, quantum
electrodynamics as the theory of the interaction between light and matter has been tested to within ten parts per billion
(i.e., 10−8) [4] by examining if the dimensionless magnetic moment of the electron relates to the fine structure constant
as predicted. On the large end of things, general relativity as the prevailing theory of gravitation has been tested, among
others, by putting satellites in space, measuring the geodetic effect with an error of 0.2% and the frame dragging effect
caused by Earth’s rotation with an error of about 19% [5] relative to predictions. The latter error, incidentally, amounts to
37mas which is best put into perspective by the words of investigator Francis Everitt that 1mas ‘‘is the width of a human
hair seen at the distance of 10 miles’’. What is important for us is that these enormous successes of physics have caught
the attention of scientists from other disciplines, and have led to attempts to generate similar successes using physics-
like quantitative methods. This is explicitly admitted by some disciplines; in ecology, for example, metabolic theory
[6–9] and mechanistic niche modelling [10,11] draw heavily from thermodynamics. More generally, though, the adoption
of physics-like quantitative methods is best reflected in the proliferation of physical and mathematical modelling in
disciplines as diverse as epidemiology [12,13], virology [14,15], neuroscience [16,17], medicine [18,19], psychology [20,21],
sociology [22,23], and countless others. But if the ultimate goal is to replicate the success of physics, whom better to call
for help than physicists themselves? All this explains to a decent degree why physics is at the roots of the modern shift to
multidisciplinarity, and why physicists publish more multidisciplinary physics articles than articles in physics journals [2].

Although the success of physics over the past hundred year or so is impossible to dispute, signs of a progress
slowdown [24,25] and dissatisfaction with fundamentals [26,27] have been brewing, consequently setting in motion
3
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ultiple searches for ‘new physics’ [28,29]. Until such physics is found, however, many a young physicist may seek
o employ their strong quantitative skills elsewhere. A well-known example is attempts by physicists to, both through
esearch in academia [30] and practice on Wall Street, enrich the world of finance.

The described state of affairs places physics squarely at the roots of multidisciplinarity. It is then hardly surprising
hat much of the multidisciplinary work conducted by physicists aims at resolving societal problems. We call that work
ocial physics, believing that otherwise we would be diminishing the rightful role of physics in today’s multidisciplinary
ovement. Provided the reader is willing to agree with us or, at least, give us the benefit of the doubt, it becomes glaringly
bvious that the scope of social physics is enormous. How did we go about narrowing down a relevant set of topics for
he present text?

Our focus was twofold, asking what enables or constitutes the modern way of living and what perturbs or threatens
t. The majority of human population now lives in cities [31] because of more healthcare, education, and employment
pportunities. Despite their advantages, cities suffer from many problems, traffic being among the more acute ones [32].
e therefore started by overviewing the contributions of physicists to research in urban dynamics and traffic flows. The
rosperity of cities is in many ways tied to markets, and over the past two decades financial markets in particular had an
normous impact on urban life, innovation, and planning [33]. This warrants a better understanding of financial markets,
hich is the aim of the chapter on econophysics. Life in cities, and civilised life in general, is based on widespread
ooperativeness. The evolution of cooperation accordingly deserves a chapter of its own, even more so given that this
s a research domain in which physicists have been especially active [34]. Human population is furthermore organised
n social networks, whose structure is entwined not only with the evolutionary dynamics of cooperation, but also many
ther dynamical processes of societal relevance [35]. Probing network structure and their separation into communities
ould therefore not be overlooked. An important realisation in this context is that computers increasingly take part in
haping social networks, especially so with the advent of human-like artificial intelligence. The present state of affairs
nd current technological trends, in fact, necessitate a candid discussion about human–machine networks.
Among phenomena that perturb or threaten the modern way of living, crime is a conspicuous one, with impacts

at large, societal [36] and small, community [37] scales. Interestingly, as the chapter on criminology will demonstrate,
oth the evolutionary dynamics of cooperation and network-structure analyses prove useful in gaining insights into
rime fighting and criminal organisations. In contrast to crime, migration per se comes with positive effects, such as
helping to alleviate labour-force deficits and age-structure imbalances in ageing populations [38], but there are many
caveats. Developing countries, for example, were supposed to receive demographic dividends form their favourable
workforce-to-dependants ratios, but substantial value has been lost to brain drain, that is, emigration of highly educated
young adults [39]. Much more consequential is when population displacements are triggered by environmental shifts
or geopolitical instabilities; on the one hand, people losing homes is a humanitarian crisis, while on the other hand,
countries quickly absorbing sizeable immigration fuels nationalism and xenophobia [40,41]. Movements of people across
large distances, especially at a fast pace of today, make humankind vulnerable to contagions [42]. The chapter on
contagion phenomena covers disease transmissions on global and local scales, and overviews the budding subfield of digital
epidemiology. Before closing off this review, we shift the focus to natural surroundings that support human life in the first
place. The chapter on environment puts emphasis on the proliferation of chemicals whose effects, particularly synergistic
ones, remain partly understood at best [43]. Even more critical is global climate change [44–46]. Somewhat surprising in
this context is the use of network science to unravel the intricacies of Earth’s climate system. This only goes to show how
versatile physics and its methods are, which we hope will inspire physicists to further nurture multidisciplinarity, as well
as scientists from other disciplines to maintain a dialogue with physicists when resorting to quantitative approaches and
tools.

2. Urban dynamics

Cities are archetypal examples of complex systems [47]. They are to some extent self-organised, in other aspects
planned. They need hierarchical and interdependent distribution systems. They exist across an extraordinary range of
scales. They interact in complex networks, they consist of complex networks, and they are built by people interacting
through complex networks. Many aspects of urban science do not fit the methodologies of physicists. This section will
discuss the current state of urban science [48], in particular the topics that interest physicists [49].

2.1. The definition of a city

Assume that we know the locations of all humans, at all times, and all buildings and infrastructures, then how can we
decide what a city is? This is far from an easy question, and one soon realises that any simple solution will not overlap
perfectly with the existing conventions. Most of the research that we present here use an administrative definition of a
city. We will, however, look at attempts to define cities from the population distribution.

Even if one starts from population-density data, one can usually be completely independent of pre-defined adminis-
trative borders. For example, Ref. [50] uses the population of the most fine-grained subdivision of the United Kingdom
(wards) for this purpose. The actual population count comes from the home address reported in a census.

One idea for the definition of a city, akin to percolation theory [51], is to identify regions with a population density
ρ above a particular threshold ρ . Ref. [50] defines a city by requiring that ρ > ρ , for all wards k at the boundary. If
0 k 0
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Fig. 1. Two methods of defining cities in England. A,B, Results of the density thresholding method with thresholds ρ0 = 24ha−1 and ρ0 = 2ha−1 ,
espectively. C,D, Results of the commuting-based method with minimum populations of 50,000 and commuting flow thresholds 40% and 5%,
espectively.
ource: Reprinted figure from Ref. [50] under the Creative Commons Attribution 4.0 International (CC BY 4.0).

ards belonging to the city surround a ward k, we consider it a part of the city even if ρk < ρ0. See Fig. 1 for the results
f this algorithm when applied to the population density of England.
Another approach to defining cities is to group smaller divisions with larger ones if at least a fraction of the population

f the smaller commutes to the larger, and there is not a larger division that attracts even more commuters. In order for
his approach to give sensible results, one needs to start from some seed regions more populous than a given threshold.
rom such a seed region, the algorithm of Ref. [50] recursively adds wards to a region that at least a certain fraction of
eople commute to. If there is more than one region that draws a fraction of commuted above the threshold, then the
ard is added to the region attracting most commuters. When such a recursive procedure has converged, one is left with
city pattern such as in Fig. 1C, D.

.2. Size of cities

George Kingsley Zipf noted in his 1949 The Principle of Least Effort [52] that city sizes m follow a power-law distribution

P(m) = const.×m−ν . (1)

ipf found the exponent ν to be one and assumed that it was a universal value, but more recent studies argue that different
egions of the world have different ν [53–55].

There is a vast number of mechanisms proposed for Zipf’s law of city sizes, starting from Zipf himself [52]. We will
ention a few from the physics literature. First, Zanette and Manrubia suggested a multiplication–diffusion mechanism
odel operating on a square grid [53]. From an initially even distribution of population density, the population m at a

andom site i is updated as

mi(t) =
{
(1− q)p−1 with probability p
q−1(p− 1) otherwise

(2)

Then a fraction α of the population is redistributed to the surrounding cells. This model produces emergent power-laws
in agreement with Zipf, for a broad range of parameter values.

Ref. [56] proposes a model in which the arrival rate wa and the departure rate wd from a city of size m depend on m
according to

wa =
m2

m0
+m (3a)

wd = e1/m∗
[
m2

m0
+ a

]
(3b)

here m∗, m0, and a are parameters. These rules are repeatedly applied in combination with a growth of the number
of cities (by occasionally adding cities of population one). This gives, for some parameter range, an emergent city-size
distribution of

ν =
1

. (4)

1+ (a− 1)m0

5
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Fig. 2. Growth of a modelled city. Shown is an artificial city plan generated by the Manrubia–Zanette–Solé model [63]. The colour bar encodes a
imeline for the development of the city. The model reproduces many features of real cities, but there are also striking differences compared to
eality; in the model, for example, the oldest regions are completely embedded in newer ones.
ource: Reprinted figure from Ref. [63].

In both of the above models, there is an element of ‘rich-gets-richer’ (often called ‘Gibrat principle’ [57], sometimes
he ‘Matthew effect’ [58], or ‘cumulative advantage’ [59]) that larger cities manage to attract more people and thus grow
aster than smaller cities. Thus, many authors cite Herbert Simon’s model for emergent power-law distribution [57] as
n explanation for city size distributions. This mechanism has been revived and adapted for city growth in the relatively
ecent economics literature [60]. Indeed, out of all mechanisms generating power-laws [61], the models specifically trying
o explain city growth, that we are aware of, all seem to incorporate a rich-gets-richer mechanism. There is also some
irect empirical evidence for a rich-gets-richer growth of cities [62].

.3. City growth

Another issue about cities that has interested physicists is the spatial growth of cities. Indeed, the Zanette–Manrubia
odel has also been proposed as a model for the spatial growth of cities [63]. This is maybe not so surprising because, in

he spirit of self similarity, the population distribution within a city could be similar to that of a region containing many
ities. Fig. 2 shows one example of a result of this model. Although the model manages to reproduce many features of
eal city growth, one immediately spots discrepancies when comparing the model output to real data. The most striking
ifference is that the oldest regions of the Zanette–Manrubia are completely embedded in newer built environments.
owever, in real data, they could border non-built land-use types.
In addition to reaction–diffusion type models of city growth, some models are somewhat similar to diffusion-limited

ggregation (DLA) [64]. For example, Ref. [65] follows a Markov random-field framework, but adds many rules from the
rban planning literature or the authors’ observations. This model could be coupled with geographic data or similar to
mprove its predictive power. Another influential paper motivated by DLA, or rather its weaknesses, to model city growth,
s Ref. [66]. In this model, the nodes are successively added to the cluster (representing a city) with a logarithmically
ecaying probability of the distance to occupied areas.
Finally, we note that predicting city growth patterns does not only interest physicists. For example, see Ref. [67] for a

ecent model by geographers of the co-evolution of land-use and population density.

.4. Networks within and of cities

As already alluded to, it is not straightforward to demarcate cities from their surrounding. Therefore many of the
rinciples that relate different cities also apply to the organisation of cities themselves. Geographers had invented simple
odels to explain existing patterns and determine the optimal spatial networks long before physicists turned to this
roblem (for example, see Fig. 3). We recommend reading Ref. [69], which is an almost 50 years old textbook but will feel
ery modern for anyone working on spatial, temporal, or higher-order network structures, or the modelling of complex
ocioeconomic systems.
One influential early model for the network of cities was Walter Christaller’s 1933 ‘central place theory’ [70]. It assumes
n underlying featureless landscape of uniformly distributed resources. In such a scenario, larger cities would primarily

6
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Fig. 3. A figure from a 1963 essay by the Greek-American architect C. A. Doxiadis to argue that for a city to grow without losing its vital functions,
its centre needs to be supported by a network of subcenters—‘‘to create a new network of lines of transportation and communication which do not
lead towards the centre of existing cities but towards completely new nodal points’’ [68]. © Constantinos and Emma Doxiadis Foundation.
ource: Courtesy of Constantinos A. Doxiadis Archives.

rganise in a hexagonal lattice. Secondary, smaller cities would fill the gaps around the central places, and so on. The
conomist August Lösch derived a more flexible and more economics-favoured location theory than Christaller’s in his
940 The Economics of Location [71]. Lösch also concludes that in a structureless world, human settlements would be
rganised into a hexagonal pattern. Furthermore, cities would have a fat-tailed size distribution [72], although deriving
ipf’s law was not an explicit goal of Lösch.
Physicists have spent more effort trying to understand the evolution of networks within cities [74,75] than networks

f cities. One example is Barthélemy and Flammini’s model of the growth of street patterns [73]. This model works by
dding ‘centres’ that are then connected according to the following rule. Say that A and B are neighbouring centres, and
is a tip of a nearby road under construction. The road will grow from the tip M in the direction of the vector
−→
MA
|MA|

+

−→
MB
|MB|

, (5)

such that the cumulative distance from the centres A and B to the road network is minimised (Fig. 4). When the road M
reaches a point on the line between A and B, a straight road segment is added from A to B. For further details about this
model, see Ref. [73].

Other models of spatial networks typically also operate by successively adding points and connecting these to the
existing network [76]. A more general model of spatial growth that could work as a model for road networks is Gastner
and Newman’s model in Ref. [77]. This algorithm associates a cost to all the links that is proportional to

cij = λ
√
Ndij + (1− λ), (6)

where dij is the distance between points i and j, and λ is a parameter governing the relative cost of the distance of the
link to its existence. Then the algorithm seeks a set of links E that minimises∑

dij given
∑

cij < C (7)

(i,j)∈E (i,j)∈E

7
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Fig. 4. Street patterns generated by an algorithm. Panels correspond to time progression in the model: (a) t = 100; (b) t = 500; (c) t = 2000; and
d) t = 4000. Initially, constructed road form a tree-like structure, but loops start appearing as the density of roads increases.
ource: Reprinted figure from Ref. [73].

Fig. 5. Snapshot of the converged state of Schelling’s segregation model. Symbols ‘ ’ or ‘#’ correspond to individuals of two different ethnicities
ccupying cells in an L× L square grid. Convergence is achieved by repeatedly following a simple rule such that individuals who have more than a
raction b of neighbours belonging to the other ethnicity move to another, randomly selected empty cell.
ource: Reprinted figure from Ref. [79].

or a parameter C representing the total budget of the project. If λ is large, the networks become more like urban
nfrastructures, otherwise the networks are rather like airline maps. The Gastner–Newman model is similar to Fabrikant–
outsoupias–Papadimitriou model [78] of Internet evolution in the sense that it balances the cost of physical links and
he presence of the link in the network.

.5. Segregation

Studies of segregation by physicists are essentially equal to studies of the model by Schelling [79]. Just one glance at
chelling’s paper should be enough for the reader to understand why this particular model is popular among physicists
Fig. 5). The background of the model was the racial tensions in the 1960s USA in general and residential segregation in
articular. Schelling used the model to argue that even if people are mostly tolerant of living close to others of another
thnicity, spatial constraints accentuate segregation. The model works as follows:
8
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1. Consider an L× L square grid in which every cell can be empty or occupied by a resident of one of two ethnicities
(‘ ’ or ‘#’ in Fig. 5).

2. Initially, distribute ⌊fL2/2⌋ s and equally many #s randomly on the grid, where 0 < f < 1 quantifies occupancy.
3. Update the configuration by picking an occupied square and, if this is surrounded by more than a fraction b of the

opposite ethnicity, move it to a random unoccupied square. Schelling considered the eight nearest neighbours.
4. Repeat the previous step until all occupied squares are below the threshold. If f is sufficiently small, the procedure

will converge. Otherwise, the problem is ill-defined.

Essentially, the final level of segregation, measured by the average fraction of neighbours of the same ethnicity, will be
far from the threshold, and this increases non-linearly with both the threshold b and occupancy f .

There are many papers in the physics literature dealing with this model, typically without interpreting the results in
terms of residential segregation. For example, Ref. [80] reinterprets Schelling’s model as a model of crystal growth, while
Ref. [81] studies scaling properties of the interfaces of the emergent clusters. See also Ref. [82] for an amusing account
by Dietrich Stauffer.

2.6. Scaling theory of cities

A small city is not a small version of a large city. As mentioned, there has been a considerable hype around self similarity
and scale-free patterns [83] that, to some extent, has fuelled the development of models we have discussed. However,
beyond the power-law size distribution, the way a city operates depends on its size. How things depend on size has, for
long, been a common theme in biology and ecology. Note the difference to finite-size scaling in statistical physics where
the goal is to extrapolate the results to the infinity limit (to study critical phenomena).

Scaling theory has recently come to the attention of physicists [84]. This interest comes from the physical theories
of allometric scaling [85]. One of the most influential papers is Ref. [86] that found that different sectors of the
economy depend differently on the size of cities. For example, sectors that need people to collaborate—like research and
development—scale superlinearly with city size. In contrast, facilities that need to exist relatively close in space—like gas
stations—scale sublinearly. Ref. [87] reestablishes these results in a framework more suitable for physics-style modelling
by using population density rather than city size as a basis for the scaling analysis. Ref. [88] proposes a model that relates
many scaling exponents and finds the regions of parameter space where a city can exist.

2.7. Human mobility

Mobility studies mostly concern how many people move between two locations at a specific time. One can break
down this topic in many ways. One can divide the people according to age, sex, or socioeconomic indices. One can separate
different times of day, different months, or long-term trends. One can consider moving of residence, work, or the individual
themself.

The origin of human mobility studies is Ernst Ravenstein’s 1885 The laws of human migration [89]. Ravenstein noticed,
among other things, that the distance people move (their home) follows a skewed distribution—most people move only
a short distance.

A more quantitative mobility law is the gravity law stating that the number of people Tij travelling between two
locations i and j is

Tij = c
PiPj
dδij
, (8)

where c and δ are constants, dij is the distance between i and j, and Pi the population at location i. This relation was
irst studied by Zipf [90], who only considered the exponent δ = 1. The phrase ‘gravity law’ was coined later in the
ransportation literature, so it does not appear like Newtonian mechanics played any deeper role in this development than
roviding a namesake. Subsequent studies have tried to measure and explain the exponent [91] and otherwise improve
he gravity law by adding information about the locations [92].

The gravity law was recently improved by the radiation model of human travel stating that

Tij = Ti
PiPj

(Pi + sij)(Pi + Pj + sij)
, (9)

where Ti =
∑

j Tij and sij is the number of people in the circle centred on i and j at the perimeter. The radiation
model’s main advantage is that it builds on some simple mechanistic assumptions, whereas the gravity model is merely
a statistical relation. Indeed, the radiation model’s assumptions are rather reminiscent of Stouffer’s theory of intervening
opportunities [93], stating:

The number of persons going a given distance is directly proportional to the number of opportunities at that distance
and inversely proportional to the number of intervening opportunities.

Stouffer had moving to change work in mind, and the opportunities in question were job opportunities.
9
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Fig. 6. Greedy navigators, agents following a stylised navigation strategy, getting lost in the Leeds Castle maze network. The graph is a ‘visibility
graph’ constructed by choosing as few nodes as possible so that the entire study area is visible from at least one node [101]. The edges connect
nodes that are visible from one another. The red arrows indicate the actual route travelled by a greedy navigator. The red solid circles denote the
shortest path discovered by the greedy navigator.
Source: Reprinted figure from Ref. [102].

.8. Trajectory analysis

With the advances in position-tracking technology over the last couple of decades, researchers have gotten access to
arge datasets of people’s trajectories. Most commonly, researchers have used datasets from cellphones where people’s
ocations are identified by the location of the cellphone tower their phone is connected to. From such studies, often
omprising hundreds of thousands of individuals, the overarching discovery is just how predictable people are [94–96].
n most situations of our daily lives, given a sequence of locations visited, one could guess the next location by a probability
f around 90% [96]. This phenomenon is also observed in disasters, where peoples’ routines could be forced to change
ompletely. Still people have been observed to settle into new, highly predictive movement patterns [97].
Another type of trajectory analysis is based on the shape of vehicular travel routes. The most fundamental quantity

s the actual travel distance divided by the Euclidean distance between origin and destination. The average value of this
uantity, often measured as a function of the Euclidean distance, has many names in the literature, here we follow Ref. [98]
nd call it detour index. For very short travel distances, the detour index could be above two (the travel distance is over
wice the straight distance). As the distance increases, the detour index converges after 20–30km to a value of around
.3. Many generative models of city maps can reproduce this observation [99].
Another type of study based on the car-travel routes is focusing on how the city shapes the trajectories. Ref. [100],

or example, investigates whether the fastest travel routes by cars between points at equal distance from the city centre,
end to move first in, then out, or vice versa. This tendency could be quantified by the inness—the area enclosed by the
rajectory and the shortest path from origin to destination on the same side of the city centre, minus the corresponding
rea on the other side. Cities dominated by highway ring roads tend to have negative inness because people travel out to
he ring road, follow it, then travel in towards the city centre to reach the goal. Ref. [100] measures inness for close to a
undred cities worldwide and relates it to socioeconomic indicators.

.9. Navigability

Physicists have not only been interested in the structure of actual trajectories in urban car travel, but also how to find
he destination when one does not have full information. The way people navigate their surroundings is an active area in
ognitive science [103], and it is accepted that some cities, or buildings, are much easier to get lost in than others.
Any attempt to quantify the navigability of a city or building must rest on a model of how people exploit contextual

nformation. Ref. [102], for example, uses a framework called greedy navigators in which the individuals have a notion of
he direction to their destinations. At every intersection, a greedy navigator chooses the street, not previously travelled,
hat points most directly towards the target. In Fig. 6, we show a proof of concept of how greedy navigators fail to find
short path in a garden maze (designed to be hard to navigate). Using greedy navigators one can obtain a navigability

ndex similar to the detour factor—the average distance found by the greedy navigators divided by the actual average
hortest distance.
10
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.10. Future outlook

So far, the physics of urban systems has not been driven by a paramount goal. Instead, it has been building on
collection of observations from data that physicists can, and do, try to explain. However, urban science [48], in a
ultidisciplinary sense, has some general directions. From an engineering perspective, one would like to make cities
ustainable and energy-efficient; whereas seen from social science—because of the ongoing urbanisation of our planet—
ne would like to foresee the problems and tap into the opportunities of ever-larger metropolises, perhaps via the
patio-socio-semantic analysis framework [104].

. Traffic flows

Understanding and predicting traffic flow is important for social engineering in general and urban planning in
articular [105,106]. The study of traffic flow in the engineering sciences is thus old, dating back to the 1930s [107].
utside of the engineering sciences, however, scientists have only recently discovered vehicular traffic as an interesting
omplex system that perhaps could be described with a few simple laws, and is thus worthy of study with scientific
ethods [108–110].
For physicists, traffic-flow models became a topic in the 1990s. In the recent decade, this topic has cooled down some-

hat, but nonetheless remains an active field of research in physics and elsewhere, for instance, machine learning [111].
t is probably fair to say that the main motivation for physicists has never been to provide practical advice for urban
lanners. Rather, the attraction was that vehicular traffic exhibits several types of self-organised, collective phenomena
lso seen in statistical physics. It is no coincidence that the founding era of the physics studies of traffic flow was in the
990s. This was a time when there was a prevailing idea that many phenomena in nature and society were connected by
nderlying ubiquitous organisational principles such as self-organised criticality [83], manifested by many quantities that
ollow power laws. Even if this view has lately fallen out of fashion [61], the idea that vehicular traffic is an archetypal
omplex systems—self-organised, decentralised, and with emergent behaviours that connect short and long spatial and
emporal scales—still prevails.

Another reason for studying traffic flows is that the models themselves are interesting. They are among the simplest
ossible models of emergent phenomena in non-equilibrium systems. Furthermore, they bridge several different mod-
lling frameworks (although none of them originally from physics) [112]—from continuous models of traffic density [113],
ia discrete particle models (called ‘car-following theories’ in this context) [114], to cellular automata [115].

.1. Observed phenomena

As mentioned, the primary focus of physicists interested in modelling traffic flow has not been to make accurate
orecasting, but rather to qualitatively explain emergent phenomena. So what phenomena can be studied by models?
n this section, we will go through some of these observations. Unless stated otherwise, we will discuss phenomena at
ontinuous sections of highways.

ccupancy-flow relations. If the traffic is light, a higher density of cars means that the flow increases—cars move at about
he same speed so twice as many cars means twice as large flow. As the traffic gets denser, however, the average speed
ecreases. Eventually the flow starts decreasing as well. It has been known for over half a century that these quantities do
ot have a smooth relationship. Since Ref. [116] it is rather thought to be tent-shaped (Fig. 7), or inverse λ-shaped. This

suggests the existence of two dynamic phases—a free-flow and a congested state [108], with an intermediate maximum
flow [109].

Sometimes the congested state is divided into synchronised flow in which cars are following each other at a relatively
constant speed, and stop-and-go motion (the name explains the concept) at even higher densities [117]. Some authors go
further into dividing the synchronised flow depending on whether the speed and separation of the vehicles is stationary
or not [118].

Phantom traffic jams. The distribution of speeds is fairly well described by a Gaussian distribution for all almost all
traffic densities (Fig. 8). There could be some anomaly for intermediate speeds (40 km/h in Fig. 8) which could ring a
bell for physicists familiar with critical phenomena [119]. Note however that there is nothing scale-free about the speed
distribution at this point (scale-free, or power-law, distributions are usually the hallmark of phase transitions [61]). Still,
there is one supposedly self-organised, emergent, phenomenon believed to explain this anomaly—phantom traffic jams.
These are jams that happen seemingly without an external trigger. Fig. 9 shows the classical figure illustrating phantom
jams with data from aerial photography from Australia in 1967 [120] and reproduced in almost every review paper or
book on the subject [108,109,121], and also original research papers [122]. Apart from the existence of phantom traffic
jams this figure also shows that the jam moves in a direction opposite to the traffic, a finding that has been established
by other measurements [123].

Hysteresis. Hysteresis in traffic flow refers to the observation that the average speed-up as traffic gets lighter does not
follow the same curve as when traffic gets denser. In the former situation, the average speeds are lower. This was first
studied rigorously in Ref. [120] (although mentioned in earlier works).
11
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Fig. 7. Observed flow-occupancy relation in highway traffic in Ontario, Canada, 1985. Occupancy is measured (in percentage) as the fraction of time
a sensor is blocked by a car. Flow is the number of cars passing per hour. Every data point is an average over 5 min.
Source: Reprinted figure from Ref. [116].

Fig. 8. The distribution of speeds at different densities. The dashed lines are the best fitting Gaussian distributions.
Source: Reprinted figure from Ref. [109].

Pinch effect. There is some evidence that stop-and-go type congestion waves are triggered at special locations along roads
where small jams are formed, that later merge to form larger jams (Fig. 10). This is called the pinch effect and the larger
jams are called wide moving jams (although, from a driver’s perspective they are rather long than wide).

3.2. Traffic-flow models

Next, we describe several types of traffic-flow models that have been used to explain the observed phenomena. Some
of these models have true physics origins, whereas others became popular among physicists, although their origins lie
elsewhere (e.g., computer science and mathematics).
12



M. Jusup, P. Holme, K. Kanazawa et al. Physics Reports 948 (2022) 1–148

F
v

w
a

l

w
d
o
T
b

K
s

Fig. 9. Phantom traffic jam in highway traffic. Each line represents one vehicle in a particular lane (trajectories suddenly appearing mean a vehicle
made a lane change). Original data from Ref. [120].
Source: Reprinted figure from Ref. [109].

luid-dynamical models. Macroscopic, or fluid-dynamic, models of traffic only use traffic density ρ, flow Q , and average
elocity v as variables describing the system. These are related by definition as

Q (x, t) = ρ(x, t)v(x, t), (10)

here x is the location along the road and t is the time. Assuming continuity (that no cars are generated, or disappearing,
long the road) we get the following equation describing mass conservation

∂ρ

∂t
+
∂Q
∂x
= 0. (11)

Eq. (11) should be a part of all fluid-dynamical traffic flow theories, but we need one more equation to make it a full
theory. The oldest approach is to assume Q is only a function of ρ and the functional relationship is to be inferred by
data

Q (x, t) = Q [ρ(x, t)] , (12)

eading to
∂ρ

∂t
+ C(ρ)

∂ρ

∂x
= 0 (13)

here C(ρ) comes from data. This Lighthill–Whitham theory [113] describes kinematic waves that travel in the opposite
irection of the traffic flow (according to observations). In the solution of the Lighthill–Whitham equations, shock-waves
f infinite density build up. These should be interpreted as jams, and are a challenge numerically, but not conceptually.
here are several more sophisticated theories following the footsteps of Lighthill and Whitham. All of them replace Eq. (12)
y a more elaborate equation.

inetic models. Kinetic models of traffic flow are inspired by the kinetic theory of gasses. They use a distribution of car
peeds as their main variable describing the state of the system. The original kinetic theory of car traffic was proposed by
13
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Fig. 10. The pinch effect. Panel (a) shows the setup of sensors along a highway. Panel (b) shows the readings (average speeds) of some of these
ensors. The pinch effect is manifested in narrow dips (jams) that are created around D5 and aggregate to ‘wide jams’ down the road.
ource: Reprinted figure from Ref. [124].

rigogine and co-workers in the 1970s [125]. It was quite similar to the original model from physics and to little surprises
t shows many discrepancies with car traffic (for example, all cars would drive with the same average speed). This model
as later heavily modified by Paveri-Fontana [126]. Like above, Refs. [108,109] give a summary of these theories.

ar-following theories. We have mentioned traffic flow theories inspired by fluid dynamic and kinetic gas theory, maybe to
ittle surprise, there are also theories inspired by Newtonian mechanics. Such, car-following theories are based on equations
or the individual drivers and their response to the behaviour of the preceding car. The simplest car-following equation,
ue to Reuschel [114], is

τ ẍn(t) = ẋn+1(t)− ẋn(t). (14)

his equation is derived from assumptions that a driver wants to drive as fast as the preceding car, but not get closer
han a safety distance. Later, improved, car-following theories have assumed each car has an internal desired speed, that
t follows unless it needs to avoid a collision. These more sophisticated theories can explain the mirrored-λ shape of the
low-density curves and hysteresis effects.

oupled-map lattice models. The models we have seen so far have all been continuous in both time and space. So called
oupled-map lattice models share many assumptions of car-following theories, but use a discrete time. In general, such
odels have the form

vn(t + 1) = Mapn(vn(t), vn,des,∆xn) (15a)

xn(t + 1) = vn(t)+ xn(t), (15b)

here Mapn(·) is a dynamical map that takes into account the speed and position of the nth vehicle, vn and xn, the desired
peed of the nth vehicle, vn,des, and the headway to the (n+1)th vehicle, ∆xn. This versatile framework can accommodate
ifferent personalities of drivers, and different classes of vehicles, etc. Several of the empirical characteristics of traffic flow
such as flow-density relations) can be reproduced by coupled-map lattice models. Popular models of this kind includes
hose of Yukawa and Kikuchi [127] and Krauss, Wagner, and Gawron [128].
14
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Fig. 11. The three rules for changing the speed in the Nagel–Schreckenberg model. The rules are illustrated for the focal vehicle, while the vehicle
ahead keeps its speed. The arrow illustrates the speed v; the circle illustrates the position x.

Cellular automata models. One further abstraction from coupled-map lattice models is to discretise space as well as time.
This leads to so called cellular automata models. These are the most well-studied type of models in the physics literature,
which might seem surprising since it is a type of models derived from computer science and mathematics rather than
physics (whereas the kinetic and car-following models above have a much stronger physics flavour). The explanation is
probably that physicists became interested in traffic models as a part of a general hype around complex systems, where
cellular automata models of artificial life are among the most iconic theories.

The most well-studied cellular automata model of traffic flow is the Nagel–Schreckenberg model [115]. In this model,
the road is represented by a one-dimensional discrete lattice. There are N vehicles on this road. Each cell of the road is
occupied by maximally one vehicle. All vehicles are updated in parallel according to the following rules (to be followed
in order):

1. Acceleration. If vn < vmax, then the speed of vehicle n is increased by one unit, otherwise the speed is unchanged:

vn(t + 1) = min(vn(t)+ 1, vmax). (16)

2. Deceleration. If xn+1 ≤ xn + vn—that is, the car ahead is so close that vehicle n would reach its position (or further)
the next time step—then the nth vehicle brakes:

vn(t + 1) = min(vn(t), xn+1 − xn − 1). (17)

3. Randomisation. By chance, that is, with probability p, the speed of some cars is decreased:

vn(t + 1) = max(vn(t)− 1, 0). (18)

4. Vehicle movement. Each vehicle moves forward according to its new speed:

xn(t + 1) = xn(t)+ vn(t + 1). (19)

See Fig. 11 for an illustration of the Nagel–Schreckenberg rules.
The Nagel–Schreckenberg model can, despite its simplicity, reproduce many features of real traffic, such as the flow-

density curves and phantom traffic jams. With this model as a starting point the research has branched out in many
directions. Some of the research has striven to include more realism [129,130], while other [131] has shown that it takes
only a small modification to turn it to a model of self-organised criticality (the Nagel–Schreckenberg model itself does not
have the necessary meta-stable state). Yet others studied further simplified models as discussed below, although these
simplified models are incapable of reproducing the above-mentioned full statistical characteristics of traffic.

Connections to non-linear statistical mechanics. If one gives up on trying to reproduce all statistical features of highway
traffic, then one can further simplify models like the Nagel–Schreckenberg cellular automaton. This will typically reduce
the models to standard models of non-equilibrium statistical mechanics, like the totally asymmetric simple exclusion process
(TASEP) [132] or the Burgers’ equation [133] (in particular, its noisy version [134]). These more stylised studies are often
focused on finding dynamical critical exponents that relate the size of a system to its dynamics and the critical point

separating the free-flow and congested phases (see Ref. [135] for a typical example).
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.3. Pedestrian traffic flows

Pedestrian traffic is a related, but far from an equivalent type of socio-physical system compared to vehicular flow.
t could also be thought of as a self-organised granular flow of semi-intelligent particles. The main research questions
oncern the formation of trails in open landscapes [136], the formation of lanes in dense pedestrian traffic [137], and
scape panic behaviour [138].
Most models of pedestrian flows take their inspiration in physics and model the individuals as particles driven by

orces [139]. Several things are different from real gasses—there is, for example, no conservation of momentum. Typically
ne have to assume that people repel each other by two forces; one is social—the desire not to be too close to another
erson—and one is physical—crowded conditions such that people actually have to be in physical contact [109]. To
ccurately model escape panic, one has to break down the physical forces into tangential and radial components.

.4. Future outlook

From a physics point of view, the field of traffic-flow modelling seems to have somewhat cooled down at the time of
riting. Elsewhere, it is a topic of emergent interest. In particular, the recent boom in research on autonomous vehicles has
enewed the interest in applying machine learning to these topics [111]. The current interest in self-driving cars produces
n enormous amount of data. Most of it arguably useless for this type of research, but probably eventually enough to
iscover new statistical laws of vehicular traffic. Even if data does not come as a side product from the automotive
ndustry, it is nowadays easier and cheaper to collect. There have been projects to this end that rely on drones [140]
r tower-mounted cameras [141]. In Fig. 12, we plot individual trajectories of some of the recordings from one of these
atasets [140].
When we—by new observations from new datasets—have created new qualitative statistical laws to replace the current

ualitative observations, then the question will once again be to find minimal models recreating the observations. In
articular, with high-quality data on the onset of the congested phase, we could measure how often phantom traffic jams
ctually occur and whether the current mechanistic models of these can explain the observation, or if we have to go back
o the drawing board.

. Econophysics

Unlike traditional economics, which is built upon a rational-choice model, econophysics borrows the particle model
rom statistical physics to explain the behaviour of an agent. Such a model assumes that the agent’s tastes and preferences
re not fixed, but instead depend on the interactions with other agents [142]. In other words, econophysics puts a greater
mphasis on the social environment of the agent [143]. Some other physics models and concepts commonly applied to
conomics include the kinetic theory of gases, chaos theory, percolations, and self-organised criticality.
Empirical work in econophysics is mostly focused on the analysis of firm growth and competition, industry entry and

xit rates, money flows, financial markets, and international trade [144–150], that is, on areas in which huge datasets are
vailable, and the application of statistical-physics tools and methods proves useful. The areas of economics with scarce
ata availability, such as macroeconomics in which datasets are short and noisy, have not attracted much attention among
conophysicists. However, with the increasing acceptance of networks in the mainstream economics, econophysics may
till play an important role in the future development of macroeconomics [143].

.1. The advent of econophysics

In 1991, Mantegna published a paper in a physics journal, Physica A [151], in which a time series of daily financial-
arket prices was analysed and price changes were shown to follow a power-law distribution. At that time, power-law
istributions and scaling relations were attractive key topics to statistical physicists after the big booms of fractals in the
arly 1980s [152–154] and self-organised criticality in the late 1980s [83,155]. Research targets of interest to physicists
ere extended widely to general complexity in nature, thus crossing the traditional boundaries between research fields.
arket price changes were a part of this extension and got accepted as one of physically interesting phenomena that
xhibit power-law behaviour.
The next pioneering interdisciplinary paper appeared in the same journal in 1992 by H. Takayasu et al. [156]. A simple

rtificial model of the market was proposed comprising mathematically defined dealers in the form of dynamical particles
n a one-dimensional space of prices. The model’s non-linear dynamics caused chaotic time evolution resulting in almost
andom price movements (see the next subsection for details).

In 1995, Mantegna and Stanley analysed the time series of stock-market prices recorded at a one-minute interval, and
ound that the price-change distributions at different time scales, upon re-scaling, conform to a function with symmetric
ower-law tails [157]. Such a data-analysis method was familiar from the study of critical phenomena involving phase
ransitions. Because their paper was published in a high-impact journal, the new physics approach to financial markets
ttracted wide attention. In the same year, Stanley coined the term econophysics to represent an interdisciplinary research
16
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Fig. 12. Trajectories, from the highD dataset [140] plotted in the style of Fig. 9. A, Free-flow state (recording 60, lane 8). B,C, More congested traffic
with stop-and-go waves (recordings 26 and 25, lanes 2 and 4, respectively).

field that focuses on economic phenomena from a physics point of view. He introduced this term at a conference on
statistical physics held in Kolkata, India.

In 1997, the first international meeting with the title ‘econophysics’ was held in Budapest, Hungary. Most of the
gathered researchers were specialists in statistical physics, although there was notable participation from fields as diverse
as high-energy experiments. In this same year, the journal Physical Review Letters also opened the door to econophysics,
and a theoretical paper explaining the generating mechanism for power-law distributions in financial markets was
published [158]. Prior to this acceptance, the journal was rejecting econophysics manuscripts on the basis of the topic
being out of scope. The acceptance thus marked the promotion of econophysics to a status of a fully fledged field in
applied physics, such as biophysics or geophysics. The number of econophysics researchers subsequently increased, as
did the variety of research topics that began to cover more than just financial markets.

In 1999, the first monograph on econophysics was published [159], and textbooks on financial markets from the physics
viewpoint followed [160,161]. Multiple workshops and conferences on econophysics were held annually thereafter, with
many economists and finance researchers joining to discuss practical problems [162–164].

The rest of this chapter focuses on the development of econophysics research stemming from the aforementioned
simple physical model of financial markets [156]. We first describe the historical background of the dealer model, and
show how more advanced dealer models have arisen. Then we introduce an empirically derived time-series model called
the PUCK model, and proceed to demonstrate the relation between multiple dealer models. We also outline a recent
analysis of comprehensive market data that includes all microscopic orders appearing on the Foreign Exchange market
17
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t a millisecond interval. The mechanism of financial Brownian motion is compared with the physical phenomenon of
olloidal Brownian motion, and the most advanced dealer model, which is reconstructed directly from the data, is solved
y applying the classical kinetic theory. We close off the chapter with a discussion of a novel emerging perspective, that
f an ecosystem of strategic dealers.

.2. Agent-based modelling: The dealer model

Mandelbrot’s inspiration for introducing the concept of fractals, that is, the scale invariance of complicated shapes in
ature, originated during an examination of historical cotton-price charts at various time scales. Market prices have thus
ecome the very first example of fractals. In part through their interactions with Mandelbrot, H. Takayasu and Hamada—a
hysicist and an economist—joined forces to create a model of financial markets that would explain why market prices
luctuate in a scale-invariant manner [156,165,166]. A prevailing view in economics at the time was that if all market
ealers were rational and possessed enough information, then the market price would be uniquely determined and stable.
et, this view could not be further from the real-world price fluctuations, which prompted H. Takayasu and Hamada
o construct their model borrowing ideas from physics. The model thus had to incorporate the essential underlying
echanisms and processes in a way that is as simple as possible, but non-trivial.
Let us envision an artificial financial market comprising N dealers who buy and sell financial instruments such as

tocks. Every dealer is assumed to try to buy at a low price and sell at a high price, hoping to earn the price difference.
he ith dealer’s trading action at time t is described by introducing two threshold prices, the buying price, bi(t), and the
elling price, si(t). The dealer hopes to buy at the former price or lower, and to sell at the latter price or higher. The
ifference, Li(t) = si(t)− bi(t)>0, called the spread characterises greediness of the dealer, which is set to a constant value
in the simplest case. All dealers’ buying and selling prices are gathered to make the market’s order book. A deal occurs
f the condition si(t) ≤ bj(t) is fulfilled for a pair of dealers i and j, in which case the ith dealer sells to the jth dealer,
or equivalently, the jth dealer buys from the ith dealer. An interesting point is that no deals occur if all dealers’ buying
prices are within the distance L from the minimum buying price. Only when the distance between the farthest pair of
dealers equals or exceeds L can a deal (between this particular pair) take place. Deals thus represent a strong, non-linear,
attractive interaction that makes a group of dealers compact in the price space.

The model is further simplified by assuming that dealers can possess at most one stock at a time. If a dealer possesses a
stock, they are a seller quoting only the selling price. If the dealer does not possess a stock, then they are a buyer quoting
only the buying price. A seller hopes to sell at a high price, but if there is no buyer whose buying price is equal or higher,
then the seller should compromise by lowering the price until a trade becomes possible. This situation is described by a
differential equation

dbi(t)
dt
= σi(t)ci, (20)

here σi(t) = 1 (σi(t) = −1) signifies the buyer (seller) state of the ith dealer, while ci > 0 quantifies the dealer’s (initially
andom) hastiness. A deal between the seller i and the buyer j occurs when si(t) = bi(t) + L ≤ bj(t), at which moment
he state functions σi(t) and σj(t) change their signs. The resulting market price, P(t), which takes the value of the latest
eal, evolves deterministically in time. The model is initialised such that all dealers start with the same buying price, and
ome dealers start as buyers and others as sellers.
With N = 2 dealers, one seller and one buyer, the time evolution of the market price is almost trivial. The two dealers

eriodically alternate their state and the resulting market price oscillates regularly. With N ≥ 3 dealers, the time evolution
f the market price becomes highly non-linear. There is, in fact, an underlying chaotic effect that magnifies small initial
ifferences. We thus learn from this simple model that even fully deterministic dealer behaviour can cause noisy dynamics.
he model is, nonetheless, insufficient to explain the fractal properties of market prices.
A minimal modification of the described model accounts for an effect called trend following. A dealer who follows

he trend expects that price movements keep moving in the same direction as in the immediate past. This can be
athematically formulated using a moving average of length T

⟨∆P(t)⟩ =
∫ T

0
w(u)

d
dt

P(t − u)du, (21)

here w(u) is a weight function that satisfies
∫ T
0 w(u)du = 1. Eq. (20) is then appended with a trend-following term

dbi(t)
dt
= σi(t)ci + di⟨∆P(t)⟩. (22)

he coefficients di quantify the extent of trend following. They are usually positive for dealers who are trend followers,
ut can also be negative for dealers called contrarians. The simplest possible variant of the model is obtained by assuming
hat all dealers are trend followers with the same coefficient d > 0. Despite being simplistic, this assumption has
a drastic effect, yielding deterministic price dynamics that resemble scale-invariant fluctuations of stochastic random
walks [156]. The model thus identifies two mechanisms likely to be responsible for some of the key characteristics of
18
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ealistic market-price time series. Namely, market prices fluctuate almost randomly due to non-linear, chaos-inducing
nteractions between dealers, while scale invariance emerges from the dealer tendency to follow trends.

The dealer model with trend following as defined by Eq. (22) can be studied analytically to some extent. The dynamics
f the centre of dealer mass follows a Langevin equation [165], which is an equation that is well-known in the context of
olloidal Brownian motion. The distribution of market-price changes obeys a power law with an exponent that depends on
he value of the parameter d [167], in line with known empirical facts [151,159] and a previous theoretical analysis [158].
he dealer model can also be used as a basis for deriving the autoregressive conditional heteroskedasticity (ARCH)
odel of Engle [168], thus offering a mechanistic explanation for the origins of volatility clustering observed in financial
arkets [169]. Finally, by tuning parameters values, the model reproduces the phenomenon of abnormal diffusion, as well
s the statistical properties of dealing time intervals [166].
A stochastic variant of the dealer model was introduced in 2009 [170]. In the model, the function σi(t) is random, such

that—at each moment of time t—either σi(t) = 1 or σi(t) = −1 with the probability of 0.5. This modification improves
upon already favourable properties of the dealer model even in the case of N = 2, which is easily solvable using both
analytical and numerical methods. The stochastic dealer model can, for example, generate bubble-like behaviours that
cause the market price to grow exponentially if the trend-following coefficient, d, is above a certain value.

Further generalisation of the stochastic dealer model has enabled capturing the characteristics of an intervention by
the Bank of Japan in the foreign exchange market between the US dollar and the Japanese yen [171]. Aside from ordinary
dealers responsible for usual market-price fluctuations, the model also includes a special dealer that takes the role of the
Bank of Japan. The special dealer can cause large market-price changes that, according to empirical analyses of market
data, are accompanied by risk-averse responses such as bid–ask spread widening, loss cutting, and profit booking. Ordinary
dealers in the model, with some adjustment, can mimic risk-averse responses and thus generate said empirical phenomena
in simulations. The increased realism makes it possible to assimilate financial time-series data into the model. This opens
the door to the planning of intervention strategies, as well as predicting subsequent market responses.

More recent extensions of the stochastic dealer model help clarify the cross-currency correlations between the US
dollar, the Japanese yen, and the Euro [172]. A new type of dealers, who pursue what is known as triangular arbitrage,
is introduced into the model. Such dealers earn profit by quick circular exchange transactions from, for example, the US
dollar to the Japanese yen to the Euro and back to the US dollar. Interestingly, triangular arbitrage in currency markets
was first reported in 2002 in an econophysics study [173]. New evidence shows that such arbitrage still exists in the
present financial markets in which automated trading systems dominate [174]. The stochastic dealer model has clarified
that it is, in fact, a small number of triangular-arbitrage dealers who boost the cross-currency correlations in a manner
consistent with empirical observations.

4.3. Time-series modelling: The PUCK model

Trend following introduced in the dealer model is based on the idea that dealers make their decision referring to the
latest market data using the moving average. Applying a similar idea to the time series of deal intervals, known for their
temporal-clustering behaviour [175], it was found that the occurrence of deals in markets is modelled well by a Poisson
process with a time-dependent mean value. This value is given by the moving average of the latest deal intervals over
a time period T , where the best estimate of T = 150 s was obtained from the dollar-yen exchange-market data at the
time. The finding clarifies the mechanism underlying the temporal clustering of deal intervals. When random fluctuations
cause a few short intervals to repeat, the moving-average value becomes smaller, making shorter intervals more likely to
appear in the Poisson process. A dense period with short deal intervals ensues. Converse is true when random fluctuations
cause a few long intervals to repeat. The described time-dependent Poisson process is a self-modulation process whose
fluctuations have a 1/f power spectrum bordering between stationary and non-stationary processes [176].

The idea of using the moving average was also extended to the time-series analysis of market prices [177,178]. For
a given time series of real market prices with a fixed sampling interval, {p(t)}, the following time-evolution model is
defined

p(t + 1)− p(t) = −
b(t)

M − 1
[p(t)− pM (t)] + g(t), (23)

here M is the length of the moving average, pM (t) = 1
M

∑M−1
k=0 p(t − k), and g(t) is independent noise with a zero mean.

he coefficient b(t) denotes a slowly changing parameter estimated from the time-series data. The case of b(t) = 0
orresponds to the ordinary random walk. In the case of b(t) > 0, the future market price, p(t+1), is likely to be attracted
to the latest moving-average price, pM (t), signifying stable market-price movements. In the case of b(t) < 0, the future
arket price is likely to be repelled from the moving-average price, signifying unstable market-price movements.
The described model can be generalised with a time-dependent market-potential function, ΦM (t), as follows

p(t + 1)− p(t) = −
∂

∂p
ΦM (t)

⏐⏐⏐⏐
p= p(t)−pM (t)

M−1

+ g(t). (24)

his is the Potential of Unbalanced Complex Kinetics (PUCK) model. Eq. (23) is a special case of the PUCK model with the
uadratic potential Φ (t) = 1b(t)p2. The PUCK model with the quadratic potential function has been shown to apply to
M 2
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Fig. 13. An example of artificial market-price fluctuations produced by the stochastic dealer model with the corresponding estimates of the potential
functions. The parameter d = d1 = d2 from Eq. (22) varies such that d = −1 during the first 1000 time steps, d = 0 during the second 1000 time
teps, d = 1 during the third 1000 time steps, and d = −1 if ⟨∆P⟩M < 0 whereas d = 1 if ⟨∆P⟩M ≥ 0 during the last 1000 time steps, where ⟨∆P⟩M
is the moving average from Eq. (21) of length M = 10 ticks with uniform weights.
Source: Reprinted figure from Ref. [170].

various financial markets, successfully reproducing most of empirical stylised facts such as the power-law distribution of
price changes, abnormal diffusion over short time scales, as well as volatility clustering [179].

The market-potential function is estimable for any market-price time series, including those artificially produced by the
dealer model described in Section 4.2. A stable quadratic potential is obtained for contrarian dealers (d < 0), an unstable
quadratic potential is obtained for trend followers (d > 0), and an asymmetric higher-order potential appears when trend
following is asymmetric (Fig. 13). Moreover, the value of the market-potential coefficient b(t) can be theoretically derived
from the dealer model, thus demonstrating that the origin of the market-potential function in Eq. (24) comes from the
trend-following behaviour of dealers.

A merit of the PUCK model is its wide applicability; the model describes market-price time series in various
circumstances. This ranges from nearly random walks under normal market conditions, an exponential divergence in
the case of bubbles or crashes, and even a double exponential divergence or a finite-time singularity in the case of hyper
inflation [180,181]. The threshold between the normal and the abnormal random walk is the value b(t) = −2 of the
uadratic-potential coefficient; namely, when b(t) < −2, Eq. (23) becomes linearly unstable causing price fluctuations to

grow or decline exponentially as is observed in bubbles or crashes, respectively. If a cubic potential function is detected,
it generally corresponds to asymmetric price movements [182].

In a short time-scale limit, Eq. (23) reduces to the Langevin equation for Brownian motion containing a mass term
and a viscosity term [180]. Interestingly, the mass term is proportional to −b(t), showing that trend following works
s inertia. Also, the viscosity term becomes negative when b(t) < −2, suggesting that bubbles, crashes, and inflation
hould be regarded as negative-viscosity phenomena, that is, as being under the influence of an accelerating instead of a
ecelerating force.

.4. Order-book modelling: Financial Brownian motion

Another approach that physicists brought to financial markets is data analysis and modelling of an order book. Such a
ook lists buy orders (bids) and sell orders (asks) gathered in a market. Ref. [183] introduced a theoretical model in which
ids and asks are injected randomly onto a price axis. A deal occurs when a new bid price is equal to or higher than the
owest ask price, or vice versa, when a new ask price is equal to or lower than the highest bid price. The deal signifies that
he corresponding pair of orders annihilates forming the latest market price. Otherwise, injected orders accumulate on the
rice axis of the order book. The mechanism was pointed out to be similar to a one-dimensional catalytic chemical reaction
20
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Fig. 14. Schematic representation of the Financial Brownian Particle model. A, An order-book configuration of buy orders (blue in the outer layer
nd green in the inner layer) and sell orders (red in the outer layer and orange in the inner layer) on the price axis. B, Corresponding configuration
f outer-layer particles (blue and red disks), inner-layer particles (green and orange disks), the colloidal Brownian particle’s interaction range (green
ing), and the core (yellow circle). C, After time ∆t the configuration of surrounding particles changes.
ource: Reprinted figure from Ref. [185] under the Creative Commons Attribution 3.0 Unported (CC BY 3.0).

n which the reaction front moves randomly. Ref. [184] described the details of a stock-market order book, documenting
mpirical statistical laws about the injection of bids and asks, as well as cancel orders. A simple mathematical model
alled Zero Intelligence was proposed to capture the empirical findings, with the name of the model stemming from the
act that no intelligent dealer strategy was needed.

Ref. [185] introduced a novel data analysis of order books, focusing on an analogy between colloidal random walks
nd financial market-price movements. Accumulated bid and ask orders are regarded as water molecules in this analysis,
hile an imaginary colloidal particle is assumed to exist in the gap between bids and asks centred right in the middle
etween the highest bid and the lowest ask (Fig. 14). This colloidal-particle picture is intuitive in the following sense.
s the particle gets displaced, say, to the right (i.e., towards higher prices), the opened up space in its wake gets quickly
illed with water molecules (i.e., bids) from further back where the number of molecules decreases (Fig. 14B, C). In front
f the colloidal particle, by contrast, water molecules get pushed forward, decreasing their number next to the particle,
ut increasing the number further away (Fig. 14B, C). This intuitive picture is fully consistent with the dealer model and
rend following by which pairs of buy and sell orders move together with the market price.

A more conventional picture treats all buy orders (and separately all sell orders) on an equal footing, but this is
ncorrect. As the colloidal-particle picture shows, buy and sell orders should be categorised into an inner and an outer
ayer of opposite behaviour. If bids (or asks) increase in the inner layer they decrease in the outer layer and vice versa.
nner-layer orders furthermore play a role of a driving force behind market-price movements, as indicated by a high
ositive cross-correlation between the velocity of price movements and the rate of change of orders in the inner layer
Fig. 15). Interestingly, outer-layer orders exhibit a negative cross-correlation between the velocity of price movements
nd the rate of change of orders, and thus can be considered as drag resistance for market-price movements (Fig. 15). All
his implies a fluctuation–dissipation relation for the colloidal particle, which is modelled by the Langevin equation. The
alue of the drag coefficient normalised by the colloidal-particle mass can then be estimated from market-price data [185].
An often overlooked aspect of modelling financial markets using continuous-price models, such as the Langevin

quation, is whether the continuous-price assumption can be justified. To this end, Ref. [186] uses the described analogy
etween a market-order book and a molecular fluid to estimate the financial Knudsen number. Because the Knudsen
umber is generally defined as a ratio of the mean free path to a representative length scale of the system, in the case of
inancial markets, the former is given by the average distance of price movements in one direction, while the latter is the
iameter of the colloidal particle in terms of the inner-layer width for both buy and sell sides (Fig. 14). The continuous-
rice assumption is valid if the Knudsen number is smaller than 0.01, whereas a discrete-time description is needed if the
nudsen number is larger than 0.1 (with transitional regimes in between). The estimated value of the Knudsen number
or dollar-yen and dollar-Euro markets fluctuates around 0.05 most of the time, becoming larger than 0.1 in the times of
arket turmoil. This result indicates that the continuous-price assumption is questionable for modelling financial markets,
specially when large market-price fluctuations take place.
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Fig. 15. Cross-correlation function between the velocity of market-price movements and the rate of change of orders as a function of depth. Buy
orders are indicated with green and blue triangles, whereas sell orders are indicated with orange and red circles. At γc = 18 the nature of the
ross-correlation changes, thus revealing the distinction between inner and outer layers. A positive inner-layer (outer-layer) cross-correlation means
hat orders in this layer act as a driving force (drag resistance) for market movements.
ource: Reprinted figure from Ref. [185] under the Creative Commons Attribution 3.0 Unported (CC BY 3.0).

.5. A kinetic approach to financial market microstructure

We have reviewed the dealer model as a financial microscopic model describing decision-making process on the level of
ndividual agents. This model has the advantage that (i) it can capture the strategic decision-making process of individual
ealers (such as trend following), and (ii) it reduces to the PUCK model as its macroscopic dynamics for N = 2 and thus can
eplicate the empirical facts seen in the price time series. The dealer microscopic model, however, has a disadvantage that
t could not be directly validated from data, because it requires the truly microscopic data to track all traders’ decision-
aking dynamics. Indeed, the trend-following mechanism is theoretically assumed in the model as a strategy of individual

raders, which could not be directly confirmed. Also, this model requires calibration of the buy–sell spread distribution.
his situation is in contrast to other mesoscopic models, such as purely-random order-book models [183,184,187,188]
see Refs. [189,190] for reviews), which require fewer calibration parameters although they cannot capture the strategic
ecision-making process of individual traders.
Recently, the situation with respect to data availability has drastically changed; truly microscopic data has become

vailable due to the big-data revolution, which has enabled confirming various theoretical assumptions of the dealer
odel, such as the trend-following mechanism and the buy–sell spread distributions. In the following, we review several

esults of the microscopic empirical analyses as performed in Refs. [191–193] that summarise the trading strategies
mployed by real high-frequency traders. In particular, we focus on the trend-following strategies implemented by market
akers that directly validate the dealer model with the microscopic data.

icroscopic data: trading logs of individual traders. Here we describe the microscopic data used in the analyses in
efs. [191–193]. The trading-log data originates from the Electronic Broking Services market, one of the biggest foreign
xchange markets in the world managed by the CME Group. This data includes the decision-making process of traders,
uch as order submissions, cancellations, and executions, with anonymised trader identifiers and anonymised bank codes.
ur focus, in particular, is on the exchange market between the US dollar (USD) and the Japanese yen (JPY) from
8:00 GMT on 5 June to 22:00 GMT on 10 June 2016, with the minimum volume unit being $1MUSD, the minimum
rice precision (called tick size) ¥0.005 JPY, and the minimum time precision 1 ms. For brevity, ¥0.001 JPY is used as a
rice unit called tenth pip or simply tpip.
Our attention is centred around high-frequency traders (HFTs), typically machines that frequently submit and cancel

heir orders according to some strategic algorithm. HFTs are defined according to the total number of limit-order
ubmissions. Specifically, a trader who submits more than 2,500 orders weekly qualifies as an HFT. This definition is similar
o the one from a previous study [194] of the Electronic Broking Service market. There are many potential alternative
efinitions that could be considered, but ours offers clarity and the ease of implementation. With this definition in mind,
e identified 134 HFTs during the week under consideration. The total number of traders was 1,015.

FTs as liquidity providers. By plotting three sample trajectories of HFTs in terms of their limit orders (Fig. 16), we observe
hat the HFTs typically maintain two-sided (buy-low and sell-high) quotes. Generally, two-sided quotes attempt to profit
rom the bid–ask spread, but are also subject to liquidity rebates that may exceed the trading fees, allowing HFTs to trade
ith zero marginal cost [195]. In our case, the HFT behaviour is indeed interpreted as liquidity provision (i.e., market
22
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Fig. 16. Sample trajectories of the three top HFTs. Plotted are the limit order prices for both bid (blue) and ask (red) sides. The insets illustrate the
probability density functions of the buy–sell spread L̂i for each HFT individually.
Source: Reprinted figure from Ref. [191] under the Creative Commons Attribution 4.0 International (CC BY 4.0).

making) in response to the request by the platform managers. HFTs have an incentive to play the role of liquidity providers
according to the rule book of the Electronic Broking Services market [196].

Here, we denote the best bid and ask prices of the ith HFT by b̂i and âi, respectively, where the index i is allocated
according to the number of submissions during the week. Any variable with a hat (e.g., Â) implies a stochastic variable,
to distinguish from a real number (such as A). The difference between the best bid and ask prices L̂i = b̂i − âi is called
the buy–sell (sometimes also bid–ask) spread of the ith HFT. The buy–sell spread L̂i can be directly measured in our
dataset at the level of individual HFTs (see the insets in Fig. 16). In addition, we can define the mid-price of the ith HFT as
ẑi = 1

2 (b̂i+ âi). The mid-price ẑi can be interpreted as the appropriate price in the eyes of the ith HFT at the time, while L̂i
an be interpreted as a profit estimate for a round-trip trade, or alternatively, a risk evaluation against adverse selection
i.e., a possibility that the HFT misses some information).

rend-following behaviour. As discussed in Section 4.2, the dealer model was originally constructed with the assumption
f trend-following behaviour of traders in mind. We have validated this theoretical assumption by direct observation,
hat is, by identifying a statistical correlation in microscopic data that can be interpreted as trend following at the level
f individual HFTs. The analytical framework in this context can be described as follows.
First, let us introduce the tick time T as an integer time incremented by 1 when a transaction is executed (see Fig. 17A).

We note that the tick time can be mapped onto the physical time as t = t̂[T ], where the square bracket stresses that the
rgument of the stochastic variable is based on the tick time. The mid-price of the ith HFT at the tick time T is represented

by ẑi[T ] and the market transaction price is represented by p̂[T ].
Then, let us study the correlation between the one-tick future change of mid-price for the ith HFT, ∆ẑi[T ] = ẑi[T +

1] − ẑi[T ], and the one-tick historical market-price change, ∆p̂[T − 1] = p̂[T ] − p̂[T − 1] (see Fig. 17A). The average of
∆ẑi[T ] conditional on ∆p̂[T − 1], denoted ⟨∆ẑi⟩∆p, for two sample HFTs (Fig. 17B, left panel) shows that the correlation
is linear for ∆p→ 0, but saturates for ∆p→∞. This suggests, on average, a hyperbolic-tangent scaling relation

⟨∆ẑi[T ]⟩∆p ≈ ci tanh
∆p
∆p∗i

(25)

ith the parameters ci and ∆p∗i unique to the ith HFT. Here, the bracket ⟨Â⟩∆p = ⟨Â⟩∆p̂[T−1]=∆p implies the ensemble
average of Â conditional on the previous price change begin fixed to ∆p̂[T − 1] = ∆p and on the HFT being active, that
s, ∆ẑi[T ] ̸= 0. Indeed, by re-scaling the horizontal axis to ∆p/∆p∗i and the vertical axis to ⟨∆ẑi/ci⟩∆p, we observe a clear
master curve among the top 20 HFTs (Fig. 17B, right panel), suggesting the universal validity of formula (25) for the top
HFTs in the studied market.

There is also evidence of another scaling relation that holds for the variance of an HFT’s one-tick future change of
mid-price conditional on the historical market-price change being ∆p (Fig. 17C). We specifically have

V∆p[∆ẑi[T ]] = ⟨(∆ẑi[T ] − ⟨ẑi[T ]⟩∆p)2⟩∆p ≈ σ
2
i , (26)

where the quantity σ 2
i is a constant unique to the ith HFT. This relation suggests that the variance, unlike the mean, is

independent of the historical market-price change ∆p; HFTs follow the trend, but how much they adjust their mid-price
in doing so is solely their intrinsic property.

The scaling relations described here are statistical laws that reveal strategic trading behaviour beyond the previously
mentioned zero-intelligence models. Such behaviour holds for HFTs as market makers, but does it differ from what
low-frequency traders (LFTs) do?

Indeed, there are noticeable differences between HFTs and LFTs. The former keep a few live orders, typically less than
10, while allocating one unit of volume per order (see Fig. 18A, B). This volume per order is in contrast to LFTs who allocate
enough that the corresponding distribution follows a power law (Fig. 18A, C). Overall, statistics illustrate that HFTs vary
less in terms of trading strategies than LFTs. Classifying traders into these two distinct groups is therefore justified.
23
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Fig. 17. Trend-following analysis. A, Tick time T is an integer time measure incremented by 1 at every transaction. ∆ẑi[T ] is the future mid-price
hange of the ith HFT and ∆p̂[T − 1] is the historical market-price change. B, Statistical correlation suggests trend-following behaviour on average
at the level of individual HFTs (left panel emphasises the 11th and the 19th HFT). Upon re-scaling, the same master curve Eq. (25) is seen to be
valid for at least the top 20 HFTs (right panel). C, Variance V∆p[∆ẑi] conditional on the historical price change before and after scaling (left and
ight panel, respectively), implying that the variance is irrelevant to the historical price change.
ource: Reprinted figure from Ref. [191] under the Creative Commons Attribution 4.0 International (CC BY 4.0).

Fig. 18. How HFTs and LFTs differ. A, Plots are an overview of limit-order submissions (top), live orders (middle), and volume assigned per order
(bottom), according to trader ranking by submissions. Traders submitting more than 2500 limit orders weekly are defined as HFTs; there have been
135 such traders in the available dataset, responsible for almost 90% of total submissions. B, Probability density functions reveal that HFTs maintain
nly a few live orders at a time, and that the volume per order is overwhelmingly one unit. C, Cumulative distribution functions reveal that LFTs

use a wider range of volumes per order, suggesting a more diverse set of strategies than the one used by HFTs. D, Probability density function of
the volume per transaction for orders that get filled shows that 81.5% of transactions are one-to-one, while the volume is less than five units for
98.2% of transactions.
Source: Reprinted figure from Ref. [192] under the Creative Commons Attribution 4.0 International (CC BY 4.0).

Modelling based on microscopic evidence. Focusing again on HFTs, we here construct a mathematical model that reflects

the microscopic empirical evidence described heretofore. Let N ≫ 1 denote the number of HFTs. The model’s assumptions
are: 24
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1. Order and volume. Every HFT submits a single order at a time with a single unit of volume (Fig. 18A, B).
2. Liquidity provision. Every HFT keeps both bid and ask orders to play the role of a liquidity provider (Fig. 16).
3. Frequent price updates. HFTs frequently update their prices by successive order submissions and cancellations. This

implies that the price trajectory is approximately continuous except at the times of transactions. The continuous
Markov stochastic processes for price trajectories are modelled as an Itô process (i.e., a Gaussian stochastic
process) [197].

4. Trend following. HFTs exhibit the trend-following behaviour in accordance to the empirical laws in Eqs. (25) and
(26) (see also Fig. 17). For simplicity, we assume the uniformity of model parameters in these equations such that
ci = c , ∆p∗i = ∆p∗, and σ 2

i = σ
2 for all i.

5. Spread. The buy–sell spread of the ith HFT is defined by L̂i = âi − b̂i. Because the probability density functions of
buy–sell spreads have a single peak (insets in Fig. 16A–C), the spread is assumed unique to the HFT and constant,
that is, L̂i = Li. This assumption implies that the mid-price ẑi = 1

2 (b̂i+âi) is sufficient to characterise the ith HFT. The
empirical probability density function of the buy–sell spread ρ(L) is measurable from the available dataset using
the relationship ρ(L) = 1

N

∑N
i=1 δ(L− Li), and thus describes the order-book distribution.

Based on the listed assumptions, we model the microscopic HFT dynamics in the absence of transactions as the
trend-following random walks (Fig. 19A)

dẑi
dt
= c tanh

∆p̂
∆p∗i
+ σ η̂Ri , (27a)

here the white noise η̂Ri is independent of η̂Rj for j ̸= i. This is the minimal Itô process [197] satisfying the empirical
relations we have described so far.

At the instant of price matching (Fig. 19B)

âj = b̂i, i ̸= j, (27b)

the pair of HFTs i and j resubmits their prices far from the transaction price (Fig. 19C)

âpstj = âj +
Lj
2
, b̂psti = b̂i −

Li
2
, (27c)

where âpstj and b̂psti are the updated prices after the transaction. These transaction conditions can be rewritten as⏐⏐ẑi − ẑj
⏐⏐ = Li + Lj

2
H⇒ ẑpsti = ẑi −

Li
2
sgn(ẑi − ẑj), (27d)

where the sign function sgn(x) is defined by sgn(0) = 0, sgn(x) = 1 for x > 0, and sgn(x) = −1 for x < 0. The market
price p̂ and the trend signal ∆p̂ at a transaction instant are updated with the post-transaction values

p̂pst = ẑi −
Li
2
sgn(ẑi − ẑj), ∆p̂pst = p̂pst − p̂. (27e)

We note that the transaction condition in Eq. (27d) and the resubmission rule in Eq. (27e), respectively, bear mathematical
resemblance to the contact condition and the momentum-exchange rule in conventional kinetic theory. This analogy will
be revisited again later to formulate a statistical-physics description of financial markets. We also note that one-to-one
transactions are the basic interaction mode between HFTs (Fig. 18D), which is consistent with binary collisions.

In statistical physics, an appropriate separation of spatio-temporal scales is often used to formulate successful micro-
macro theories; an example is the enslaving principle in Haken’s synergistics [198]. Here we introduce the centre of mass
as a key macroscopic variable

ẑCM =
1
N

N∑
i=1

ẑi, (27f)

which is expected to play the role of a slow variable in the ‘thermodynamic limit’ when N → ∞. Indeed, the diffusion
of the centre of mass turns out to be slow (i.e., proportional to N−1 in the absence of trend following [192]), confirming
the appropriateness of this particular variable selection.

A complete set of the system variables is given by Γ̂ = (ẑ1, . . . , ẑN ; ẑCM, p̂,∆p̂), with Ẑ = (ẑCM, p̂,∆p̂) being the subset
of macroscopic variables. Γ̂ can be regarded as a phase point in the space S such that Γ̂ ∈ S =

∏N+3
i=1 (−∞,∞). We have

thus defined a Markovian stochastic processes whose dynamics is characterised by the set of Eqs. (27).
The order-book dynamics associated with the described microscopic model (Fig. 19A–C) relates the trend-following

behaviour to the layered order-book structure found in Ref. [185]. Specifically, trend following induces the collective
motion of orders (Fig. 19D), which in turn accounts for the order book’s layered structure (Fig. 19E).
25
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Fig. 19. Schematic of the microscopic HFT dynamics and the corresponding order-book dynamics. A, Trend-following random walks take place in
he absence of transactions. B, Transactions occur at the instance of price matching âj = b̂i . C, After a transaction between a pair of HFTs takes place,
hey resubmit their prices far from the transaction price. D, Trend-following random walks induce the collective order-book motion. E, Collective
rder-book motion consistently causes the layered order-book structure.
ource: Reprinted figure from Ref. [192] under the Creative Commons Attribution 4.0 International (CC BY 4.0).

.6. Solving the microscopic model via kinetic theory

Having presented a model of the decision-making process among HFTs based on empirical microscopic evidence, we
roceed to solve this microscopic model in order to understand its macroscopic behaviour. Mathematically, we are dealing
ith a high-dimensional stochastic dynamical system exhibiting a structure similar to the Hamiltonian dynamics. We
herefore rely on the methods of statistical physics in general, and kinetic theory in particular, to crack the problem.

inancial Liouville equation. Here, we start by briefly reviewing the conventional kinetic theory whose goal is to reduce
he original high-dimensional dynamical system composed of N particles to a few-dimensional dynamical system. The
microscopic dynamics (Fig. 20A) is generally characterised by Newton’s equation of motion in 6N dimensions, which is
mathematically equivalent to the Liouville equation in analytical mechanics [199,200]. The Liouville equation reduces to
the Boltzmann equation via the Bogoliubov–Born–Green–Kirkwood–Yvon (BBGKY) hierarchy [201] by applying the mean-
field approximation called molecular chaos, thus offering a mesoscopic description of the system (Fig. 20B). This reduction
is powerful in the sense that the original 6N-dimensional dynamics is approximated by a 6-dimensional dynamics. Further
reduction of the dynamics yields the Brownian motion of a tracer particle [202,203] as the macroscopic description of the
system (Fig. 20C).

We have retraced the steps of the conventional kinetic theory with financial markets and the HFT behaviour in mind.
From Eqs. (27), we derive the financial Liouville equation (equivalently, the Chapman–Kolmogorov equation [197] or the
master equation [202]) as the time-evolution equation for the N-body probability density function Pt (Γ )

∂Pt (Γ )
∂t

= LPt (Γ ) (28)

ith an appropriate linear operator L called the Liouville operator. We note that this equation is derived as an identity
without any approximation and is equivalent to the original stochastic model described by Eqs. (27). This is an exact
starting point for our statistical-physics theory.

Financial BBGKY hieararchy. While the financial Liouville equation (28) is exact, it cannot be solved analytically because
it describes genuine many-body dynamics of a complex system. Here, we reduce this dynamical equation following the
ideas behind the BBGKY hierarchy, which was historically invented for the purpose of a systematic derivation of the
Boltzmann equation from microscopic particle dynamics. The derivation is based on reducing the dimension of the original
high-dimensional dynamics by integrating out all variables except for a few dominating ones.

Because the derivation following the BBGKY hierarchy is long and technical [192], we only present the final results.
Let us first define prices relative to the centre of mass, r̂i = ẑi − ẑCM, and the corresponding one-body and two-body
istributions φL(r) and φLL(r, r ′). Here, φL(r) is the probability density function of the relative mid-price r for an HFT with

the spread L, while φLL′ (r, r ′) is the joint probability density function of a pair of HFTs with the spreads L and L′.
By integrating all but one variable out of Eq. (28), we obtain the lowest-order BBGKY hierarchical equation

∂φL(r)
∂t
≈
σ 2

2
∂φL(r)
∂r2

+ N
∑
s=±1

∫
∞

0
dL′ρ(L′)[J sLL′ (r + sL/2)− J sLL′ (r)] (29a)

J sLL′ (r) =
σ 2

2
|∂̃rr ′ |φLL′ (r, r ′)

⏐⏐
r−r ′=s(L+L′)/2, (29b)

where |∂̃rr ′ |f = |∂ f /∂r|+|∂ f /∂r ′|. The second term of the right-hand side of Eq. (29a) represents the effect of transactions
(s = +1 for bids and s = −1 for asks) and corresponds to the collision integral in physical kinetic theory. The three-body
‘collision’ integral is dropped here because it becomes irrelevant for a large N .
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Fig. 20. Schematic representation of the correspondence between kinetic theories for physical and financial Brownian motion. A, The starting point
f physical kinetic theory is the Liouville equation for microscopic particle dynamics. B, The Liouville equation is reduced via the BBGKY hierarchy

to the Boltzmann equation, which can be interpreted as the mesoscopic description of the dynamical system. C, The Brownian motion, described by
the Langevin equation, is derived after further coarse-graining to yield the system’s macroscopic dynamics. D, The microscopic dynamics of financial
markets is driven by the decision-making process of individual HFTs. This is captured by the financial Liouville equation (28), which is mathematically
equivalent to the trend-following random-walks model in Eqs. (27). E, By reducing the microscopic market dynamics via the BBGKY hierarchy, we
btain the order-book dynamics in terms of the financial Boltzmann equation (31). The financial Boltzmann equation can be seen as the mesoscopic
escription of financial markets. F, Further coarse-graining reveals the market-price diffusion in the form of the financial Langevin equation (34).
ource: Reprinted figure from Ref. [192] under the Creative Commons Attribution 4.0 International (CC BY 4.0).

inancial Boltzmann equation. The BBGKY hierarchical equation (29) is a formalism that needs a closure, that is, further
pproximation is necessary to find the solution. We apply the ‘molecular chaos’ assumption, which is a standard
ean-field approximation in kinetic theory

φLL′ (r, r ′) ≈ φL(r)φL′ (r ′), (30)

o obtain the financial Boltzmann equation

∂φL(r)
∂t
≈
σ 2

2
∂φL(r)
∂r2

+ N
∑
s=±1

∫
∞

0
dL′ρ(L′)[J̃ sLL′ (r + sL/2)− J sLL′ (r)] (31a)

J̃ sLL′ (r) =
σ 2

2
|∂̃rr ′ |φL(r)φL′ (r ′)

⏐⏐
r−r ′=s(L+L′)/2, (31b)

which is closed in terms of φL(r). This equation can be analytically solved under an appropriate boundary condition for
large N . Indeed, the leading-order steady solution is given by the tent function

lim
N→∞

φL(r) =
4
L2

max
{
L
2
− |r|, 0

}
. (32)

otably, even the next-to-leading order solution is accessible, which is necessary for detailed mean-field analyses.
The average order-book profile follows from the financial Boltzmann equation via a formula

f A(r) =
1
N

⟨
N∑
i=1

δ(r − r̂i)

⟩
≈

∫
∞

0
dLρ(L)φL(r − L/2), (33)

here the summation is approximated by the integral over all spreads L. Remarkably, the book profile is analytically
erived for any spread distribution ρ(L), suggesting that the microscopic model of the HFT behaviour is an analytically
ell-tractable model.

inancial Langevin equation. By additional coarse-graining, we obtain the financial Langevin equation

∆p̂[T + 1] ≈ cτ̂ [T ] tanh
∆p̂[T ]

+ ζ̂ [T ] (34)

∆p∗
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or the macroscopic dynamics of the studied system. Here, τ̂ [T ] = t̂[T +1]− t̂[T ] is the time interval between the ticks T
nd T + 1, whereas ζ̂ [T ] is a random-noise term. The mean-field approximation permits obtaining all the statistics for τ̂
nd ζ̂ analytically. The time interval τ̂ exhibits the exponential distribution with the mean time interval τ ∗ ≈ L∗ρ/(2Nσ

2)
nd L∗ρ = 1/

∫
∞

0 L−2ρ(L)dL, implying the Poissonian statistics asymptotically.
The dynamical characteristics of the financial Langevin equation (34) depend on two dimensionless parameters,

˜ = cL∗ρ/(σ
2
√
2N) and ∆p̃∗ = ∆p∗/(cτ ∗). Focusing on a regime in which c̃ ⪆ 1 and ∆p̃∗ ⪅ 1, called the marginal-to-strong

trend following [192], the statistics of the price change ∆p̂ asymptotically obeys the exponential law

P(≥ |∆p|; κ) ∼ e−|∆p|/κ for large |∆p|, (35)

here P(≥ |∆p|; κ) is a complementary cumulative distribution function with the decay length κ .

umerical confirmation. The validity of the described analytical predictions, such as the order-book profile in Eq. (33) and
he exponential price-change distribution in Eq. (35), can be directly checked by means of numerical simulations [192].
he results are encouraging; especially the order-book profile formula in Eq. (33) agrees with the numerical results very
recisely.
Such a precise agreement might be somewhat counter-intuitive because mean-field approximations are generally

xpected to be valid only for high-dimensional spaces while the price space is one-dimensional. This counter-intuitive
esult can be understood from the viewpoint of the ‘collision rule’: low-dimensional spaces are special for physical systems
n the sense that geometry restricts movements of particles after collisions. The mean-field approximation then fails
ecause the same pair of particles collides many times and the two-body correlation persists. In the case of our microscopic
odel, the ‘collision rule’ pushes the limit-order prices of a pair of HFTs far from the market price, making successive

collisions’ between the same HFT pair highly unlikely for a large N . The two-body correlation thus quickly decays, which
o a large degree validates the assumption of the molecular chaos in our kinetic formulation. In fact, the kinetic formulation
ight work better for some social systems than for physical systems because the continuity of paths is often unnecessary

n social dynamics but strictly required in physical dynamics.

.7. Consistency between theory and data

We have analysed the model for trend-following random walks in Eqs. (27) within the kinetic framework. It is time
o check the model’s consistency against mesoscopic and macroscopic data.

First, we have measured the buy–sell spreads of each individual HFT and estimated the corresponding daily distribution
Fig. 21A). The buy–sell spread distribution is well approximated by the gamma distribution

ρ(L) ≈
L3

6L∗4
e−L/L

∗

(36)

ith L∗ ≈ 15.5±0.2 tpip. This buy–sell distribution together with the general order-book formula in Eq. (33) implies that
he average order-book profile is given by

fA(r) ≈
4e−

3r
2L∗

3L∗

[(
2+

r
L∗

)
sinh

r
2L∗
−

re−
r

2L∗

2L∗

]
. (37)

f note is that our model addresses the dynamics of the best bid and ask prices of individual HFTs. The average order-book
rofile after normalisation (Fig. 21B) shows an excellent agreement with the theoretical curve from Eq. (37) without any
dditional fitting of model parameters.
Turning to the macroscopic perspective in terms of the time series of price changes, we have seen that the financial

angevin equation (34) predicts the exponential law in Eq. (35). This prediction turns out to be consistent with the
vailable dataset (Fig. 21C,D). The price-change distribution at a time scale of one tick indeed follows said exponential
aw with the decay length κ depending on the chosen time period (Fig. 21C). Re-scaling price changes by κ eliminates
he time-period dependence, causing all data to collapse onto a single master curve (Fig. 21D).

Although price changes obey the exponential law at short time scales, a power law emerges as time scales get longer,
hich is in line with previous findings [157,204–207]. The price-change distribution for the studied week has fat tails,

itted with a power-law whose exponent is α = 3.6± 0.13 (Fig. 21E). The power law emerges here as a superposition of
-hourly exponential distributions P2h(≥ |∆p|; κ) such that

Pw(≥ |∆p|) =
∫
∞

0
dκQ (κ)P2h(≥ |∆p|; κ) ∝ |∆p|−m, (38)

here Pw(≥ |∆p|) is the weekly price-change cumulative distribution function, and Q (κ) ∝ κ−(m+1) is the decay-length
robability density function with the exponent being estimated at m = 3.5 ± 0.13 (Fig. 21F). The fact that α ≈ m

additionally confirms the consistency of the results.
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Fig. 21. Theory is consistent with data. A, Daily buy–sell spread distribution for individual HFTs is closely approximated by the gamma distribution in
Eq. (36). B, Daily average order-book profile composed of the best HFT prices agrees with the theoretical curve in Eq. (37). C, Two-hourly segmented
rice-change cumulative distribution functions for three different time periods follow the exponential law in Eq. (35) with the decay length κ being
ime-dependent. D, After scaling, the two-hourly segmented price-change cumulative distribution functions collapse onto a single exponential master
urve in Eq. (35). E, Weekly segmented price-change cumulative distribution function exhibits fat tails with a power-law exponent α. F, Decay length
umulative distribution function exhibits a fat tail with a power-law exponent m such that Q (≥ κ) ∼ κ−m .
ource: Reprinted figure from Ref. [192] under the Creative Commons Attribution 4.0 International (CC BY 4.0).

.8. Future outlook: Towards market ecology

We have examined in detail the trend-following behaviour of HFTs at the time scale of one tick. This examination had
ielded a microscopic model specified by Eqs. (27) and solved using the kinetic theory of statistical physics. Ref. [208]
xtends the analysis, offering direct evidence that the (exponential) moving-average technique—a common tool in the
epertoire of ‘technical analysts’ or ‘chartists’—is applied in practice by HFTs. To achieve this feat, a regression relation
nspired by Eq. (27a) is set up as follows

∆ẑi[T ] = ci tanh
(
∆p̂(ji)Trend[T ] + αi

)
, (39a)

here the trend signal includes time delays

∆p̂(ji)Trend[T ] =
Ki∑

k=1

wi[k]∆p̂(ji)[T − k] + σiϵ̂i[T ]. (39b)

ere, ci, αi, wi[k], σi, and Ki are regression coefficients, ϵ̂i[T ] is the white noise, and {∆p̂(ji)[T − k]}k is a coarse-grained
price time series defined as

∆p̂(ji)[T − k] = p̂[T − ji(k− 1)] − p̂[T − jik], (39c)

where k, Ki, and ji are respectively called the time lag, the maximum time lag of the ith HFT, and the coarse-graining
parameter. The regression coefficients are estimated using iterative non-linear multiple-regression methods.

The weights {wi[k]}k=1,...,Ki determine the nature of the moving average applied by HFTs. The results show that an
exponential scaling law is satisfied

wi[k] ≈ di exp
(
−

k
τi

)
, (40)

here parameters di and τi characterise the ith HFT. Among the examined HFTs, 85% were shown to conform to this
xponential moving average. Further subdivision of HFTs was possible according to their typical trend-following time
cale; (i) short time-scale HFTs follow the trend for about 4 ticks (30 s), (ii) intermediate time-scale HFTs follow the trend
or about 20 ticks (3min), and (iii) long time-scale HFTs follow the trend for about 40 ticks (6min). The remaining 15%
f HFTs use other trading strategies.
Identifying market strategies as described here is a first step in the direction of understanding market ecology [209,

10], that is, interactions among various trading strategies (e.g., how strategies contribute to market liquidity or price
29
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ormation). If such interactions are precisely understood, designing market simulators for regulatory purposes becomes
ntirely plausible. Regulators could then plan interventions to enhance market liquidity and stability. The scarcity of
icroscopic data has so far precluded in-depth analyses of market ecology (see Refs. [211–218] for notable attempts so

ar), but we firmly believe that the situation is changing and that market ecology is within our grasp.

. Cooperation

Conspecific organisms mutually interact to a lesser or greater degree. Some species are highly individualistic, associat-
ng only for courtship and mating. Others are extremely social with overlapping adult generations, reproductive division
f labour, cooperative care of young, and sometimes even a biological caste system. Sociality, or living in groups, implies
coexistence of two opposing forces: conflict over local resources and cooperation with neighbours [219]. These two
pposing forces form the basis of evolutionary game theory whose aim is to understand the evolution and pervasiveness
f cooperation in biological and social systems. More specifically, the goal is to answer how natural selection can favour
ostly, cooperative behaviours that benefit others.
Ever since the mathematical framework of game theory was applied to evolution [220], the research on cooperation

ttracted the attention of fields as varied as biology, psychology, economics, physics, and others [34,221–223]. Such a
ariety brought together a plethora of unique perspectives on the problem of cooperation, giving rise to a reasonably
ood understanding of the origins and stability of cooperativeness. It is safe to say that we are at a point at which the
volution of cooperation is much less of a puzzle than it used to be [224].
Hereafter, we take a look at some of the tenets of evolutionary game theory, and then review the main interests and

ontributions of physics to this field. A particular focus is on networks that define the topology of interactions among
umans, as well as on a gap between theoretical models and empirical facts. We conclude with ideas for reconciling the
ap between theory and experiments while heeding the initiatives from relevant behavioural disciplines (e.g., psychology
nd behavioural economics) for better research practices.

.1. Social dilemmas

Social dilemmas are situations in which the process of selection favours defection over cooperation while reducing
opulation welfare compared to when everybody cooperates [225]. Many real-world social dilemmas fit the format of
yadic games in which a pair of players simultaneously chooses between cooperation C or defection D. Depending on the
hoices made, the outcome is defined with the following four payoff-matrix elements

(C D
C R S
D T P

)
. (41)

his payoff matrix signifies that mutual cooperation generates reward R, whereas mutual defection generates punishment
for both players. Additionally, if one player defects and other cooperates, the former receives temptation T and the

atter the sucker’s payoff S. Payoff ordering determines the nature of the dilemma. For example, T > R > P > S
ndicates the prisoner’s dilemma, that is, the archetypal dilemma for studying the emergence of cooperation between
elfish individuals [226]. Two other common dilemmas are stag hunt and snowdrift (also known as hawk-dove or chicken),
btained by setting R > T and S > P , respectively.
The above-mentioned social dilemmas were considered static prior to the work of John Maynard Smith, who introduced

he notion of repetitions (i.e., iterations) and thus laid the foundations of evolutionary game theory [220,227,228].
raditionally set in populations in which all players have equal probability to interact with one another (i.e., well-mixed
opulations), the frequency xi (0 ≤ xi ≤ 1) of players resorting to strategy i is traced with the differential equation [229]

dxi
dt
= xi [ϕi(x)−Φ(x)] (42)

nown as the replicator equation, where x is the vector of frequencies for all strategies satisfying
∑

i xi = 1, ϕi(·) is the
er-capita payoff attained by resorting to the ith strategy, and Φ(·) is the average per-capita payoff. Because dilemmas
iffer in payoff ordering, they also reach different stationary points under Eq. (42). If a stationary point is stable, it is called
n evolutionarily stable state or a Nash equilibrium. If a Nash equilibrium is monomorphic, that is, xi = 1 and xj = 0 for
ll i ̸= j, then the ith strategy is called an evolutionarily stable strategy (ESS). In prisoner’s dilemma, defection is ESS. In a
nowdrift dilemma, however, both C and D strategies coexist in an evolutionarily stable state [230] because cooperating
ith a defector is still better than mutually defecting.
Social dilemmas that fit the format of dyadic games can be re-scaled in terms of the dilemma-strength parameters,

ne of which (D′g) measures how lucrative defection is in the presence of a cooperator, whereas the other (D′r) measures
ow hazardous cooperation is in the presence of a defector [231–233]. Precisely, the two parameters are defined by

D′ =
T − R

, (43a)
g R− P
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d

Fig. 22. Dilemma-strength parameters reflect the nature of social dilemmas that fit the format of dyadic games. Specifically, D′g,D
′
r > 0 indicate the

prisoner’s dilemma; D′g < 0,D′r > 0 indicate the stag-hunt dilemma; D′g > 0,D′r < 0 indicate the snowdrift dilemma; and D′g,D
′
r < 0 indicate no

ilemma (in which case the dyadic game is called harmony).

D′r =
P − S
R− P

. (43b)

In Eq. (43a), the positive value of D′g increases as T increases relative to R, which facilitates defection by making the
temptation payoff for defecting against a cooperator much larger than the reward payoff for mutual cooperation. In
Eq. (43b), the positive value of D′r increases as S decreases relative to P , which again facilitates defection, but this time by
making the sucker’s payoff for cooperating with a defector much more negative than the punishment payoff for mutual
defection. The normalisation factor in both equations, R− P , works in the opposite direction (i.e., facilitates cooperation)
through more generous reward for cooperators and more stringent punishment for defectors. When D′g,D

′
r > 0, then the

payoff ordering of the prisoner’s dilemma holds; if instead D′g < 0 (D′r < 0), then the payoff ordering of the stag-hunt
(snowdrift) dilemma holds (Fig. 22).

The importance of the dilemma-strength parameters lies in the fact that they reduce the dimensionality of dyadic
games from four (payoffs R, S, T , and P) to two. This is achieved by affine-transforming the payoff matrix in Eq. (41) into

( C D
C 1 −D′r
D 1+ D′g 0

)
. (44)

Such a transform leaves the process of selection as specified by Eq. (42) unchanged [227]. Of note is that infinitely many
four-payoff matrices can be mapped into a single two-parameter matrix. Consequently, all dyadic games that have the
same dilemma strength, even if their payoff matrices wildly differ, are equivalent in terms of evolutionary outcomes.

The prisoner’s dilemma is ubiquitous because by default it leads to defection. Cooperation can prevail only through
various extensions of dyadic games based on this dilemma. Such extensions are then said to be cooperation-promoting
mechanisms. Kin and group selection, as well as direct, indirect, and network reciprocity are seen as general mechanisms
that act as the promoters of cooperation [234]. Interestingly, numerical results show that even when dyadic games
incorporate these cooperation-promoting mechanisms, evolutionary outcomes are predetermined by the dilemma-
strength parameters [231]. Why would that be? One way to understand why the quantities D′g and D′r work for extended
dyadic games is to recognise that such games can all be transformed and reinterpreted as standard (i.e., non-extended)
dyadic games but with suitably adjusted payoff matrices [235]. In the case of direct reciprocity, for example, the payoff
matrix in Eq. (41) is transformed into

( C D
C 1

qR S + 1−q
q P

1−q 1

)
, (45)
D T + q P qP
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here q is the probability of terminating play with a given individual (and 1−q is the probability of continuing play with
his individual). Using the same re-scaling as in Eq. (44), we get

( C D
C 1

q −D′r
D 1+ D′g 0

)
, (46)

hich shows that for a fixed q, the evolutionary outcome is determined by the dilemma-strength parameters. If the
robability q is small enough that D′g <

1−q
q , then the original prisoner’s dilemma turns due to direct reciprocity to a

stag-hunt dilemma, and cooperation is an ESS.
A more parsimonious explanation for the success of the dilemma-strength parameters is to recognise that all five

cooperation-promoting mechanisms (i.e., kin selection, group selection, direct reciprocity, indirect reciprocity, and net-
work reciprocity) have one crucial feature in common; one way or another, these mechanisms enable positive assortment
by which cooperative acts occur more often between cooperators than expected based on population averages [236–238].
Once the role of positive assortment is recognised, the affine transformation of the payoff matrix as specified by Eq. (44)
must not interfere with such assortment, that is, the two must be compatible. This indeed is the case [239]. In other
words, all five cooperation-promoting mechanisms are manifestations of positive assortment which itself is preserved by
the affine transformation that parametrises dyadic games in terms of the dilemma-strength parameters.

A limitation of the dilemma-strength parameters is that they can be defined solely for social dilemmas that fit the
format of dyadic games. However, a generalisation to more complex social dilemmas is possible in terms of an efficiency
deficit defined as the fitness difference between the socially optimal steady state that maximises individual fitness and
the current evolutionarily stable state [233]. This definition implies that society evolving to a suboptimal equilibrium
incurs an opportunity cost. If the opportunity cost is small (large), it can (cannot) be tolerated, and a societal change for
the better is more difficult (easier) to accomplish.

5.2. Cooperation in networks with pairwise interactions

A population of players can be structured using graphs or networks such that vertices (i.e., nodes) represent players
and edges (i.e., links) indicate pairwise interactions. In this picture, the usual well-mixed populations of evolutionary
game theory are represented by complete networks in which all nodes are linked to one another. Structured populations,
however, are specified to spatially constrain interactions, that is, prescribe who interacts with whom. In a square lattice,
for example, players interact with their four or eight nearest physical neighbours (often called von Neumann and Moore
neighbourhoods, respectively). Payoffs accumulated from such interactions are then used to update the lattice through
either reproduction or imitation and learning, depending on whether biological or social evolution is of interest.

When the focus is on biological evolution, ‘death-birth’ updating is commonly applied, meaning that at each time step a
random player is chosen to die, followed by the offspring of neighbours competing for the empty site in proportion to their
fitness [240–242]. An alternative is ‘birth–death’ updating by which a player is selected for reproduction proportional to
fitness, followed by offspring replacing a randomly chosen neighbour. For social-evolution scenarios, ‘imitation’ updating
is used, meaning that at each time step a random player is chosen to decide whether to keep their current strategy or
imitate one of the neighbours depending on the difference in fitness between the neighbour and the player.

Structured populations shot to fame through the work of Nowak and May [243] who observed that repeated games in
a square lattice generate spatial chaos. An even more influential finding was that cooperators could expand by forming
clusters [244] that enable reaping the benefits of cooperation despite exploitation by defectors at cluster boundaries. This
finding spurred further studies on whether cooperators survive, or even thrive, in different types of network structures.
Besides lattices, random and scale-free networks were featured prominently [245–249]. The cited studies, inspired in large
part by the result in Ref. [250], established that more heterogeneous networks provide the best conditions for the evolution
of cooperation by securing that large cooperative clusters remain little exposed to defection at cluster boundaries. The
promise of scale-free networks strongly boosting cooperation succeeded in attracting much attention in the field, but has
subsequently been proven to lack robustness to theoretical model assumptions [251,252].

The proliferation of research on evolutionary games in structured populations begat a search for general rules that
explain the evolution of cooperation in various networks. Ref. [240] describes one such rule for weak selection. The
term ‘weak selection’ refers to the idea that many different factors affect a player’s overall fitness, with the game under
consideration being just another factor among the many. For this reason, a player is characterised by a baseline fitness
that is large relative to payoffs earned throughout the game. Let the game be a variant of the prisoner’s dilemma in
which R = b − c , S = −c , T = b, and P = 0 (with b > c > 0). It turns out that, under weak selection, cooperation is
avoured in pairwise networks if the benefit of altruistic acts, b, divided by the cost, c , exceeds the average number of
eighbours, k, or b/c > k. This simple rule closely resembles Hamilton’s rule, according to which kin selection favours
ooperation if b/c > 1/r , where r represents the coefficient of genetic relatedness between individuals. The similarity of
he two rules can be intuitively understood by considering that the average node degree is an inverse measure of social
elatedness between players. A player’s fate is loosely bound to that of the neighbours if there are many neighbours,
hereas the opposite is true if there are a few neighbours. Similarity notwithstanding, Ref. [253] argues that network
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eciprocity under the condition b/c > k is fundamentally different from kin selection under the condition b/c > 1/r .
mportantly, the network-reciprocity rule is rather robust to theoretical model assumptions [252].

Ref. [254] expanded the aforementioned research to obtain a general condition for the evolution of cooperation in any
etwork under weak selection. Writing the condition using our notation, we have σR+ S > T +σP , where σ = −t1+t2+t3t1+t2−t3
s a structural coefficient that quantifies a network’s propensity to support cooperation. The quantities t1, t2, and t3
espectively denote the expected times at which the first, second, and third neighbours of an initial cooperator become
ooperators. To revert back to the simple rule b/c > k, in addition to setting the payoffs to R = b− c , S = −c , T = b, and
= 0, it is necessary that the network is large enough in order for all nodes (whose average degree is k) to be sparsely
onnected.
The research on the evolution of cooperation in structured populations described so far has maintained a rigid

ssumption of node-based selection. This means that any given node is either a cooperator or a defector and acts as such
owards its whole neighbourhood. In reality, it is crucial for many simple and complex organisms alike to differentiate
etween cooperative and defecting neighbours. By refocusing selection on links instead of nodes, a series of recent
orks has enabled examining situations in which the same node can cooperate with some neighbours and defect against
thers. The results show that with link-based selection, the frequency of cooperation can be high for a wide range of
ame setups [255]. A novel dynamic state has been observed between b/c ≈ ⟨k⟩ and b/c ≫ ⟨k⟩ in which cooperation
nd defection dynamically interchange with one another as a dominant strategy [256]. In mixed populations with both
ode- and link-based selection, cooperation either increases monotonically as the link-based selection becomes more
revalent [257], or there is a clear separation of roles by which node-based selection spawns cooperative clusters, while
ink-based selection protects these cluster from defectors [258].

When evolutionary games in structured populations are enriched with a third strategy on top of usual cooperation
nd defection, a commonly observed phenomenon is that of cyclic dominance [259]. The term ‘cyclic dominance’ refers
o an intransitive relationship between objects A, B, and C by which A in some aspect dominates B, B dominates C, but
dominates A. The third strategy leading to cyclic dominance can be as simple as that of loners [260], who always stay
ut of the game, thus settling for a small payoff no matter whom they were supposed to interact with. Similar results are
een with exiters [261], who pay a small cost to find out if they are supposed to interact with cooperators or defectors.
n the former case, exiters stay in the game and cooperate. In the latter case, they exit the game to receive a small
ayoff before getting exploited through defection. Yet another example of a strategy leading to cyclic dominance is that
f hedgers [262], who also pay a small cost to find out if they are supposed to interact with cooperators or defectors, but
hen cooperate in the former case and defect in the latter. Cyclic dominance is of interest from a dynamical point of view
ecause evolutionary dynamics can greatly differ depending on the topology of the underlying network (Fig. 23).
To conclude, network structure may be a powerful cooperation-promoting mechanism in the prisoner’s dilemma, but

his is not the case in the snowdrift dilemma. Structure, surprisingly, decreases the frequency of cooperators relative
o well-mixed populations [230,263]. Instead of large, compact clusters common in spatial prisoner’s dilemma games,
lusters in spatial snowdrift dilemma games are small and filament-like [230] due to the fact that two interacting
nowdrift players should adopt the opposite strategies to one another.

.3. Cooperation in multilayer networks

Many complex systems can be seen as a network of networks. Organisms, for example, comprise gene regulatory
etworks on the sub-cellular scale, neuronal networks on the cellular scale, and vascular networks on the scale of cellular
ollectives (i.e., organs) [264]. Ecosystems comprise trophic networks and host-parasite networks in habitat patches
ccessible to individuals [265]. Infrastructure comprises many interdependent networks such as power, communications,
ransportation, etc. Interdependence in particular implies that processes occurring in one network may affect what
appens in other networks to the point that small and seemingly irrelevant changes have unexpected and catastrophic
onsequences [266]. This possibility has sparked substantial interest in the robustness of networks in general, as well
s in many specific contexts [267–270]. Interestingly, a wide variety social interactions fit a network of networks
epresentation. For example, people mutually interact and transfer information both within and between online social
etworks. It is therefore natural to study the evolution of cooperation in interdependent networks [271].
A rigorous way of representing networks of networks is via the multilayer-network formalism [272,273]. Keeping the

iscussion semi-formal, we can define a multilayer network as a quadruplet M = (VM , EM , V , L), where V is a set of
hysical nodes, L = L1 × · · · × Ld is a set of layers comprising d elementary-layer sets L1 to Ld, VM ⊆ V × L is a set of
tate nodes encoding whether a physical node v ∈ V is found in layer l ∈ L, and EM ⊆ VM × VM is a set of intralayer
nd interlayer links. To exemplify, an elementary set could be an online social network (e.g., L1 = {Facebook, Twitter}),
hile the other elementary set could be a region (e.g., L2 = {US, EU}). Then the set of layers is L = L1 × L2 =
(FB,US), (FB, EU), (TWTR,US), (TWTR, EU)}. To indicate that the person v1 accesses Facebook and Twitter from the US, we
ould write (v1, (FB,US)) ∈ VM and similarly (v1, (TWTR,US)), which could be shortened to (v1, (1, 1)) and (v1, (2, 1)). The
erson v1 is also an interlink between the two social networks {(v1, (1, 1)), (v1, (2, 1))} ∈ EM . To indicate that the person v2
s a Twitter user who travels between the US and the EU, we would write (v2, (2, 1)) and (v2, (2, 2)), automatically forming
n interlink {(v2, (2, 1)), (v2, (2, 2))}. Finally, if the person v1 follows the person v2 on Twitter, this can be represented as
he intralink {(v , (2, 1)), (v , (2, 1))} and the interlink {(v , (2, 1)), (v , (2, 2))}. Another intuitive example of a multilayer
1 2 1 2
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Fig. 23. Evolutionary dynamics of cooperators, defectors, and exiters depending on network topology. Panel (a) shows that abundances of cooperators,
efectors, and exiters oscillate locally in regular lattices. Panel (b) further shows that local oscillations are somewhat amplified by regular small-world
etworks. Panel (c) reveals that global oscillations occur in random regular networks. In scale-free networks, shown in panel (d), the presence of
ub nodes turns oscillations into random fluctuations.
ource: Reprinted figure from Ref. [261].

etwork could have a collection of cities as physical nodes; the first elementary layer could be transport-mode availability
e.g., high-speed railway station or airport), the second could be city size (e.g., less than 1 million inhabitants, between 1
nd 5 million inhabitants, or more than 5 million inhabitants), and the third elementary layer could be a country. Instances
f intralayer links would then be domestic railways or flights connecting the cities of the same size. Instances of interlayer
inks would be any international railways or flights, domestic railways or flights between the cities of different size, but
lso cities that possess both a high-speed railway station and an airport where transferring between the two transport
odes is possible.
From the perspective of evolutionary game theory, the focus is on interdependence through the coupled player utilities

r the flow of information between players, although other proposals have been made too [271]. Typically, a single
layer occupies only one of the available layers (but see Ref. [274]), while gameplay and strategy transfers take place
nly between players residing in the same layer. If the latter were not the case, and we dealt with truly interconnected
etworks (as opposed to just interdependent ones), then the social-dilemma game would essentially unravel in a single-
ayer network (albeit with two communities), meaning that the same cooperation-promoting mechanism would operate
verywhere. Ref. [275] presents a game setup designed along these lines, that is, the prisoner’s dilemma is played within
nd between two communities. In Ref. [276], the prisoner’s dilemma is played within communities and the snowdrift
ilemma between them.
The simplest and most common social-dilemma games in multilayer networks are those unfolding in two-layer

etworks (Fig. 24). Ref. [277] exemplifies such a game with coupled player utilities. Specifically, let x denote a player
from layer 1 whose payoff is Px, and similarly, let x′ denote an interdependent player from layer 2 whose payoff is P ′x.
Then the utility determining the course of evolutionary dynamics for both players is given by

Ux = U ′x = αPx + (1− α)P ′x, (47)

where 0 ≤ α < 1
2 . Furthermore, instead of playing the prisoner’s dilemma with their first neighbours individually, the

layers x and x′ participate in public goods games with all their first neighbours simultaneously. In a lattice, the public
34
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Fig. 24. Two-layer network for a social-dilemma game. Nodes in different layers represent different players, which is denoted by blue and red
olours. Although players reside in different layers, there are interdependencies between them, which is denoted by the dashed interlinks. The
opology of one layer, as indicated by solid intralinks, may differ from that of another layer, meaning that social connectivity is layer-specific.
ource: Reprinted figure from Ref. [271].

oods game can be centred around the player x in layer 1 (x′ in layer 2), but also around each of the first neighbours,
meaning that the players x and x′ participate in five public good games to collect their payoffs, Px and P ′x, respectively.
The gameplay rules are such that a cooperator contributes 1 unit to a pool, while a defector contributes nothing. The total
contribution to the pool is multiplied by a return factor r > 1, and divided equally between players participating in the
same public goods game. The results show that cooperation is strongly promoted in layer 1, but not in layer 2, due to a
dampening effect that coupled utilities have on the exploitation of cooperators by defectors in the former layer.

Aiming to resolve the social dilemma in both layers, Ref. [278] redefined the coupled utilities

Ux = Px + αxP ′x, (48)

U ′x = P ′x + α
′

xPx, (49)

where 0 ≤ αx, α
′
x ≤ 1 are directed interdependencies between the layers. These interdependencies are adaptive such that

if the player x (x′) earns a payoff Px (P ′x) greater than some threshold E, that is, Px ≥ E (P ′x ≥ E), then the interdependency
αx (α′x) is strengthened by an amount δ > 0; if conversely the payoff falls short of the threshold, the interdependency is
reduced by the same amount.

It turns out that under the described setup, a large threshold value E effectively keeps the two layers disconnected,
meaning that there cannot be any synergy between them. Somewhat surprisingly, if the threshold value E is too small,
suboptimal synergy is achieved. This is because small E allows defectors (alongside cooperators) to develop strong
interdependencies, and then, if a defector in one layer gets to exploit some cooperators, then this defector can sustain
their counterpart defector in the other layer. Only for the intermediate values of the threshold E is full synergy between
the layers achieved (Fig. 25). In this case, predominantly cooperators create strong interdependencies which allows two
interdependent cooperators to support one another. Such cooperators seed clusters of cooperation that later on take over
the whole population in both layers (Fig. 25), thus successfully resolving the social dilemma at hand.

5.4. Cooperation in temporal networks

Complex networks have heretofore been used as if social interactions were static in time. Although this is a reasonable
approximation in many circumstances, the ephemeral nature of human contacts eventually needs to be accounted for.
After all, when two persons engage in an activity, this often happens in short bursts followed by periods of relative
lull [279–281].

Temporal networks have emerged as a convenient tool for representing time-varying social interactions [282–284]. In
such networks, any pair of momentarily disconnected nodes may get connected by the next time instant and vice versa.
Interest in temporal networks stems from their ability to affect network-science fundamentals, among others, general
dynamical processes [285–287], epidemiological dynamics [288,289], and network controllability [290].

In the study of the evolution of cooperation in networked populations, network temporality has found a natural place
in co-evolutionary models [291]. The term ‘co-evolution’ implies that besides the usual cooperative trait, one or more
other traits evolve in parallel. This could be, for instance, a homophilic trait such that cooperative individuals tend to
connect with other cooperative individuals or, at least, shun connections with defecting individuals. Be it homophily or
some other psycho-social mechanism, a consequence is that network topology changes over time [292–296]. Psycho-social
mechanisms, however, imply an active screening for suitable contacts, whereas network temporality in the real world is
oftentimes more serendipitous. This begs the question of how temporal contact networks, exogenous of psycho-social
mechanisms, affect the evolution of cooperation.
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Fig. 25. Snapshots of co-evolutionary dynamics in a two-layer lattice. Interlayer links occupied by cooperator–cooperator pairs acts as seeds for the
growth of cooperative clusters. Panels (a) show cooperation frequency in the two lattice layers, whereas panels (b) show directional interdependency
strength between the two lattice layers. From left to right, the panels display Monte Carlo Steps 0, 100, 300, 500, and 9999, respectively.
Source: Reprinted figure from Ref. [278].

Early work in the described context has indicated that temporal networks may be favouring selfish behaviour [297].
Using a temporal network of N = 100 contacts recorded every five minutes over a period of six months (resulting in 41,291
snapshot graphs), it was shown that when snapshots are aggregated over a short time period of∆t = 1h, then much lower
ooperation frequencies ensue compared to longer aggregation periods of ∆t > 1wk. Here, aggregation means taking all
napshot graphs over the period ∆t , and if two nodes i and j interacted in any of the snapshots, then these nodes are
ssumed to be momentarily connected; otherwise, the nodes are disconnected (Fig. 26A). The time period ∆t is a facet
f network temporality, where small (large) ∆t values mark frequent (infrequent) changes in topology. As ∆t → ∞,
he network becomes fully aggregated (i.e., static). Interestingly, randomising the time ordering of snapshots improves
ooperativeness. Because such randomisation effectively removes the aforementioned burstiness of human interactions,
t would seem that the bursts of activity, in particular, disfavour the evolution of cooperation.

In contrast to the outlined early work, the current state of the art [298] paints a more nuanced picture of coop-
rativeness in temporal networks. This is achieved by considering an additional facet of network temporality; how
ast evolutionary dynamics is relative to network-structural dynamics. A parameter g quantifying the second facet of
emporality is defined as the number of evolutionary-game rounds that take place during the time period ∆t (Fig. 26B).
he increasing values of the parameter g improve cooperativeness in temporal networks even beyond what is possible in
tatic networks (Fig. 27). The improvement occurs despite the unfavourable effects of burstiness.
The numerical results in Ref. [298] point to a threshold for the outbreak of defection that reaches a maximum for

ntermediate values of the aggregation parameter ∆t . This result can be understood via activity-driven modelling [299],
hich shows that defectors successfully spread if the following condition is satisfied

λk
µ
≥ D∗, (50)

here λ (µ) is the average probability of a cooperator (defector) turning into a defector (cooperator) in the next round. The
uantity k = 2l⟨a⟩ is the average degree given in terms of the average number of links l that an active temporal-network
ode randomly creates in the current time step, as well as in terms of the average activity ⟨a⟩. To clarify, in activity-driven
odels, each node is assigned a probability ai of being active in a particular time step; active nodes create l random links

to other (active or passive) nodes, while also being able to receive additional links from other active nodes. The quantity
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Fig. 26. Evolutionary games in temporal networks. A, Social interactions change from one time instant to another (left). This is represented using
emporal networks after aggregating all social interactions over the time period of length ∆t (right). The longer the ∆t is, the coarser the picture
of social interactions. When ∆t is large, we get only the fully aggregated (i.e., static) interaction network. B, The aggregation-length parameter ∆t
captures one facet of network temporality. Another facet is captured by a parameter g , quantifying how fast evolutionary dynamics compared to
network-structural dynamics. The parameter g is defined as the number of evolutionary-game rounds between any two consecutive changes in the
network topology.
Source: Reprinted figure from Ref. [298] under the Creative Commons Attribution 4.0 International (CC BY 4.0).

on the right-hand side of the invasibility condition in Eq. (50) is

D∗ =
1

1+
√
1+ Var(a)

⟨a⟩2

. (51)

his relationship shows that the threshold D∗ should decrease as the aggregation period ∆t gets very short because then
emporal contact networks are sparse (see Fig. 26A for ∆t = 3), which makes the average activity ⟨a⟩ also small. A
parse contact network removes the benefits of network reciprocity. Nodes end up playing pairwise repeated prisoner’s
ilemma games in which a likely Nash equilibrium is defection (depending on game payoffs and repetitions). Furthermore,
he threshold D∗ should decrease as the aggregation period ∆t gets very long because then temporal contact networks
re highly heterogeneous (Fig. 26A for ∆t = 12), which makes the variance Var(a) large. A heterogeneous contact
etwork undergoes big topological transformations from one time step to another. Any such transformation can destabilise
ooperative clusters, thus making cooperators more vulnerable to defectors.
In summary, temporal networks may promote cooperation beyond what is possible in the corresponding fully

ggregated (i.e., static) networks, but only if the evolutionary-game dynamics is fast relative to the network-structural
ynamics, that is, the parameter g is large. An additional important result is that temporal networks are most resistant
o defection for the intermediate values of the aggregation period ∆t . These positive effects may, however, be nullified
y the burstiness of human interactions in instances when the two facets of temporality, g and ∆t , are unfavourable.

.5. Cooperation in networks with higher-order interactions

As illustrated thus far, studying the evolution of cooperation in graphs or networks has a long tradition. Intriguingly
hough, cooperation in groups that are themselves embedded in a higher-order network structure has remained an open
uestion until recently [300]. This is not to say that the question has been entirely ignored; special cases have been
xamined and have, in fact, left their mark on the field [301,302]. These early works would select a focal node and follow
his node’s pairwise links to determine which other nodes form a group. Thus determined group members would then
articipate in the same public goods game. A problem here is that determining group members based on pairwise links is
37
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Fig. 27. Temporal networks can promote the evolution of cooperation beyond their static counterparts. Panels show the cooperation frequency as
function of the temptation payoff for several values of the parameter g . Each row of panels corresponds to one real-world temporal network: 1st

row is a contact network of attendees at a scientific conference, 2nd and 3rd rows are contact networks of students at a high school in Marseilles,
France, in 2012 and 2013, and 4th row is a contact network of workers in an office building in France. Irrespective of the network or the value
of the aggregation parameter ∆t , there is always some g value for which the cooperation frequency in the temporal network is larger than in the
corresponding fully-aggregated (i.e., static) network.
Source: Reprinted figure from Ref. [298] under the Creative Commons Attribution 4.0 International (CC BY 4.0).

rather unsatisfactory. Pairwise links are, after all, supposed to denote interactions between node pairs, not node groups,
leading to many natural questions. Can every node be focal or, if not, how do we select focal nodes? Should a group
extend only to the focal node’s first neighbours or should it include second, third, or even more distant neighbours? Does
the higher-order network of groups that emerges by clumping together focal nodes and their neighbours have the most
general structure possible or are there substantial limitations to what is achievable?

Among the most straightforward generalisations of ‘classical’ networks to higher-order ones is to allow more than
two nodes to be connected via the same link, in which case the term hyperlink becomes customary [303]. The resulting
higher-order network is often referred to as a hypergraph. Formally, a hypergraph H is a pair of sets H = (N, L), where
= {n1, . . . , nn} is a set of nodes and L = {l1, . . . , ll|lj ⊆ N} is a set of hyperlinks. Hyperlinks themselves are subsets

f the set N , and thus a hyperlink’s number of elements (i.e., its cardinality) is a well-defined concept. The cardinality,
lj| = g , is usually called the order of the hyperlink and is used in generalising the idea of the node degree. Specifically,
f kgi denotes the number of order-g hyperlinks containing the ith node, then this node’s hyperdegree is ki =

∑gmax
g=gmin

kgi ,
hereas the average hyperdegree is ⟨k⟩ = 1

n

∑
ni∈N

ki. These definitions permit introducing two types of heterogeneity
into hypergraphs. First, hyperdegrees can differ from one node to another, while all links have the same order g . Second,
and more generally, links of multiple orders can intermix in such a way that kg/k is the probability that a randomly
chosen hyperlink is of the order g , where gmin ≤ g ≤ gmax. This means that a node of hyperdegree k on average belongs
to kg order-g hyperlinks. For a hypergraph to be uniform, the node hyperdegree must be the same across all nodes and
the hyperlink order must be the same across all hyperlinks.

Hypergraphs are an ideal setting to study cooperativeness in groups of individuals in a general situation when each
individual potentially belongs to more than one group. An individual is represented by a hypergraph node, whereas a
group comprises all nodes connected via a single hyperlink. Because every group has two or more individuals, it is natural
to consider cooperation in the public goods game, that is, a social-dilemma game that is the multiplayer generalisation
of the prisoner’s dilemma [233,304]. The usual game-rules apply. Cooperators pay the cost c that is pooled, multiplied
by a return factor, and then split equally among all game participants, even if they are defectors and refuse to contribute
to the pool. If we set c = 1 and denote with r the return factor divided by the number of game participants, then the
per-capita payoff of a cooperator is π = ν r − 1, whereas that of a defector is π = ν r , where ν denotes the number
C C D C C
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Fig. 28. Cooperation in uniform hypergraphs. Panel a shows that unlike in well-mixed populations, non-zero cooperation is possible for return-factor
values rc ≤ r < 1. However, full cooperation evolves only for r > 1. In these simulations, the number of hyperlinks equals the critical number that
guarantees hypergraph connectedness, l = lc . Panel b reveals that as the number of hyperlinks l increases above the critical value lc , the critical
eturn factor rc necessary for non-zero cooperativeness tends to unity. A quick rate of convergence indicates that even relatively sparse hypergraphs
imic well-mixed populations.
ource: Reprinted figure from Ref. [300].

f cooperators. It is clear that πC < πD for νC > 0, but if nobody cooperates, nobody gets any return either. Therein lies
he dilemma. Strategy selection proceeds such that a focal node ni is chosen randomly, as is a hyperlink lj to which this
ode belongs. Then all members of the hyperlink lj (i.e., ni′ ∈ lj) play one public goods game in each of the hyperlinks
hey belong to. This provides the average payoff that nodes ni′ earn per game played. The focal node finally adopts the
trategy of the best performing neighbour with the probability 1

∆
(maxπi′ − πi), where ∆ is a normalising quantity equal

o the absolute maximal payoff difference over all the possible strategies.
It is a widely known result that in a well-mixed population, for cooperation to evolve in a public goods game, the

ondition r > 1 must be satisfied (e.g., see Refs. [233,300]). For r < 1, defection prevails. Do hypergraphs help to promote
ooperation in the sense of relaxing the condition r > 1? Although the answer to this question is technically positive, the
ooperation-promoting effect of hypergraphs is limited. Starting with uniform hypergraphs, for a given order g , there is a
ritical number of hyperlinks lc that is needed to guarantee the existence of a giant connected component. When the actual
umber of hyperlinks l is of the order of lc, non-zero cooperation does appear for the critical return factor rc < 1, but full
ooperation is possible only for r > 1 (Fig. 28A). In fact, the critical return factor tends rather quickly to unity, rc → 1, as
he actual-to-critical hyperlink ratio, l/lc, increases (Fig. 28B), indicating that even relatively sparse hypergraphs mimic
he well-mixed population when it comes to the evolutionary dynamics of cooperation. It is important to note that, for
constant l/lc, the increasing value of g makes hypergraphs sparser, which fully explains the dependence of the results

n Fig. 28 on the hyperlink order. It is furthermore of interest that introducing moderate hyperdegree heterogeneity has
o impact on the results [300]. Only in scale-free hypergraphs new patterns emerge, but unlike in classical networks,
stablishing cooperation becomes more difficult because large-hyperdegree nodes connect hypergraph parts that would
therwise be disconnected, thus effectively counteracting sparsity [300].
The other type of hypergraph heterogeneity, that is, order heterogeneity, is not so much of interest in the context of

romoting cooperation as much as there are insights to be gained about the performance of collaborative groups [305].
ef. [300] assumes that the return factor depends on hyperlink order, r = r(g). If this is the case, the usual difference
etween the expected per-capita payoff of cooperators and defectors, πC − πD = r − 1, changes to

πC − πD =

gmax∑
g=gmin

kg

k
[r(g)− 1] , (52)

here for each hyperlink order g , we take into account the corresponding probability (given by the fractional multiplier)
nd the corresponding outcome (given by the square-bracket multiplicand). It is natural to assume that the return factor
onsists of two parts, a benefit part αg (β−1) that increases with the hyperlink order due to synergies of working with
ollaborators, and a cost part exp [−γ (g − 1)] that decreases with the hyperlink order due to difficulties of coordinating
arge groups. We thus have

r(g) = αg (β−1)e−γ (g−1), (53)

here the parameters α, β , and γ need to be estimated. Such estimation is doable if the return factor is extracted from
ata using the following two-step procedure:

1. Set r(g) ∝ kg
k based on the intuition that a node hyperdegree distribution should align with potential returns, that

is, the most probable hyperlink orders are also the ones that return the most.
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Fig. 29. Optimal size of collaborative groups in physics. Panel a shows the relationships between the return factor and the hyperlink order as implied
by 13 hypergraphs constructed for the same number of the American Physical Society (APS) journals. Nodes are individual authors and hyperlinks
are articles. As the hyperlink order (and thus collaborative group size) increases, at first the return factor increases as well, signifying benefits from
distributing research work. Thereafter, the return factor decreases, signifying costs of coordinating large collaborations. Panel b shows that cost and
benefit parameters follow approximately linear correlation, which ultimately keeps the optimal size of collaborative groups between two and five.
Source: Reprinted figure from Ref. [300].

2. Set the expected per-capita payoff for cooperating and defecting to be the same, that is, πC = πD. This guarantees
that cooperators and defector coexist, as is often the case in real-world collaborations.

The two-step procedure is illustrated in Ref. [300] on 577,886 papers published by the American Physical Society (APS)
rom 1904 to 2015. Specifically, a hypergraph is constructed for each of 13 society journals such that nodes represent
cientists publishing in a chosen APS journal, whereas hyperlinks represent articles. The hypergraph then provides the
robabilities kg/k, while the condition πC = πD is used to fix the proportionality constant between r(g) and kg/k. Thus
etermined values of r(g) are finally used to fit the parameters of Eq. (53). Several valuable lessons about collaboration
n physics follow. First, collaborations between two to three scientists offer the best cost–benefit performance in most
ournals (Fig. 29A). Collaborating is therefore beneficial, but the costs of coordinating larger groups become substantial
ather quickly. Exceptions are Physical Review Series I, which includes publications up to the year 1913 when publishing
lone was still very much feasible, as well as Physical Review Applied and Physical Review X, which show that applied
nd interdisciplinary research profit from assembling larger collaborative groups. The benefit parameter β and the cost
arameter γ approximately exhibit a linear correlation (Fig. 29B). When benefits increase with group size, costs do too,
eeping the optimal group size within two to five scientists across all modern APS journals.

.6. Empirical facts about human cooperation

Studies on the evolution of cooperation, especially those based on modelling, have proliferated over the past two
ecades. To exemplify, Ref. [306] and Ref. [231] are two reviews of the field with similar scope published six years apart
n the same journal, but the former cites ‘only’ 155 items, whereas the latter cites as many as 314 items. All this effort
otwithstanding, the final word as to why cooperation evolves (among organisms in general and humans in particular)
s yet to be uttered. Why is that?

Answering the posed question may not be straightforward, but some contributing factor can be singled out with confi-
ence. Even after choosing a social dilemma of interest, modelling studies need to make a series of assumptions about the
odelled population and evolutionary dynamics in this population. Typical choices include finite or infinite [307,308] and
nstructured or structured [309–311] populations with fitness-based or pairwise-comparison [312,313] dynamics. What
s crucial here is that differing choices in a contextually similar situation can lead to widely different results [314,315].
odels are, moreover, often proposed using cursory rationalisations that struggle to withstand the scrutiny of empirical

ests [316,317], which still somehow fails to discourage recycling similar rationalisations after the fact. Cases in point are
eer punishment and network reciprocity. Peer punishment clearly promotes cooperation in theoretical models because
etting punished is detrimental to payoff, but experimental results have been much less straightforward; despite an
arly confirmation [318], later research generated mixed [319] and negative [320] results, likely due to intimidatory
nd retaliatory uses of punishment. Similarly, network reciprocity has shown promising cooperation-promoting effects in
heoretical models [242], particularly those built upon node-degree heterogeneous networks [250,301], but experimental
onfirmations of such a promise had failed to materialise at first [321,322] and remained constrained afterwards [323].
Theoretical and experimental advances in physics go hand in hand, and studying the evolution of cooperation should

ollow the same path. Why then have empirical tests so far failed to steer theoretical-model development? Perhaps this
s in part because experiments involving human volunteers are far more ambiguous than experiments involving, say,
lementary particles or gravitational waves. The above-mentioned examples of peer punishment and network reciprocity
lready show that behavioural experiments can go both ways. Ambiguity in empirical results is particularly unwelcome
40
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hen tenets of a theory are put to the test. One such tenet when considering the evolution of human behaviour is the
mitation (i.e., update) rule [306]. Among early and popular imitation rules is the Fermi rule [324,325] given by

pi←j =
1

1+ exp
(
−
Πj−Πi

K

) , (54)

here pi←j denotes the probability that the ith individual imitates the jth individual, with Πi and Πj being the respective
payoffs of these individuals, and K denoting the irrationality of selection in the sense that when K → 0, then

pi←j =

⎧⎨⎩
0, for Πi > Πj
1
2 , for Πi = Πj

1, for Πi < Πj,

(55)

hereas when K →∞, then pi←j =
1
2 . Empirical evidence from economic game theory seems to provide strong support

for imitation guided by payoff differences to the extent that volunteers consciously perceive themselves as imitators [326].
This being said, the nature and complexity of economic games precludes an immediate interpretation of actions by others
as sympathetic or antagonistic to oneself (as is the case with cooperation or defection), which ultimately leaves little to go
on apart from payoffs. In a comparative analysis of three spatial prisoner’s dilemma experiments in which actions taken by
others could readily be interpreted as sympathetic or antagonistic, payoff differences seem to have had no decision-making
value [322]. Interestingly, one of the experiments analysed in Ref. [322] was used in a prior publication [327] to argue
in favour of the Fermi rule. The latest work on the subject [328] is once again in favour of imitation because individuals
confronted with more successful others imitate the behaviour of those others in accordance with the experienced payoff
difference.

Just as it was the case with peer punishment and network reciprocity, empirical evidence favouring imitation driven
by payoff differences comes with a degree of ambiguity. A plausible reason why this is so is that payoffs simply do not tell
the whole story. For example, experiments reveal the existence of behavioural phenotypes [329], meaning that volunteer
behaviours are not idiosyncratic, but rather exhibit recognisable characteristics. This enables classifying volunteers into
a relatively small number of distinct groups or phenotypes. The cooperative phenotype, in particular, has been shown to
possess remarkable robustness with respect to the form of cooperativeness and the passage of time [330]. Different people
are, therefore, likely to be predisposed to cooperate to a different degree in the same social-dilemma situation. Volunteers
may also directly respond to the actions of others instead of being concerned with payoffs. An antagonistic (respectively,
sympathetic) action may provoke an antagonistic (resp., sympathetic) response. This is related to the theoretical concepts
of the tit-for-tat strategy [331] and conditional cooperation [332], and indeed seems to regularly occur in behavioural
experiments [333–336]. Somewhat similarly, volunteers have been shown to cooperate more (respectively, less) after
cooperating (resp., defecting) previously even if the contextual situation is the same [335,337,338].

Additional reason why payoffs may not tell the whole story in the context of cooperative behaviours is that human
decision making is prone to some ‘peculiarities’. The field of behavioural economics made it a point to tease out such
peculiarities, that is, document behaviours that deviate from the predictions of economic models based on a rational
drive to maximise the expected utility [339–341]. Experiments focusing on cooperativeness also pinpoint peculiarities
that are similar in spirit or related to those emphasised by behavioural economists. Ref. [342], for example, shows that
acquaintances cooperate significantly more than strangers in a social-dilemma game in which there is absolutely no
incentive to do so. Volunteers were, in fact, incentivised to score as much as possible for themselves following gameplay
rules designed to be inconsequential to any sort of real-world interactions that may occur afterwards. The experiment
was thus akin to point-gathering competitive gameplay that is so common among friends worldwide without ruining
their friendships. That mere identifiability spurs altruistic behaviour has been observed elsewhere [343], but it is hard to
incorporate into theoretical models when the corresponding incentives are entirely absent.

In another experiment, aimed at discerning how rewards promote cooperation, it was found that an unexpected and
convoluted mechanism is at play [344]. Specifically, volunteers almost ignore the opportunity to reward one another, and
yet cooperativeness doubles compared to the control in which there is no reward. To make matters even more perplexing,
improved cooperation frequencies are observed right from the start, before any rewarding could ever happen. This peculiar
behaviour can ultimately be traced to a known cognitive bias called the decoy effect [345]. Specific to multiple-choice
situations, ‘decoy’ is a choice that shares some defining characteristics with another ‘target’ choice, but is inferior in
one defining characteristic. Such inferiority makes the target look disproportionately more attractive, and thus preferred
over all other choices. Because rewarding as envisioned in Ref. [344] was just an extra-demanding form of cooperating
compared to the usual cooperative option, the decoy effect made cooperation appear much more attractive than defection,
ultimately causing a surge in the cooperation frequency. On a more general note, cognitive biases may provoke not only
behaviours for which there are no apparent incentives, but also behaviours that outright go against incentives implied by
a particular social dilemma. This is particularly hard to model outside of broader evolutionary contexts in which cognitive
biases may make more sense [346].

We have already mentioned in passing that from an empirical perspective, static networks offer a limited scope for
promoting cooperation [323]. Consequently, the focus has shifted to dynamic networks in which volunteers could initiate

links with cooperative others or sever links with defecting others [347]. Just as cooperation fails in many static networks,
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he same happens in networks that are shuffled randomly every round, or in networks that are rewired infrequently
albeit freely) by volunteers. Only when network links can be updated frequently and freely, a high degree of cooperation
s maintained because cooperators shun links with defectors, while preferentially linking with other cooperators. This
orm of shunning defectors is often interpreted as a sort of punishment that, to make things even better, comes with
wo positive side effects. First, there is no obvious cost to severing links with defectors, which avoids what is known
s the second-order social dilemma by which cooperators who refuse punishing are better off than cooperators who do
unish [348–350]. Second, once the link is severed, there are no opportunities (at least not immediate ones) for retaliation,
hich avoids diminishing the willingness to punish defectors due to the threat of being retaliated against [351–353]. On
more fundamental level, however, dynamic networks can be seen as a means to foster positive assortment [354]. The

mportance of this perspective is that positive assortment has often been emphasised as a common denominator for
any major cooperation-promoting mechanisms [236,355–358]. If positive assortment is indeed key to resolving social
ilemmas, then enriching particularly hard social dilemmas with novel degrees of freedom that facilitate assortment
hould universally promote cooperation [336]. Thinking in terms of degrees of freedom is, of course, dear to physicists.
To summarise, empirical evidence shows that:

• In situations in which rationality dictates a clear course of action (e.g., behave to avoid punishment because it is
bad for payoff), psychological factors may prompt another course of action (e.g., use punishment to intimidate or
retaliate).
• The identification of distinct and stable behavioural phenotypes suggests that different individuals are predisposed

to respond to the same social-dilemma situation with a different degree of cooperativeness.
• One’s performance relative to those of others (in terms of payoffs) may be more influential in guiding decisions

when the complexity of contextual situations conceals whether an action by another is sympathetic or antagonistic
to oneself. When this is not the case, however, performance may be secondary to a direct response to the action by
another.
• Intuitions may override incentives. For example, acquaintances are mutually more cooperative than strangers in

exactly the same social-dilemma situation.
• Human decision making is fraught with peculiarities (i.e., cognitive biases) that make sense only in broader

evolutionary contexts. These peculiarities may also (partly) override incentives. For example, a mere presence of
reward promotes cooperativeness although no one rewards anyone.
• Introducing new degrees of freedom into hard social dilemmas may facilitate positive assortment and, by extension,

promote cooperation. For example, static networks struggle to improve and maintain cooperativeness, but dynamic
networks with frequent and free link updating work like a charm.

.7. Future outlook

Having reviewed a wide variety of theoretical models pertaining to the evolution of human cooperation, and then
ummarising a number of empirical facts on the subject, we emphasised the need to reconnect theory and experiments.
oing so, however, faces challenges that have been first raised in relevant behavioural disciplines. Psychology and
ehavioural economics alike suffer from a deep replication crisis [359–363]. This state of affairs has triggered calls for
n overhaul of the scientific process that had led to so many irreproducible results in the first place [364–366]. Many
f the proposed measures are methodological; for example, the criterion for statistical significance should be more
tringent [367], much larger samples are required to ensure high statistical power [368,369], and preregistration should
ecome a norm to curb statistical manipulations and avoid some cognitive biases that interfere with sound research
ractices [370–372]. All these measures are, if not necessary, then at least absolutely welcome, but they do complicate the
ogistics of conducting experimental studies (e.g., recruiting thousands of volunteers), and increase time and effort from
onceptualising to publishing a study (e.g., preparing preregistration and calculating power). If physicists are to scrutinise
heir theoretical models by means of behavioural experiments, the same high standards will apply as for psychologists,
ehavioural economists, and the like. Just keeping up with the standards will likely require widening multidisciplinary
ollaborations.
On top of methodological problems contributing to the replication crisis in behavioural disciplines, Ref. [373] makes

compelling argument that a lack of a strong theoretical backbone plagues the field even more. When such a backbone
xists, it paints a bigger picture, guiding researchers to formulate useful expectations. Ref. [373] itself refers to an example
rom physics; early analyses of the data on neutrinos coming from CERN (near Geneva, Switzerland) to Gran Sasso National
aboratory (in the province of L’Aquila, Italy) suggested that these elementary particles move faster than light [374].
ecause this would go against the special theory of relativity, the news of faster-than-light neutrinos was received with
healthy dose of scepticism. Later analyses indeed confirmed that neutrinos obey the limitation set by the speed of

ight [375]. It is almost a certainty that without firm theoretical expectations, the finding would be put to much less
crutiny, perhaps taking years to set the record straight.
Even more important is that, without theoretical expectations, an empirical behavioural scientist faces an almost

nfinite set of possible hypotheses that could be put to an experimental test. Experiments are then bound to be designed
ased on intuitions and guesswork about what may or may not be widely considered interesting (or worse yet, ‘hot’)
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mong peers. A major consequence is that, even with impeccable experimental methodology, only bits and pieces of
isconnected knowledge can be acquired. The research on the evolution of human cooperation is thankfully nowhere near
uch a dire state, but there are some elements reminiscent of what Ref. [373] refers to. Namely, evolutionary game theory
pecifies a blueprint for model construction that can always be extended with yet another cooperation-enhancing tweak. It
s true that nuanced social-dilemma scenarios lead to fascinating dynamics that is of substantial interest in itself [261,262],
ut do humans really behave as the models predict? Should we even empirically test countless modelled scenarios if they
ardly get us any closer to general principles such as the aforementioned positive assortment? The answer would probably
e negative even without the rising costs of behavioural experiments in terms of logistics, time, and effort. We therefore
oresee the need for two types of models. One is models aimed at analysing incentives for cooperative behaviour in specific
ituations of societal interest such as fighting corruption [376,377] or encouraging vaccination [378,379]. The other is
odels aimed at explaining the evolution of cooperative trait in humankind based on as general principles as possible
uch as robust paradigms for reciprocal altruism [331,380] or robust social norms [381,382]. Overall, this should lead to
narrower space of experimental hypotheses, theoretical models of cooperation that are backed by substantial empirical
vidence, and ultimately more definitive answers as to when (circumstances) and why (forces) humans cooperate.

. Networks and communities

Networks are a pillar of social physics. They permeate all aspects of the field, and more. Applications include—but
re not limited to—online, physical, and even animal social networks [383–388], finance [389], retail [390], supply
hains [391,392], transport infrastructure [393–398], power grids [399–401], climate and Earth systems [402,403],
edical and clinical investigations [404,405], nutrition [406,407], and sports [408,409]. Studies focusing on dynamics in
etworks are also ubiquitous, ranging from general dynamical patterns [35] to random walks [410,411] to synchronisation
412–414], epidemiological dynamics [415–417], evolutionary dynamics of cooperation (see Section 5), social-balance
ynamics [418–420], innovation dynamics [421], and many others. Network science applied to social systems has, in fact,
rown to the point at which its branches are sufficiently broad to be a topic of massive standalone reviews [282,287,422–
27].
The sheer size of network science precludes us from overviewing the field comprehensively (let alone exhaustively).

ur purpose is instead specific, that is, to examine the question of what constitutes a community in networks. We
re particularly interested in decomposing and understanding the community structure of networks through the prism
f generative models (as opposed to heuristic community-detection methods). For readers interested in the topic of
ommunity detection more broadly, modern developments and the current state of the art from the standpoint of physics
an be found in Refs. [423,424,428–432]. The specific direction that we are singling out from the breadth of network
cience leads to at least two questions. What makes network-community structure so important? And why should one
ook favourably at generative models? We shall endeavour to answer these questions in the next section.

.1. Community detection: Contexts and methods

Detecting communities in networks is an intuitively appealing task. Thinking of a network as a means to consistently
implify the picture of a complex system, while retaining the ability to see how the system is stitched together into
ne whole, we may gain deeper insights into the functioning of the system by identifying the network’s more basic
onstituents. Community detection can furthermore be considered a natural unsupervised-learning task (see Section 7.2).
ndeed, when clustering is used to probe the internal structure of a dataset, among the first steps is to define a similarity
r distance function between two data points (in essence forming a graph representation of the dataset), but networks
lready come with links that indicate relations between nodes. One underlying motivation behind community detection
s therefore to leverage the preexisting information on network topology, and thus node–node relations, in order to
earn about networks, much like an unsupervised learner learns about datasets. Given that communities as more basic
onstituents come together to form a network, it is of little surprise that the network’s divisibility into communities
hapes the dynamics that unfolds in networks. We have already mentioned this in the case of the evolutionary dynamics
f cooperation [275,276], but the same goes for, among others, epidemiological dynamics [433,434] and related decision
aking [435,436]. Arguably one of the most important features of community detection is the ability to make informed
ecisions about errors in measuring network structure. Doing so, however, demands having a ‘standard’ or a ‘blueprint’
hat tells us whether we should expect a link where there is none or expect no links where there is one. Such a standard
r blueprint is provided by generative models.
The importance of generative models is analogous to the importance of mechanistic (i.e., process-based) models in the

ontext of dynamical systems. If we measure, say, the growth of a city, and the number of hospitals or schools necessary to
ustain the city, we may gain the ability to plan for the future. If the number of hospitals increases sublinearly or linearly
ith city size, then the city growth is likely to be manageable. If, however, the number of schools increases supralinearly,
hen the city growth is at some point likely to deplete the resources needed for building and operating more schools.
lthough the ability to plan for the future is very much desirable, without a mechanistic model of city growth, we are
n the dark as to what causes the number of hospitals to increase sublinearly (which is manageable) and the number of
chools supralinearly (which is unmanageable). Actionable insights may be gained by pinpointing the processes behind
43
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Fig. 30. Four main community-detection contexts and method classes. A, Cut-based methods seek to find network partitioning that minimises the
number of between-community links without imposing dense within-community linking. B, Clustering methods embody the intuitive idea that links
ithin communities are dense and across communities sparse. C, Methods seeking stochastically equivalent nodes posit that two nodes from the same
ommunity link to nodes from other communities with exactly the same probability. In the shown example, there are three communities identified
y the block structure of the adjacency matrix. Community 1 has dense internal links, barely any links with community 2, and moderately dense
inks with community 3. D, Dynamic methods emphasise system behaviour over system topology. In particular, the role of dynamics is considered
rucial.
ource: Reprinted figure from Ref. [431] under the Creative Commons Attribution 4.0 International (CC BY 4.0).

he sublinear increase in one case and the supralinear increase in the other. In a similar vein, a generative model that fits
n empirical network very well may strongly favour the presence of a link when there is none in the data. Such a situation
ould give us much confidence that the link is missing due to a measurement error. We may even uncover the process
hat creates this particular link. Surely, the best known generative models in network science are Erdős–Rényi [437],
atts–Strogatz [438], and Barabási–Albert [439] (in which the processes of growth and preferential attachment decide
etwork topology). When it comes to generating modular networks, stochastic block models have become a staple [440].
e shall rely heavily on this model type moving henceforward.
Before we introduce and define stochastic block models, and see how they are used for statistical inference, it is useful

o look at four main community-detection contexts and method classes (Fig. 30). The reason for this is to show that the
roblem of community detection has no single correct formulation, let alone a single correct solution. For example, when
esigning a distributed computing system spread over several locations, the best partitioning is the one that minimises
xpensive long-distance links. Such a problem is best tackled using cut-based methods (Fig. 30A). If, by contrast, the aim
s to understand the structure of large organisations based on social interactions, a collection of strongly interacting, and
hus densely interconnected, individuals is likely to act as a functional group within the organisation. Clearly, this is a
roblem for clustering methods (Fig. 30B). When competing interests drive social interactions, strongly interacting, and
hus densely interconnected, individuals may be opponents who belong to different teams. This is a type of problem for
ethods seeking stochastically equivalent nodes (Fig. 30C). Finally, if we aim to identify groups of individuals threatened
y an epidemic, then interconnectedness comes secondary to epidemiological dynamics. Dynamic methods are expected
o yield the best results (Fig. 30D).

The examples outlined above show that in community detection, context dictates methods. And yet, some methods
re more heuristic and phenomenological, whereas others are more rigorous and fundamental. The latter is especially
rue of methods seeking stochastically equivalent nodes. These methods are founded on generative models and statistical
nference. A prime example is stochastic block models to which we turn next.

.2. Introducing stochastic block models

As our discussion has already indicated, stochastic block models (abbreviated SBMs) power one of the most popular
echniques for community detection that comes from the domain of statistical inference. The technique is based on the
onstruction of an SBM that is fitted to network data [440,441]. The model parameters are estimated by maximising
ikelihood, and once this is done, they provide information not only about the network structure, but also about the
ithin-network node relationships, thus forming a flexible modelling tool for analysis and prediction. An additional
dvantage of SBMs over other methods is that SBMs are not limited to assortative mono-layered networks; it is
onceptually straightforward to generalise the technique to a wide range of topological and dynamical network con-
tructs (Fig. 31). Mixed memberships and overlapping communities [442–444], weighted networks [445,446], multilayer
etworks [447–451], temporal networks [452–459], networks that possess node attributes [460] or are annotated with
etadata [461,462] pose no problems to SBM-based community detection [463].
The first SBM algorithms were developed in social sciences to detect communities of ‘approximately equivalent’ nodes.

he algorithms were deterministic and were based on permuting the adjacency matrix to reveal the block structure and
elationships among community members [432,465,466]. Shortly afterwards, pioneering works formalised the generative
odel and established a stochastic formulation of node equivalence in a community in such a way that equivalent nodes
ere associated with equivalent probabilities [440,441,467]. During the 1990s, computer power grew tremendously,
hich opened up the doors to new opportunities for network analysis in the digital environment. Consequently, SBM
ethods and algorithms underwent a rapid and diverse development over the last 25 years. SBMs are nowadays applied

n a large number of natural and social scientific, and engineering fields (see Table I in Ref. [468]).
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Fig. 31. Representing various network topologies using stochastic block models. Each of the four networks has an adjacency matrix divided into
blocks, where the greyscale indicates link probabilities (white = 0 and black = 1). A, Assortative network structure in which within-community
inks are dense, but between-community links are sparse. B, Disassortative network structure in which within-community links are sparse, but
etween-community links are dense. C, Core–periphery network structure. D, Hierarchical network structure.
ource: Reprinted figure from Ref. [464] under the Creative Commons Attribution 4.0 International (CC BY 4.0).

One of the most significant contributions to the development of community-detection methods based on statistical
nference comes from physicists Karrer and Newman, who adapted the standard SBM model to take into account node-
egree heterogeneity [469]. Thus obtained degree-corrected SBM enabled the application of SBMs to real-world networks
nd paved the way for the development of multiple model variants [470,471]. Newman, also the creator of one of the
ost popular heuristic methods based on modularity optimisation [472], in a recent study [473] showed that there is an
quivalence between likelihood maximisation for SBMs and generalised modularity maximisation for planted-partition
odel with simplified community structure. The planted-partition model is a reduced version of a standard SBM in which

inks materialise with two probabilities, one for within communities and the other for between communities. Equivalence
esults such as Newman’s, and the extent to which they hold [474], are of much interest because they show that methods
eveloped with very different motivations and intuitions in mind may end up serving the same purpose.
Another major contribution from statistical physics comes from Peixoto who developed a microcanonical view of

BMs by which the traditional (i.e., canonical), probabilistic definition of link formation between nodes belonging to two
eparate communities is replaced by a precise number of links [463,475]. The canonical and microcanonical definitions
re in accordance with the jargon of statistical physics; in the canonical generative model constraints on node degrees
nd the number of links are imposed on average, whereas in the microcanonical model these constraints are exact. One of
he chief results in recent years is the development of a non-parametric microcanonical model using Bayesian inference
hat does not require prior knowledge of the number of communities, as well as the nested versions of this model for
ommunity detection [463,468]. The result is a culmination of previous developments in the context of microcanonical
BMs, including the work on making use of minimum description length (MDL) [476,477] to determine the number of
ommunities [478], devising efficient Markov chain Monte Carlo inference algorithms [479], proposing nonparametric
ested models [480], and incorporating model selection [481]. For a hands-on experience, most of the present SBM
ariants are implemented in graph-tool, a Python module for manipulation and statistical analysis of networks (available
t https://graph-tool.skewed.de/).
In the rest of this introductory review, our focus will be on the above-mentioned concepts, whereas detailed reviews

f the development of other SBM variants are given in Refs. [464,482,483]. Of note is that the development of new
BM variants is in many cases motivated by the specifics of real-world networks. The theoretical results related to
stablishment of the fundamental limits for community detection in the SBM, both with respect to information-theoretic
nd computational thresholds, are extensively reviewed in Ref. [484].

.3. Defining stochastic block models

The construction of SBMs as a generative network tool is based on the idea that network nodes are divided into
ommunities, and that the existence of a link between two nodes is determined by the communities to which these
odes belong. These considerations impose conditions for generating ensembles that in a statistical sense represent a
etwork. There are two main approaches to defining an SBM: (i) canonical, in which conditions are imposed on average,
nd (ii) microcanonical, in which conditions are imposed exactly.
45
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anonical form. The traditional formulation of SBMs is in canonical form. SBMs in canonical form are parameterised by two
arameters, b and W, as follows; N nodes are distributed in K communities, and the affiliation of nodes to communities

is expressed by the vector b = [bi] of dimension N , where the value bi = r ∈ {1, 2, . . . , K } denotes the affiliation of the
th node to the rth community. The number of nodes in each community can be read from the vector b. We denote the
ize of the rth community by nr and form a vector of community sizes n = [nr ] of dimension K . The matrix W = [wrs] of
imension K×K specifies the probabilities wrs that a link is formed between any two nodes belonging to the communities
and s, that is, P(i⇔ j) = wrs, where bi = r and bj = s.
The matrix W can be specified in multiple ways. When the values wrs ∼ B(prs) follow a Bernoulli distribution with the

parameter prs, then the probability that there is a link between nodes i and j is P(i ⇔ j) = prs, and the probability that
there is no link is P(i ⇎ j) = 1− prs. In this case, the probability that a generative procedure, taking a node division b as
a parameter, creates an undirected and unweighted network with the adjacency matrix A = [Aij] equals

P(A|p, b) =
∏
i<j

p
Aij
bi,bj

(1− pbi,bj )
1−Aij , (56)

where W = p = [prs] is matrix of dimension K × K comprising Bernoulli parameters.
A commonly used distribution for ease of calculation is the Poisson distribution. In this case, referred to as the

standard SBM, the values wrs ∼ P(λrs) are determined by the parameters λrs, which in turn define the probability
P(i ⇔ j; k) = λkrse

−λrs/k! that there is a link of order k between nodes i and j. A network created using a Poisson
distribution, unlike a Bernoulli one, has multiple links between nodes, which is convenient in the case of generating
or analysing value networks. The Poisson distribution can, however, be used in conjunction with networks having just
one link between two nodes. This is achieved by recognising that the probability of multiple links decreases with 1/N in
sparse networks in which the total number of links is proportional to N , so the existence of multiple links can be ignored
when N is large [463], or simply multiple links are compressed into a single one. The probability that the standard SBM
generates a network with the adjacency matrix A = [Aij] equals

P(A|Λ, b) =
∏
i<j

λ
Aij
bi,bj

Aij!
e−λbi,bj ×

∏
i

(λbi,bi/2)
Aii

(Aii/2)!
e−

λbi,bi
2 , (57)

here W = Λ = [λrs] is matrix of dimension K × K comprising Poisson parameters.

egree-corrected SBM. The assumption behind the standard SBM is that nodes in the same community are statistically
quivalent, that is, they all have the same number of links, on average. This is seldom true for real networks whose node-
egree heterogeneity may span orders of magnitude [485]. To accommodate such node-degree heterogeneity, Ref. [469]
roposes a modified model, called the degree-corrected SBM, in which each node is assigned the parameter θi controlling
he node’s expected degree ⟨ki⟩, regardless of community affiliation. This means that in addition to the vector b and
he matrix Λ, another model parameter θ = [θi], taking the form of an N-vector, is required to define the model. The
arameter θ generates heterogeneity within communities, where P(i⇔ j; k) = (θiθjλrs)ke−θiθjλrs/k! is the probability that
here is a link of multiplicity k between nodes i ∈ bi = r and j ∈ bj = s. Given the additional parameter θ, a network with
the adjacency matrix A = [Aij] is generated with the probability

P(A|Λ, θ, b) =
∏
i<j

(θiθjλbi,bj )
Aij

Aij!
e−θiθjλbi,bj ×

∏
i

(θ2i λbi,bi/2)
Aii

(Aii/2)!
e−

θ2i λbi,bi
2 . (58)

icrocanonical form. In canonical form, restrictions on node degrees and the number of links between communities r
nd s are ‘soft’, expressed via expected values. This means that across various model realisations, node degrees and the
umber of links fluctuate around the mean values. In microcanonical form, the conditions are ‘hard’ in the sense that
ode degrees and the number of links are strictly determined for each realisation. Specifically, let the vector k = [ki] of
imension N define node degrees, and furthermore let e = [ers] be a matrix of dimension K × K whose values ers define

the number of links between communities r and s. For convenience, the diagonal elements err are defined as double the
number of links within community r . The generative process [486] assigns ki semi-links (called ‘stubs’) to each node i,
whereupon the stubs are randomly joined together until reaching the condition that between communities r and s there
are exactly ers links. Connecting the stubs (i.e., wiring the network) to satisfy said condition can be done in Ω(e) ways

Ω(e) =
∏

r er !∏
r<s ers!

∏
r err !!

, (59)

where er =
∑

s ers and (2m)!! = 2mm!. However, not every wiring produces a unique network. Given the adjacency matrix
A, the number of different stub wirings, Ξ (A), that produce the same network is given by [463,486]

Ξ (A) =
∏

i ki!∏ ∏ . (60)

i<j Aij! i Aii!!
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his implies that the network with the adjacency matrix A is generated with the probability

P(A|k, e, b) =
Ξ (A)
Ω(e)

. (61)

he last relationship is valid under the ‘hard’ constraints

ki =
∑

j

Aij,

ers =
∑
ij

Aijδbi,rδbj,s. (62)

f these constraints are not satisfied, then P(A|k, e, b) = 0.

Relating canonical and microcanonical forms. As briefly mentioned before, equivalence results are important because
they reveal how different motivations and intuitions may serve the same purpose. Even if full equivalence cannot be
established, understanding conditions under which separate mathematical constructs exhibit similar behaviour is of great
interest.

Canonical and microcanonical forms generate the same networks in the asymptotic sense if node degrees and the
number of links between communities are large enough numbers. Namely, by expanding the relation in Eq. (58), we get

P(A|Λ, θ) =
∏
r<s

λer srs e−θ̂r θ̂sλrs
∏
r

λ
err
2

rr e−
θ̂2r λrr

2 ×

∏
i θ

ki
i∏

i<j Aij!
∏

i(Aii/2)!
, (63)

here θ̂r =
∑

i θiδbi,r . The parameters θi and λrs form a product in the expression for the probability P(A|Λ, θ), so their
individual values can be re-scaled provided that the product remains the same. If we choose parameterisation

θ̂r =
∑

i

θiδbi,r = 1 (64)

for each community r , then λrs = ⟨ers⟩ is the expected number of links between communities r and s, and θi =
⟨ki⟩∑
s λbi,s

is
proportional to the expected node degree [463]. If furthermore the Stirling’s factorial approximation ln(m!) ≈ m ln(m)−m
is applied to Eqs. (59) and (60), it can be shown that the microcanonical likelihood P(A|k, e, b) in Eq. (61) approaches
asymptotically the likelihood P(A|Λ, θ) in Eq. (63), for large enough ki and ers. For small or sparse networks, however, the
differences between canonical and microcanonical forms can be substantial [487,488].

As we have just seen, there is no exact equivalence between canonical and microcanonical forms. From the viewpoint of
inference, however, such a lack of equivalence is immaterial because the models are unidentifiable anyway; it is impossible
to tell from a single network realisation whether the network came from the canonical or the microcanonical model.
Bayesian inference offers yet another perspective on the relationship between the two models, which will be discussed
shortly.

6.4. Statistical inference of communities

Having defined the most common SBMs, it is now time to put them to good use, that is, use them for statistical
inference. Given an observed network with the adjacency matrix A = [Aij], i, j ∈ {1, 2, . . . ,N}, statistical inference using
SBMs consists of finding the model parameters that generate the observed network. More specifically, the problem is to
find the node partition b that maximises the log-likelihood function L = P(A|b). Karrer and Newman [469] derived an
unnormalised log-likelihood function for the standard model

LKN
= ln P(A|b) =

∑
r,s

ers ln
ers
nrns

, (65a)

here, as before, ers =
∑

ij Aijδbi,rδbj,s is the total number of links between communities r and s, or if r = s, double the
umber of links in community r . Peixoto [475] derived a similar result for the microcanonical SBM

LP
=

1
2

∑
r,s

nrnsH(
ers
nrns

)
⟨k⟩≪N
≈ −E +

1
2

∑
r,s

ers ln
ers
nrns

, (65b)

here H(x) = −x ln x − (1 − x) ln(1 − x) is the binary entropy function. In the case of the degree-corrected SBM, the
analogous log-likelihood relations for b are (see Refs. [469,475] for details)

LKN
d.c. =

∑
r,s

ers ln
ers
eres

, (65c)

LP
d.c. = −E +

∑
Nk ln(k!)+

1
2

∑
ers ln

ers
eres

, (65d)

k r,s
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here er =
∑

s ers is the total number of links with nodes affiliated with community r , and Nk is the number of nodes
ith the degree k. The likelihood functions in Eqs. (65a)–(65d), despite showing a way forward, suffer from a serious
rawback. Naively minimising them would result in communities with only one node. It is therefore necessary to either
now the number of communities K in advance or somehow estimate the value of K .
The methods for inferring the number of communities are diverse [482], but there are generally two dominant

irections: (i) SBMs are fitted using various values of the parameter K , and the optimal parameter value is determined by
omemeasure or criterion; and (ii) K is not considered an external parameter, but is determined internally by the inference
lgorithm. The former approaches are called parametric, whereas the latter are called, somewhat anticlimactically, non-
arametric. Parametric approaches oftentimes add to the likelihood function a part that acts as a penalty for the increasing
umber of communities. An example of this is the use of the Bayesian information criterion (BIC) [452,489], the minimum-
escription-length (MDL) principle [478], or some other variation in terms of how to estimate likelihood or modify
enalty [490–492].
Examples of integrating procedures for determining the number of communities K into inference algorithms are due

o Newman and Reinert [493], who obtained a closed-form likelihood expression for the degree-corrected SBM, as well
s Côme and Latouche [494] who used the exact integrated complete likelihood. Nowadays, however, among the most
ommonly used versions is the non-parametric microcanonical formulation due to Peixoto [463,468].

on-parametric microcanonical SBM. The total joint distribution for data and model parameters in microcanonical form
s

P(A, k, e, b) = P(A|k, e, b)P(k|e, b)P(e|b)P(b), (66)

here P(A|k, e, b) is defined in Eq. (61), whereas P(k|e, b), P(e|b), and P(b) are prior distributions (Fig. 32). According to
ayes’ theorem, the posterior distribution of a network partitioning into communities is

P(b|A) =
P(A|b)P(b)

P(A)
=

P(A, b)
P(A)

=
P(A, b)∑
b P(A, b)

, (67)

here P(A, b) is the marginal joint distribution after integrating out the parameters k and e

P(A, b) =
∑
k,e

P(A, k, e, b) = P(A, k′, e′, b), (68)

here k′ = k′(A, b) and e′ = e′(A, b) are compliant with Eq. (62), that is, the hard constraints on node degrees
nd the number of links. Eqs. (66)–(68) offer conceptual guidance as to what we want to achieve through Bayesian
tatistical inference. Specifically, we want to maximise the probability P(b|A) of partitioning b conditional on observing the
djacency matrix A. This turns out to be equivalent to maximising the joint distribution P(A, b) because the denominator
n Eq. (67) acts just as a normalisation constant. The joint probability P(A, b), however, is knowable only via Eq. (66),
implying that inference is a multi-part procedure. We need to specify all the prior distributions, and then maximise the
resulting joint distribution.

The prior distributions are key ingredients of the inference procedure. Because in most cases there is no empirical
information about priors, the prior selection is purposely kept uninformative. This prevents introducing bias to the
posterior distribution, and allows the data to guide the partitioning of networks into communities. The following relations
respectively define the priors for the parameters b and e (see Refs. [463,468] for details)

P(b) = P(b|n)P(n|K )P(K ) =
∏

r nr !

N!

(
N − 1
K − 1

)−1 1
N
, (69)

P(e|b) =
((

K (K + 1)/2
E

))−1
, (70)

here ((·)) is the multiset binomial coefficient, and E is the total number of links. The number of communities K is in
his context called a hyperparameter. The corresponding distribution P(K ) is rather fittingly called a hyperprior. The prior
istribution for the parameter k is specified in one of two ways (see Ref. [468] for details)

Pu(k|e, b) =
∏
r

((
nr

er

))−1
, (71a)

Ph(k|e, b) =
∏
r

∏
k N

r
k !

nr !
q(er , nr )−1 , (71b)

where N r
k is the number of degree-k nodes in community r , and q(m, n) = q(m, n− 1)+ q(m− n, n) with the boundary

onditions q(m, 1) = 1 for m > 1 and q(m, n) = 0 for m ≤ 0 or n ≤ 0. Selecting the uniform prior Pu(k|e, b) may cause
that most nodes have similar degrees, in which case incorporating the heterogeneous prior P (k|e, b) may help.
h
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Fig. 32. Non-parametric microcanonical stochastic block model and the corresponding generative process. Panel (a) illustrates the sampling of node
artitions from the distribution P(b). Panel (b) illustrates the sampling of edge counts from the distribution P(e|b). Panel (c) illustrates the sampling

of node degrees from the distribution P(k|e, b). Nodes are accompanied with semi-links or stubs that are yet to be wired into a network. Finally,
panel (d) illustrates the sampling of the network from the distribution P(A|k, e, b).
Source: Reprinted figure from Ref. [468].

BayesIan equivalence. As already discussed, we fall short of achieving the exact equivalence between canonical and
microcanonical forms, but the Bayesian framework offers another perspective on the subject. We start by marginalising
the likelihood P(A|Λ, θ) from Eq. (63) as follows [468]

P(A|b) =
∫

P(A|Λ, θ)P(Λ)P(θ|b)dλdθ. (72)

We have previously shown that, in the case of θ̂r = 1 in Eq. (64), the values of λrs represent the expected number of nodes
between communities r and s. If we choose a non-informative prior for λ in the form of an exponential distribution whose
expectation is λ̄ = 2E/K (K + 1)

P(λrs) =

{
1
λ̄
e−

λrs
λ̄ , if r ̸= s,

1
2λ̄
e−

λrr
2λ̄ , if r = s,

(73)

and for θ we choose another non-informative prior defined by

P(θ|b) =
∏
r

(nr − 1)!δ(θ̂r − 1), (74)

hen from Eq. (72) it follows that [468]

P(A|b) =
∏

r<s ers!
∏

r err !!∏
i<j Aij!

∏
i Aii!!

×

∏
r

(nr − 1)!
(er + nr − 1)!

∏
i

ki! ×
λ̄E

(λ̄+ 1)E+K (K+1)/2
= P(A|k, e, b)P(k|e, b)P(e). (75)

The quantity P(A|k, e, b) is precisely the microcanonical likelihood from Eq. (61), the quantity P(k|e, b) is precisely the
uniform prior from Eq. (71a), whereas the quantity

P(e) =
λ̄E

(λ̄+ 1)E+K (K+1)/2
(76)

iffers from the microcanonical prior in Eq. (70) only in the sense that the total number of links may fluctuate, but in
xpectation the canonical and microcanonical forms are equivalent to one another [468].
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inimum-description-length interpretation. The non-parametric microcanonical SBM can be reinterpreted from an
nformation-theoretical perspective, which offers an intuitive explanation of why this model is robust to overfitting.
amely, we can write P(A, k, e, b) = 2−Σ , where by taking the logarithm of both sides, we get a value called the
escription length of data [476]

Σ = − log2 P(A, k, e, b) = − log2(P(A|k, e, b)P(k, e, b)) = S + L. (77)

he quantity S = − log2 P(A|k, e, b) equals the number of bits needed to describe a network when the model parameters
re known, and the quantity L = − log2 P(k, e, b) equals the number of bits needed to describe the model. By maximising
he joint probability distribution in Eq. (66), a set of parameters is automatically obtained that gives the minimum
escription length. Moreover, the increasing value of L acts as a penalty on the number of parameters, thus also limiting
he number of communities. Without such a penalty the increasing number of communities tends to decrease the value
f S , meaning that ultimately each node would comprise its own community. In sum, the MDL interpretation shows that
he non-parametric microcanonical SBM is a formal implementation of Occam’s razor, according to which the simplest
odel with a sufficient significance level is to be preferred.

esolution limit and the nested SBM. Community detection by means of SBMs comes with a resolution limit, meaning
hat communities below the resolution minimum will not be assigned sufficient statistical significance. Instead, such
ommunities will be merged into larger ones. A well-known example is a network of 64 10-node cliques (i.e., complete
ubgraphs) in which the cliques are mutually disconnected (i.e., there is no links between any two cliques). Fitting the
icrocanonical SBM yields 32 communities, each comprising two cliques [463]. The model thus suffers from underfitting

hat manifests as an inability to detect communities below the resolution limit, which in turn scales with O(
√
N) [478].

Peixoto [480] offered a solution to the resolution-limit problem in the form of a nested SBM. This type of SBM is
based on a simple idea that the communities and the number of links between them, as determined by fitting an SBM,
form a new multigraph (i.e., a network in which any two nodes may be linked multiple times, including closed loops).
According to this idea, the communities represent the nodes of the new multigraph, the number of links between any
two communities represents link multiplicity, and the number of links within a community represents loop multiplicity
(Fig. 33). It is then possible to fit the SBM to the new multigraph again, producing yet another multigraph. By repeating the
procedure recursively, we get a smaller and smaller number of communities until we finally reach the multigraph with
one community. The reason why this method improves the resolution limit is that a higher-level multigraph serves as
the information prior for the next lower level. The method generalises the ‘flat’ model described above, and is applicable
to large networks, be they assortative or disassortative.

Inference algorithms. Algorithms that effectively infer community affiliations often come from the Monte-Carlo class of
methods used in statistical physics. Although for different SBM variants exact expressions for the posterior probability
can be derived in accordance with Eq. (67), up to the normalisation constant, the distributions are in most cases quite
complicated. Therefore, Markov-chain Monte-Carlo (MCMC) methods for sampling from complicated distributions are
proving to be an efficient and easy-to-implement inferential tool.

Examples of MCMC algorithms are Metropolis or Metropolis–Hasting algorithms [495,496]. In the Metropolis algorithm,
to sample from our target distribution P(b|A), we initialise the algorithm at an arbitrary position b = b0. Next, a
candidate replacement b′ is sampled from a symmetric, but otherwise arbitrary, distribution; if this distribution is normal
and centralised around b, choosing the candidate replacement b′ amounts to making a random-walk step. We then
calculate the ratio f (b′)/f (b), where the function f needs only to be proportional to our target distribution P(b|A). This
proportionality requirement is, in fact, one of the main strengths of the Metropolis algorithm because calculating the
normalisation constant for the target distribution is often a non-trivial task. If said ratio is greater than or equal to unity,
i.e., f (b′)/f (b) ≥ 1, then the replacement candidate b′ comes from a region that is more probable under P(b|A) than the
region around b; the candidate replacement becomes the new current sample. If, by contrast, the ratio is lower than unity,
i.e., f (b′)/f (b) < 1, then the replacement candidate can still be accepted as the new current sample, but the probability of
doing so decreases as the ratio gets closer to zero. Occasional acceptance of candidate replacements that are less probable
under P(b|A) is necessary because ‘less probable’ is still possible. Once a sufficiently large sample is obtained, the algorithm
can be stopped, but of note is that there is no natural termination criterion. The Metropolis–Hastings algorithm relaxes
the condition that candidate replacements need to be drawn from a symmetric distribution. Besides MCMC algorithms,
frequently used are variational [497–500] and greedy methods [469,490,494], which have been extensively reviewed in
Ref. [482].

6.5. Future outlook

Community detection is a fast-paced research domain whose explosive development over the past 20 years or so
stems from mathematical foundations that were laid decades ago. We started our overview of research on community
detection with four main community-detection contexts, meanwhile emphasising the importance of generative models for
consistent statistical inference of communities from network data. We singled out SBMs as a poster child for tremendous
progress that had been made. Here, we recognise that as the SBM-based theory has been maturing, new methodological
advances started taking roots and shaping the field’s future [483].
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Fig. 33. Nested stochastic block model in action. Stacked on top of the observed network are the corresponding three levels of multigraph
representation (l = 1 to l = 3). To break the resolution limit, a higher level serves as a prior for the next lower level.
Source: Reprinted figure from Ref. [480] under the Creative Commons Attribution 3.0 Unported (CC BY 3.0).

Much effort has been put into reformulating the problem of community detection to conform to the format of some
machine-learning technique. Examples of this are community detection using topic models or matrix factorisation [483].
Topic models originate in machine learning and natural-language processing, and are based on an idea that documents,
as word collections, refer to a limited number of topics. A topic in this approach is a cluster of similar words. The main
task of a specific topic model is to map a set of documents into word-use statistics, and from there make two inferences.
One inference is the collection of topics that the documents collectively cover. The other inference is how much a certain
topic is represented in a given document. Community detection based on topic modelling thus implies packaging nodes
and links as words and documents for the model to process. The returned topics are then interpreted as communities. In a
similar fashion, matrix factorisation is a class of collaborative-filtering algorithms devised for recommender systems with
the goal to learn low-dimensional representations of users and items that can be used to predict how users rate items
(e.g., how subscribers rate shows on a streaming service). Community detection based on matrix factorisation treats the
adjacency matrix as ratings, while low-dimensional representations to be learned are those of links outgoing from and
incoming into a fixed number of communities. In practice this means that an N×N adjacency matrix is decomposed into a
product of an N×K matrix of outgoing links and K×N matrix of incoming links. The latter two matrices respectively give
probabilities that the ith node generates an outgoing link from community r and that the jth node receives an incoming
ink into community r , which ultimately determines the community structure.

With the recent rise in popularity of neural networks and deep learning (see Section 7.3), it is unsurprising that the
roblem of community detection has also been cast in the form suitable for deep neural networks [483]. The main idea
n this context is to learn node representation, that is, extract important features that set nodes apart, including their
ommunity affiliations. In deep neural networks, features are encoded by hidden network layers, but the whole business
f feature extraction is perhaps easier to present by referring to a more ‘manual’ approach in which network nodes are
mbedded into a low-dimensional vector space. Such an embedding is achieved by first defining a node-similarity measure
n networks. A well-known example is unbiased, fixed-length random walks that measure similarity in terms of the
robability of visiting the node v during a random walk starting from the node u [501]. Second, a map (i.e., an embedding)

is defined that associates network nodes with vectors in the vector space. Lastly, the parameters of this embedding are
optimised in such a way that the similarity measure on networks is well approximated by (some function of) the scalar
product in the vector space. This exact problem has, in fact, been rigorously treated by mathematicians with the diffusion
distance being the similarity measure defined on networks, diffusion maps serving as the embedding, and the Euclidean
distance approximating the diffusion distance in the low-dimensional vector space [502]. In practice, however, measuring
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ode similarity is expensive and therefore done locally. The embedding is optimised using only measured (as opposed
o all) node similarities. Once this is achieved, community detection takes place by clustering vectors, corresponding to
etwork nodes, in the low-dimensional vector space. Ref. [503] demonstrates the approach in action.
Among the briefly described approaches to community detection inspired by machine learning, deep neural networks

n particular shed the connection to generative processes and statistical inference. This, however, is unlikely to slow
own further proliferation of such methods. If anything, the most practical methods in terms of the ability to handle
arge network sizes (e.g., billions of nodes) and various network types (e.g., multilayer, dynamic, and incomplete) are
ikely to prosper in the future. We nonetheless expect community-detection methods founded on generative processes
nd statistical inference to continue going strong due to fundamental advantages and unrivalled rigour.

. Human–machine networks

Human society is currently experiencing the impact of a digital transition by which data about human behaviour
as evolved from a limited and unused resource to a manifold of permanently growing real-time data streams called
ig data. Today, big data is being pervasively generated, collected, analysed, and utilised within various smart systems to
upport enjoyable and comfortable living and working conditions. We are, in fact, witnessing a transition from information
o knowledge society that has prompted the emergence of technologies whose potential to unravel both individual and
ollective behavioural phenomena is unprecedented. Examples of such technologies include:

• Google Knowledge Graph augmenting web navigation of Internet users [504],
• Facebook Social Graph revealing users’ personal relations [505],
• LinkedIn Economic Graph digitally mapping every member of the workforce [506],
• Unacast Real World Graph explaining how people move around the planet [507], and
• Pinterest Taste Graph visually exploring what people like and what inspires them [508].

Within the ongoing digital transformation, the ambition of ensuring smooth progress along the data-information-
nowledge-wisdom hierarchy [509] undoubtedly stays one of the major challenges given the ever-growing size, diversity,
nd frequency of generated data. The vehicle for navigating such a knowledge hierarchy is Data Science, an interdisci-
linary field dealing with various methodologies and technologies (i.e., algorithms and systems) to automatically derive
nowledge from data. Understanding and augmenting human intelligence and human-decision making processes is the
ecessary next step to harness data science in the pursuit of actionable knowledge for improving human lives.
Due to their influence on human lives, the evolution of data-science methodologies and technologies is intertwined

ith social and organisational structures in what is known as socio-technical systems. From this viewpoint, novel
echnologies emerge to satisfy societal needs, all the while society adapts to better accommodate those technologies
Fig. 34). For example, Internet as a global packet data network and the World Wide Web as an information system
rovide critical services for modern-day society, yet neither were originally designed with such broad purposes in mind.
Some of the emerging and evolving technologies within the framework of socio-technical systems are Distributed

edger Technology (e.g., blockchain) [510,511], Cyber–Physical Systems [512], Internet of Things [513], Cloud, and
ost-Cloud paradigms Fog, Edge, and Dew Computing [514]. The post-Cloud paradigms in particular strive to relocate
omputing resources closer to end users to mitigate cloud-related issues of highly centralised computation [515]. All these
echnologies, together with advances in the research of Artificial Intelligence (AI) [516–518] already influence everyday
ives [519] to the point that humans and machines are entangled into elaborate human–machine networks [520]. Because of
heir increasing complexity and relevance in modern societies, human–machine networks are among the most challenging,
nd yet, most important environments to study human and machine co-behaviour [521].
The need to understand human behaviour in conjunction with big data collected from a variety of human–machine

etworks has given rise to a new discipline called Computational Social Science [522,523]. This discipline encompasses
odern trends in social-physics research [524,525] based on the joint use of computational big-data analyses on the
ne hand, and models from physical sciences on the other hand. Specifically, methods are borrowed from behavioural
conomics and social psychology, network science, data science, and machine learning, as well as game theory and the
heory of critical phenomena. Discoveries are thus possible on three distinct levels:

1. Data analyses generate insights directly from collected data,
2. Modelling attempts to capture plausible governing mechanisms and processes, and
3. Simulations yield system-wide or component-wise predictions of behaviour within the human–machine network

of interest.

The goal is to develop expressive-yet-simple models that can be calibrated and validated against real-word data as
opposed to using phenomenological models that are limited to generic insights into governing mechanisms and processes.
This type of data-driven modelling overcomes the drawbacks of black-box machine-learning algorithms in which the
underlying physical principles of social systems remain entirely neglected.

Data-driven modelling as described above opens the door to deep insights into human behavioural patterns and better
ecisions in response to critical social problems. Areas of potential betterment include monitoring socio-economic depri-
ation of individuals and countries [526], increasing public wealth and health [527,528], controlling safety and crime [529],
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Fig. 34. Conceptual illustration of the evolution of socio-technical systems (STS) and human–machine networks (HMN) driven by emerging
echnologies. Although the interconnection of structures and functionalities ensures scalable development, there is also the risk of a single local
ailure in one subsystem provoking a cascade of failures throughout other subsystems. For example, a failure of the power grid can cause the failure
f information and communication technology systems, upon which financial, healthcare, or security services may depend down the line. Further
ulnerabilities include the spread of disinformation or cyber attacks. Ensuring not only scalability, but also robustness and security of human–machine
etworks therefore constitutes a critical task within the framework of social-technical systems.

apping epidemics [530,531], managing natural disasters [532,533], and securing social inclusion [534,535]. Multiple
looming research directions have caused much excitement, culminating in the idea of social-good algorithms [536–539]
hat should guide all aspects of sustainable development [539], decision making, and resource optimisation of public
oods [537,538].
Due to their supposed influence over so many aspects of modern-day life, social-good algorithms are of particular

esearch importance. Concerns have already been raised around a range of social, ethical, and legal issues, including
rivacy and security [540,541], transparency and accountability [542], and discrimination and bias [543]. The fact that
eople remain largely unaware of how algorithms utilise their data and affect their lives is the essence of the black-
ox society [542]. Especially today’s Internet-enabled human–machine networks such as online social networks, search
ngines, or other cloud-based platforms are highly centralised, exposing users’ personal data to potential commercial
r political misuses. Adding to the mix AI systems built upon complex deep-learning models, infamous for their lack of
ransparency, accentuates the need to tread carefully in the near future.

A key challenge for researchers and policymakers, in order to avoid the pitfalls of a black-box society, is to ensure
aximum transparency in ever-growing interactions between humans and machines. Attempts to rise to this challenge
ave culminated in the framework of Trustworthy Artificial Intelligence, at the core of which lies recognition that AI
ystems must be more easily interpretable in general, and explainable to various user groups in particular [544]. Further
equirements in this context are alignment with fundamental human rights and legal practices, as well as service to
ocietal common good [545,546]. The European Union (EU) through the European Commission’s High-Level Expert Group
n AI has taken an early lead in setting the pathway towards trustworthy AI; for example, the document ‘‘Ethics Guidelines
or Trustworthy AI’’ [547], published in April 2019, provides concrete guidance on how to operationalise the above-stated
equirements in future human–machine networks.

Trustworthy AI, with its three key characteristics (lawful, ethical, and robust) and seven key requirements (human
gency and oversight, technical robustness and safety, privacy and data governance, transparency, diversity, non-
iscrimination and fairness, environmental and societal well-being and accountability) clearly sets the research-and-
evelopment direction for emerging AI-driven human–machine networks. Especially the focus on human-understandable
lgorithms that manipulate various types of unstructured, semi-structured, or structured data is sowing the seeds of
n indispensable tool in the toolbox [548] of computational branches of social physics. These promising developments
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nd a growing interest in AI research notwithstanding, existing studies about collective human [525] and machine
ehaviour [521], and their symbiotic interdependence [520,549,550], are highly fragmented. The fragments, comprising
uman-Imitative AI, Intelligence Augmentation, and Intelligent Infrastructure, are complementary to one another and
tand to benefit from a stronger mutual integration in future studies of large-scale human behaviour.
The aim of this chapter is to help aspiring social physicists (i) to navigate, at times chaotic, advances in the domain of AI-

riven human–machine networks, and (ii) to identify research directions where future breakthroughs may lie. To this end,
he following sections start with an up-to-date review of studies at the interface between human [525] and machine [521]
ehaviour. Thereafter, the methodological fundamentals of AI are laid out in a form condensed for easy understanding.
fter a brief mention of exemplary uses in social-good and sustainable-development contexts, the AI methodology is
xemplified in detail via the use of AI agents in game theory, and especially for the purpose of promoting cooperation.
he chapter concludes with an outlook for the future.

.1. Overview of reviews and surveys

The use of machine learning in general, and deep learning in particular, to understand large-scale human behavioural
henomena has traditionally been scattered among research communities. Human and machine behaviour have thus
een researched independently for the most part. Only recently an interface between these research topics has started
o emerge. To gradually zero in on this interface, we categorise the literature into (i) general AI, machine-learning, or
eep-learning techniques, (ii) AI, machine-learning, or deep-learning techniques to address societal challenges, (iii) AI,
achine-learning, or deep-learning techniques in social physics, and (iv) collective human–machine behaviour.
There exists a large number of machine-learning and deep-learning surveys tailored to the needs of both specific

516,518,551–554] or general audiences [555–562]. Prioritising the latter, Ref. [558] presents an overview of most popular
odels and provides a long-term outlook for the field. Ref. [559] offers a comprehensive historical overview of the

elevant work that deep learning builds on. Ref. [557] is notable for presenting deep-learning applications to a variety of
nformation processing tasks. The topic of AI for social good, aiming at advancing and employing AI, machine learning,
r deep learning to address societal challenges, is covered in Ref. [538]. Considering the ongoing Covid-19 pandemic,
ef. [563] overviews recent studies that utilise machine learning to tackle aspects of the pandemic at different scales,
ncluding molecular, clinical, and societal. Yet other recent studies have investigated economic [564,565], social [566],
s well as psychological and mental impacts [567] of the drastic life changes brought about by the pandemic. Lastly,
ef. [552] surveys recent developments in deep learning for recommender systems, which are currently one of the most
stablished AI, machine-learning, or deep-learning applications within human–machine networks, having an important
ole in many online services and mobile apps.

Depending on whether machine learning is conducted with or without labelled input–output example pairs, we
espectively distinguish between supervised and unsupervised learning. An intermediate approach, called semi-supervised
earning, is useful in applications when unlabelled data is readily available or easy to acquire, while labelled data is often
xpensive or otherwise difficult to collect [568]. Ref. [569] is a comprehensive overview of recent advances in the domain
f semi-supervised deep-learning techniques. Meanwhile, in the domain of unsupervised deep learning, progress has
aterialised in the form of generative models such as Variational Autoencoders and Generative Adversarial Networks.
he use of the former in deep-learning contexts is covered in Ref. [570], while the latter, with applications, is covered in
ef. [571].
Deep reinforcement learning is a core AI research direction aimed at solving complex sequential decision-making tasks

ith potentially wide-ranging applications such as robotics, smart infrastructure, healthcare, finance, and others. Ref. [572]
ffers an introduction to deep reinforcement-learning techniques, models, and applications, while Refs. [573,574] rep-
esent more comprehensive guides into the field. Furthermore, there exist numerous resources that allow for a more
ands-on approach:

• ‘‘Spinning Up in Deep RL’’ is a practical introduction [575],
• OpenAI Gym is a collection of benchmark problems (i.e., environments) for comparing deep reinforcement-learning

algorithms [576],
• OpenAI Baselines is a set of baseline implementations of deep reinforcement-learning algorithms [577], and
• rlpyt is an open-source repository of modular and parallelised implementations of various deep reinforcement-

learning algorithms [578].

More recently, research on deep reinforcement learning has taken a turn from single-agent to multi-agent scenar-
os [579,580]. Four topics of interest have crystallised in this context: (i) the analysis of emergent behaviours pertains
o evaluating single-agent deep reinforcement-learning algorithms in multi-agent scenarios, for example, cooperative,
ompetitive, and mixed; (ii) learning communication pertains to agents learning both through actions and messages; (iii)
earning cooperation pertains to agents learning to cooperate using only actions and (local) observations; and (iv) agents
odelling agents pertains to agents reasoning about other agents to fulfil a task, for example, cooperative or competitive.
ooperative tasks between actors in human–machine networks are of particular interest to the social-physics agenda and

ill, therefore, be discussed in more detail later.
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Turning to the specifics of the AI, machine-learning, or deep-learning use in science, Ref. [553] overviews the techniques
for applying deep-learning models in conjunction with limited data (self-supervision, semi-supervised learning, and
data augmentation), as well as the techniques for interpretability and representation analyses. Ref. [581] discusses the
natural-science applications of explainable machine learning via three core concepts: transparency, interpretability, and
explainability. Finally, Ref. [544] is a guide into the explainable deep learning aimed at researchers just entering the field.

Alongside many other branches of science, physics has not been immune to adopting the machine-learning method-
ology [548,582]. Statistical physics has, in fact, inspired the exploration and development of machine-learning models
[583–587]. A recent comprehensive review introduces the key concepts and tools of machine learning in a physicist-
friendly manner accompanied with a set of Python Jupyter notebooks that demonstrate the application of modern
machine-learning and deep-learning packages on physics-inspired datasets [554]. Refs. [588,589] cover, from a theoretical
perspective, the intersection between the foundational machine-learning and deep-learning concepts and statistical
mechanics. The methods from statistical mechanics have furthermore begun to provide conceptual insights into deep-
learning models regarding the model expressivity [590–593], the shape of the model loss landscape [594], model training
and information propagation dynamics [595–597], model generalisation capabilities [598,599], and the model ability to
‘imagine’, that is, build deep generative models of data [570,600].

To conclude this literature walkthrough, there is an immensely rich body of literature on the AI, machine-learning,
and deep-learning techniques, and the contribution of physicists to this richness has been non-negligible to say the
least. But where should an aspiring social physicist look for potential breakthroughs? Ref. [521] proposes a new field of
scientific study called machine behaviour to better understand how AI agents might affect society, culture, the economy,
and politics. The four primary motivations for the study of machine behaviour are the ever-increasing ubiquity of AI
algorithms in human daily activities, but also, their complexity, opacity, and a lack of explainability. This ‘black-box’
nature of AI algorithms poses substantial challenges to predicting the effects of such algorithms, whether positive or
negative, on humanity and society. There are three scales at which to study machine behaviour: individual machines,
machine networks, and human–machine networks. Ref. [520] surveys the state-of-the-art developments on the third
scale, identifying eight different types of human–machine networks depending on structure and interactions. These
eight types are public-resource computing, crowdsourcing, web-search engines, crowdsensing, online markets, social
media, multiplayer online games and virtual worlds, and mass collaborations. Nowadays, however, the omnipresence and
usability of human–machine networks is causing novel trends to emerge by which the limits between the eight listed
types are beginning to blur, while hybrid types keep cropping up. This state of affairs suggests a long and winding road,
and thereby plenty of opportunities, towards the ultimate goal of the aforementioned social-good algorithms.

7.2. Fundamentals of artificial intelligence

Here, we introduce some of the most fundamental terms and concepts of AI, machine learning, and deep learning.
Readers who wish a first-hand experience with the methods and techniques that arise from these concepts may want to
consult Ref. [601] as a form of a getting-started tutorial.

Historically, the term ‘artificial intelligence’ was introduced in the late 1950s to refer to the aim of making intelligent
machines that have the high-level cognitive capability to act, reason, think, and learn like humans, that is, to mimic
human intelligence [560,602,603]. The evolution towards this aim of human-imitative AI further led to the emergence
of AI systems that augment human intelligence, as well as those that constitute intelligent infrastructure in order to make
living and working environments safer and more supportive of human needs [603]. Distilled to these three complementary
research activities, that is, human-imitative AI, intelligence augmentation, and intelligent infrastructure, the research on
AI comprises a very broad and diverse set of techniques for building and integrating intelligent agents into software
solutions and hardware platforms.

Because human intelligence is general, the aim of achieving complete human-imitative AI is often called artificial
general intelligence or the ‘strong’ AI [604]. Achieving general intelligence that would encompass all, or most, of human
cognitive processes is beyond the reach of current AI research [605], meaning that presently only the ‘weak’ AI systems
are realisable. These weak AIs are also referred to as artificial narrow intelligence. A further implication is that machines
learn to perform good on a specific, well-defined task, but cannot augment humans outside of a limited domain in which
the machine learned to operate. Limitations notwithstanding, modern-day artificial narrow intelligence is widely used in
various domains, ranging from science to business to health care and more. Interestingly, most systems that classify as
AI today are, in fact, based on the machine-learning and deep-learning techniques (Fig. 35).

Machine learning as a subfield of AI enables artificial agents (i.e., machines) to automatically learn from data, make
decisions and predictions by themselves, and help in human decision making without being explicitly programmed
with expert knowledge [554,606]. This ability of AI systems to automatically extract new knowledge from data is an
extension of knowledge-based approach to AI by which knowledge about the world is to be hard-coded using formal
languages, while machine reasoning should follow logical inference rules on statements formulated in such languages. In
practice, a successful machine-learning algorithm recognises important features in a ‘training’ dataset in order to make
inductive inferences or predictions about data samples unseen during training. The machine-learning algorithm must thus
‘generalise’ beyond data in the training dataset; the goal is not to minimise an evaluation objective on the training dataset,
but rather on new, previously unseen samples.
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Fig. 35. A Venn diagram showing overview and composition of AI technology. Deep learning is a part of machine learning, which in turn is a part of
I. Machine learning is commonly divided into supervised learning, unsupervised learning, and reinforcement learning. Deep learning for the most
art inherits this division. The major benefit of deep learning over traditional machine learning is the automatic feature extraction that circumvents
xpensive feature engineering by hand.

Fig. 36. Bias–variance tradeoff or how to strike a balance between the hypothesis-set complexity and the dataset size. As the model becomes more
and more complex, the training error always decreases. The prediction error, however, decreases only up to a point, and then starts to increase
again. The inability of an overly simple hypothesis set to represent the knowledge contained in a dataset creates a bias in predictions, whereas the
ability of an overly complex hypothesis set to fit any data perfectly represents noise (i.e., a specific realisation thereof) more than knowledge. In
this case, predictions have a large variance.

In addition to a training dataset, every machine-learning algorithm needs a hypothesis set, an error function (also
alled objective function or cost function), and an optimisation procedure. The algorithm searches the hypothesis set to
ind the hypothesis that best represents knowledge contained in the dataset, which in practice means relying on the
ptimisation procedure to minimise an estimate of the prediction (i.e., out-of-sample) error. The key here is to strike a
alance between the dataset size and the hypothesis-set complexity (Fig. 36). An overly simple hypothesis set contains
o single hypothesis that can represent the knowledge that is contained in the data. An overly complex hypothesis set, by
ontrast, always contains a hypothesis that fits the data perfectly. In doing so, however, the seemingly perfect hypothesis
epresents not only knowledge, but also the specific realisation of noise, which could be due to genuine stochasticity or
easurement errors, or alternatively, deterministic in origin [607].
The performance of an inductively learned model degrades for one of the following three reasons [608]. First, the

ypothesis set may not contain a suitable representation of reality. In the case of a classification task, for example, a
lassifier that is outside of the hypothesis set cannot be learned, although the best hypothesis may still yield a reasonable
pproximation. Second, the error function may have many local optima over the hypothesis set in which case even
epresentable reality may be hard to learn. Finite data, time, and memory enable searches through only a tiny subset
f all possibilities. Finally, the choice of the optimisation method also determines the scope of search, where methods
hat try out more hypotheses reduce bias but increase variance and vice versa. Oftentimes it is advantageous to reduce a
earning problem to a well-known optimisation problem by transforming the objective function or introducing additional
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onstraints or relaxations. Ref. [609] describes in detail the desirable properties of an optimisation procedure for machine
earning. Such properties are good generalisation, scalability to large datasets, good performance in terms of execution
imes and memory requirements, simple and easy implementation of algorithm, exploitation of problem structure, fast
onvergence to an approximate solution, robustness and numerical stability for the chosen class of machine learners, and
heoretically known convergence and complexity.

Based on feedback available during the learning phase, it is possible to distinguish between three machine-learning
ontexts: supervised, unsupervised, and reinforcement. In supervised learning, the training dataset contains samples that
re labelled with an additional ‘ground truth’. A machine learner attempts to learn a target map from data samples to
he ground-truth value. If the ground truth is a discrete class from some finite set of classes, then the learner is facing a
lassification task. Sometimes the classification task is such that a probability distribution over the set of classes is more
ccessible than the direct classifier. If, by contrast, the ground truth is continuous, then the learner is facing a regression
ask.

Among practical obstacles to supervised learning is that obtaining a complete set of labels for all data samples is
ften difficult and expensive. Learning then uses both a smaller, labelled subset of the full dataset, as well as a larger,
nlabelled subset. This type of learning context is referred to as semi-supervised learning. The two dominant paradigms in

semi-supervised learning are transductive learning and inductive learning [568,569]. The former does not concern itself
with generalisation, but instead attempts to infer the correct labels for the unlabelled subset. This is achieved by assigning
labels to unlabelled samples such that ultimately a given optimisation criterion is satisfied across all data, that is, originally
labelled and unlabelled subsets taken together. Among the popular techniques are those for learning node representation
on networks (i.e., graphs) such as node2vec [503] or DeepWalk [501]. The goal of node-representation learning is to find a
low-dimensional space of features with a scalar product that approximates some measure of node similarity in the original
network. A commonly used measure of node similarity is random walks. The learned feature space can be exploited for
network community detection, link prediction, and other network-science problems. A more common paradigm, however,
is that of inductive learning by which the learner attempts to infer the correct (i.e., generalisable) target map from samples
to labels. Irrespective of the employed paradigm, semi-supervised learning is designed to fill the gap between supervised
and unsupervised learning, just as the name would suggest.

In unsupervised learning, a machine learner is only concerned with extracting insightful patterns from a dataset without
relying on any direct feedback. There is no access to supervision signals in the form of discrete or continuous labels.
Tasks commonly associated with this machine-learning contexts are partitioning of the dataset into clusters of similar
data instances, anomaly detection in the dataset, blind source separation (e.g., picking a single conversation out of
many), density estimation of the underlying probability distribution, or learning latent representations of the data by
dimensionality-reduction techniques. Unsupervised learning is especially useful in exploratory data analysis because of
the ability to identify structure in the dataset on its own.

In reinforcement learning, a machine learner, often termed an agent, learns how to achieve long-term goals in a complex,
uncertain environment. A theoretical underpinning of reinforcement learning is given in the form of Markov decision
processes, that is, stochastic decision-making models comprising a set S of agent’s states in the environment, a set A of
actions available to the agent, and the state-transition probabilities P(s′|s, a) from the state s ∈ S to a state s′ ∈ S via
the action a ∈ A (Fig. 37). A reward signal r is generated when the agent transitions between states. The objective is
to find a policy π (s) that prescribes which action should be taken in a given state in order to maximise the cumulative
reward obtained over the agent’s lifetime. Reinforcement learning comes into play when the environment is so complex or
uncertain that the optimal policy is unknowable a priori. The agent learns a model of the environment through execution
and simulation, continuously using feedback from past decisions to reinforce good strategies. The learning process is
fraught with danger of focusing too much on immediate rewards, thus preventing the discovery of better alternatives,
especially those whose rewards are delayed. This is the essence of a trade-off between exploitation and exploration; the
agent strives to exploit what is already known in order to accumulate rewards, but at the same time the agent should go
exploring to find action selections that pay off more further down the line.

The performance of machine learning approaches discussed heretofore depends heavily on the representation of data.
Much effort is therefore put into the feature-engineering process, during which raw data is rendered in a form suitable
for modelling. Automating this process is one of the holy grails of machine learning, and will be discussed next.

7.3. Deep learning

Current efforts to automate the feature-engineering process rely on the idea to generate large numbers of candidate
features and then select the best feature subsets with respect to a given learning task. This is done while taking into
account that features that look irrelevant in isolation may be relevant in combination with other features [608]. Recently,
replacing traditional domain expertise and human engineering to hand craft feature extractors has become possible
through the development of deep learning [560]. As a subfield of AI and machine learning, deep learning uses multilayer
neural networks (hence the term ‘deep’) to exploit the many layers of non-linear information processing for automatic
(supervised or unsupervised) feature extraction, and subsequently for pattern analysis and classification (Fig. 38). In deep
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Fig. 37. Constituents of a Markov decision process in the reinforcement learning setting. The agent needs to make decisions in discrete rounds
t = 0, 1, . . . , n. Decisions are made based on a policy at = π (st ), which prescribes the action at to be taken given the current state st . The action
riggers a reward signal rt , while the agent transitions into a new state st+1 according to the transition probability P(st+1|st , at ). The primary objective
s for the agent is to find the policy that maximises the total expected reward E[r0+γ r1+· · · |π ] received over the long run, where γ is a discounting
actor. All relevant information about the past is contained in the current state st , which encodes aspects of the environment that the agent can
ense or influence.

Fig. 38. Conceptual illustration of a simple artificial neural network. Generally, artificial neural networks are graph structures comprising multiple
ayers that perform a number of linear and non-linear transformations on input data. Layers between the first (i.e., input) and the last (i.e., output)
ayer are called hidden layers. Each layer consists of neurons that receive information from preceding layers across weighted edges. Artificial neural
etworks propagate information forward to calculate the final output, but also backward to perform weight estimation. Backpropagation is the key

algorithm that makes weight estimation, and thus the training of deep models, computationally tractable; the algorithm amounts to a shrewd
application of the chain rule for derivatives. The gradient of the loss function with respect to each weight is calculated one layer at a time, and
then weights are updated in the direction in which the loss function decreases the most. The calculation is iterated until the algorithm converges
to accurate outputs on the training dataset.

neural networks, in particular, activation functions are used at the end of hidden units to introduce non-linear complexities
to the model. The most common activation functions are

Rectified linear unit f (x) = max{0, x}, (78a)

Sigmoid f (x) = σ (x) =
1

1+ e−x
, (78b)

Swish f (x) = xσ (βx), (78c)

Hyperbolic tangent f (x) = tanh(x) =
ex − e−x

ex + e−x
, (78d)

Softmax f (x)i = softmax(x)i =
exp (xi)∑n
j=1 exp

(
xj
) , (78e)

here softmax is often used for normalising the output layer of a neural network.
Deep learning usually requires large datasets to eliminate the need for manual feature extraction. Because a machine

earner is fed with raw data to learn its own representations, deep learning is a form of representation learning. Learned
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Fig. 39. Illustrative example of a large-scale deep neural network. The network accepts as inputs a variety of data types—images, time-series, or
raph-structured data—and then in its lower-level hidden layers learns useful representations for each data type.

epresentations are contained in the multiple layers of the neural network [610] and encode data by means of a sparse,
atent structure with far fewer features than at the beginning. Such elimination of redundant features makes downstream
ata processing and the final learning task far less intensive. Consequently, most of the recent AI success comes from
he utilisation of representation learning with end-to-end trained deep neural-network models in tasks such as image,
ext, and speech recognition or strategic board and video games. Through enabling the automatic feature engineering,
eep learning substantially reduces the reliance on domain-expert knowledge, outperforming in the process traditional
ethods based on hand-crafted feature engineering, and achieving the performance that equals or supersedes that of
umans.
Variants of deep neural networks are designed to improve performance in specific problem domains (Fig. 39). Convolu-

tional neural networks thus excel in computer-vision tasks, while recurrent neural networks with special gated mechanisms
(such as long short-term memory [611] or gated recurrent unit [612]) resolve issues of a vanishing gradient when learning
long-term dependencies. Types of encoder–decoder architectures, combined with an attention mechanism [613], are
furthermore naturally suited for modelling time series [614] and sequential data, offering state of the art performance in
the space of natural-language processing. Finally, the development of graph neural networks further accelerated progress
in developing general AI architectures for handling unstructured and non-Euclidean data [615].

Despite recent advances in deep learning [616,617], many obstacles remain to be overcome. The most common
drawback is that popular deep-learning techniques need large amounts of data samples in order to generalise and make
predictions on unseen inputs, thus being extremely data inefficient. In supervised learning, data inefficiency translates
into the need to label, often manually, thousands of data samples; doing so is time-consuming, cumbersome, expensive,
and ultimately unreliable. Likewise reinforcement learning demands access to a large number of training trajectories,
which in turn must be obtained via human–machine interactions in the real world that are hard to set up. Attempts to
resolve the described issues therefore deserve some attention.

7.4. Learning to learn

Attempts to improve the data efficiency of deep learning have shown a couple of promising ways forward. Transfer
learning [618,619], for instance, relies on the idea that knowledge can be transferred from existing to new models. This
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pproach, inspired by how humans as life-long learning entities use own experiences, exploits structural similarities
etween learning tasks. To exemplify, an image-recognition model may consist of two parts, a feature-extractor part
nd a classifier part that is made up of fully connected layers and the output layer. If the model is pretrained for a specific
ask, the feature-extracting part of the model could still be used for a different task, while fully connected layers of the
lassifier part are replaced and retrained. Such retraining requires much less data because only a fraction of weights of
he original model must be estimated.

A further step forward towards increased data efficiency, and more fundamentally artificial general intelligence, is meta
learning. The goal of this subfield of machine learning is to mimic human learning of new concepts [620–622], which often
happens quickly and with only a few examples provided. Meta learning is also known as ‘learning to learn’ thanks to
efficiently exploiting previous learning experiences when optimising algorithms to generalise to novel tasks [623]. Such
previous experiences include properties of the learning problem, algorithm properties, or patterns already derived from
the data, which in turn make it possible to select, alter, or combine elements of learning algorithms to perform well in a
previously unseen context.

A common use of meta learning is in the context of supervised few-shot learning [624] which consists of a series
of training tasks followed by a series of testing tasks. In a single training task, a dataset D = {(xi, yi)} containing data
instances xi and their corresponding labels yi, is divided into a support set S for learning the task and a query set Q
for determining the classification performance, that is, evaluating the error function. The model parameters are updated
based on this performance. Because the support set in each training task contains N different classes with K examples per
class, this approach is known as N-way-K -shot classification. Key is that classes differ from one training task to another;
to exemplify, let us consider a computer-vision model to distinguish animals of different species. The number of classes
may be N = 3. One training task for such a model may have the support set with K instances of lions, tunas, and turtles,
but the next training task may have the support set with K instances of mice, elephants, and seals. The model tries to use
the information in the support sets to classify animals in the query sets. Once the training is complete, testing proceeds
on tasks with previously unseen classes, say, cats, dogs, and spiders. The point is that the model learns to discriminate
data classes in general (i.e., one animal species from another), rather than a particular subset of classes (e.g., cats from
dogs).

Meta-learning approaches can be metric-based, model-based, and optimisation based. Metric-based approaches predict
the probability of class y conditional on a data instance x and the support set S , which is achieved by means of a
weighted sum of labels yi ∈ S , where weights are given by a kernel function that measures the distance between the data
instance x and instances xi ∈ S . Well-known examples in this context include Siamese neural networks [625], matching
networks [626], prototypical networks [627], and relation networks [628].

Model-based approaches make no assumptions about the conditional probability of class y; rather the idea is to design
a model for fast learning that updates its parameters over the course of a few training steps. For example, external
memory can be used to expedite the neural-network learning process. In the basic setup, a controller neural network
receives inputs and generates outputs while reading from and writing to a memory matrix. It is appropriate to think
of the controller as a CPU of a computer and of the memory matrix as RAM with a benefit that the whole system can
learn to use memory for various tasks instead of sticking to a fixed set of procedures on data. To be useable in a meta-
learning context, the described controller-network plus memory-matrix system needs to be trained such that memory
encodes information about novel tasks fast and that any stored representation is promptly accessible. Ref. [629] prescribes
a training technique that forces memory to hold current inputs for later use. This enables successful classification when
a novel instance x from an already-seen class y is presented at an arbitrary point in time.

Optimisation-based approaches recognise that deep learning models use backpropagation of gradients to learn, and
yet the gradient-based optimisation has never been designed to work with a few training samples, nor to converge after
a few optimisation steps. To overcome these problems, optimisation itself can be treated as a model to be learned [630].
In the popular model-agnostic meta-learning [631,632], what is learned is a shared set of model parameter values for
initialising optimisation. This shared set leads to quick specialisation on wide variety of tasks, which is achieved by a
training procedure that first optimises one shared set of model parameter values to specialise on a batch of tasks, but
then uses the results to find an updated shared set that is better at learning with fewer examples.

The described developments have yielded meta-learning methods capable of achieving human and superhuman
performance in simple tasks such as one-shot classification. This is just an initial step though. Hopes are that meta-learning
approaches will serve an important role in the future discovery of artificial general intelligence.

7.5. AI agents for promoting cooperation

Here, the focus is put on cooperation and AI research aiming to promote cooperation between human and artificial
agents in human–machine networks. Besides human–human (H2H) cooperation already discussed in Section 5, we
differentiate between machine–machine (M2M) cooperation, human–machine cooperation facilitated by the former
(H2M), and human–machine cooperation facilitated by the latter (M2H).

Artificial learners in human–machine networks are expected to take an active part in society, interacting with
both humans and other artificial learners in a complex environment of competition and conflict. What may promote
cooperation in such an environment is some form of reciprocity, which underpins the demand for learning algorithms
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hat ensure the emergence of reciprocity in human–machine networks. Evolutionary game theory offers a methodological
ramework for studying the evolution of cooperation in multi-agent systems in which individual agents must choose
etween selfish interests and common good. Ref. [633] in particular covers game-theoretical methods in the contexts
haracteristic of human–machine networks such as crowdsourcing, Internet of Things, and blockchain.

2M cooperation. In a social-dilemma setting, how can reciprocity, usually observed as a tit-for-tat strategy, emerge
n a network of self-interested, reward-maximising reinforcement learners? Ref. [634] shows that naive and commonly
efecting reinforcement learners start to cooperate when they incorporate in their own learning process the awareness
f their opponent’s learning. Appropriately dubbed learning with opponent-learning awareness or LOLA, the approach
eads to the emergence of tit-for-tat and consequent cooperation in the iterated prisoners’ dilemma. LOLA agents
xemplify the AI design based on the ‘theory of mind’ [635–638], that is, the ability to know the opponent’s behaviour
nd correspondingly alter own behaviour using only human-like, high-level models of other agents rather than the
nderlying physical mechanisms. Interestingly, agents with a theory of mind about their opponents have a way of dealing
ith extortionate zero-determinant strategies by being deliberately hurtful until the extortionist opponent becomes

airer [635].
Axelrod’s influential study on the evolution of cooperation [331], involving a round-robin tournament in which strategy

ntries submitted by game theorists competed in a 200-move iterated prisoner’s dilemma (and which was won by the
it-for-tat strategy), still inspires research today. In fact, there exists a whole Axelrod library [639] of strategies that has
een used to organise tournaments similar to Axelrod’s original. Ref. [640] conducted such a tournament with a twist
f introducing 5% noise, that is, a chance that an action is flipped by a random shock. The purpose was to compare the
erformance and robustness of 176 available strategies for the iterated prisoner’s dilemma. The Axelrod library contains
variety of machine-learning strategies most of which use many rounds of memory, and perform extremely well in

ournaments. These strategies encode a variety of other strategies, including the classics such as tit-for-tat, handshake,
nd grudging. For example, the LookerUp strategy, which does the best in the standard tournament, is a lookup table
ncoding a set of deterministic responses based on the opponent’s first n1 moves, the opponent’s last m1 moves, and
he LookerUp agent’s own last m2 moves. LookerUp is an archetype that can be used to train deterministic memory-n
strategies with parameters n1 = 0 and m1 = m2 = n, which for n = 1 cooperate if the last round was mutual cooperation
and defect otherwise (known as Grim or Grudger). Interestingly, in this particular tournament, the tit-for-tat strategy
could not win any matches.

Pretrained strategies are generally better than human-designed strategies at maximising payoff against a diverse set of
opponents. Furthermore, strategies trained using reinforcement learning and evolutionary algorithms with the objective of
maximising the payoff difference (rather than own total payoff) resemble zero-determinant strategies, which are generally
cooperative and do not defect first, although their performance declines in the presence of noise. Good performance
in both standard and noisy tournaments is exhibited by single-layer neural networks albeit their downside is utilising
handcrafted features based on the history of play. One of the best-performing strategies in terms of the overall average
score is the Desired Belief Strategy [641], which actively analyses the opponent and responds depending on whether
the opponent’s action is perceived as noise or a genuine behavioural change. Ultimately, an inescapable conclusion
is that reinforcement learning is an effective means to construct strong strategies for various iterated social-dilemma
situations [634,640,642,643].

Newer studies go beyond pairwise interactions in the iterated prisoner’s dilemma to examine whether multiple agents
cooperate effectively as a team against another team of agents. This requires learning to cooperate with teammates
through communication while competing with the opposing team [644–646]. Ref. [644] proposed an approach called
multi-agent deep deterministic policy gradients (MADDPG) that performs well in a number of mixed competitive-
cooperative environments. MADDPG is an extension of actor–critic algorithms in reinforcement learning [647,648]. These
algorithms fuse the strengths of actor-only and critic-only methods [649]. The former methods focus on a parameterised
family of policies such that the performance gradient is estimated by simulation, upon which a parameter update is
made in a direction of improvement. Among the drawbacks of actor-only methods is that new gradient estimates are
independent of past estimates, precluding accumulation and consolidation of previously learned knowledge. Critic-only
methods, by contrast, try to estimate the value function (i.e., the total expected reward E[r0 + γ r1 + · · · |π ]) in order to
infer a near-optimal policy from there. A drawback is that there are no guarantees whether the inferred policy will indeed
be near-optimal. In MADDPG, the actor is used to select actions, while a central critic evaluates those actions by observing
the joint state and actions of all agents. In this sense, MADDPG follows the centralised learning with decentralised
execution paradigm [650–652], which assumes unrestricted communication bandwidth during training, as well as the
central controller’s ability to receive and process all agents’ information. To relax these assumptions, Flexible Fully-
decentralised Approximate Actor–critic (F2A2) algorithm [653] was proposed as a variant of multi-agent reinforcement
learning based on decentralised training with decentralised execution. A strong suit of the F2A2 algorithm is its ability to
handle competitive-cooperative partially observable stochastic games [654]. Here, the term ‘partially observable’ refers
to situations in which agents only know the probability of making an observation conditional on the current state as
opposed to directly determining the current state. ‘Stochastic games’ furthermore refer to situations in which multiple
decision makers interact with one another, while the environment changes in response to decisions made.
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ybrid H2M and M2H cooperation. Besides utilising the AI techniques, especially multi-agent reinforcement learning, to
earn cooperativeness among machine learners, a growing number of studies investigate hybrid human–machine sys-
ems [549,550,655,656]. A key issue in this context is that, in order to interact with humans in social-dilemma situations,
achine learners must understand and incorporate moral, trusting, and cooperative human intuitions [643,657–659].
Ref. [550] examines how to build machine learners that can cooperate with people and other machines at levels

hat rival human cooperativeness in two-player repeated stochastic games with perfect information. The study identifies
hree key properties that algorithms should possess to be successful: (i) generality in terms of superior performance in
any scenarios rather than a specific one, (ii) flexibility to both deter potentially exploitative opponent behaviours and
licit cooperation in hesitant opponents, and (iii) learning speed sufficient to learn effective behaviours after only a few

interactions with people. An algorithm displaying these desirable properties is the new simple rule-based expert algorithm
termed S++ that uses a version of aspiration learning [660] to select which strategy to follow from a finite set of expert
strategies.

An interesting question in the context of hybrid H2M and M2H cooperation is whether humans remain willing to
cooperate with machine learners once the true nature of the latter is revealed to the former. In an iterated prisoner’s
dilemma in which the actions of machine learners were driven by the S++ algorithm [655,656] shows that cooperativeness
goes down when humans assume a non-human opponent. The same happens even in contact with zealous non-human
opponents whose behaviour is constant. The results thus point to a transparency-efficiency tradeoff by which being
transparent about the true nature of the system is likely to harm efficiency. A possible way around this and similar
problems is to combine behavioural- and computer-science expertise to make algorithmic decision-making interpretable
by many stakeholders, which in turn would allow people to exercise agency and build trust [661].

Ref. [549] is a particularly nice demonstration that machines can help humans work towards a common goal. In
a classic colour coordination game [662] embedded into an artificially-constrained social network, non-human agents
proved useful in achieving the collective aim of colouring nodes with one of three colours in such a way that each node’s
colour differs from the colour of every neighbouring node. Non-human agents used a local optimal colouring strategy
with occasional random-colour choices, thus introducing a certain level of noise. Low-noise non-human agents placed
centrally in the network improved the resolution of colour conflicts, boosted success rates, and increased the speed
with which the problem was solved by nudging humans to occasionally deviate and open up to possibilities. Non-human
agents thus facilitated human-human interactions at distant network position in effect helping humans to help each other.
Although this illustrative example demonstrates how non-human agents can positively facilitate human cooperation and
coordination, there are also examples showing that technology-mediated interactions between humans in online social
networks and social-media ecosystems can be used to deceive or manipulate [663–666]. A task for ongoing and future
research is therefore to understand the dynamics of both positive and negative human–machine interactions, and more
importantly offer human-centric solutions the foster the former and avoid the latter.

7.6. Future outlook

AI is expected to enable people to collaborate with machines in an efficient manner for the purpose of solving complex
problems. This is further expected to drive the emergence of ever newer and more widespread kinds of human–machine
networks. To make the integration of such networks into society as seamless as possible, research heretofore indicates that
it will be critical to ensure good mutual communication, trust, clarity, and understanding between humans and machines,
that is, the AI technology will have to be human-centric and explainable. Success in integrating human–machine networks
into society will then open the doors to a continued massive assimilation of unstructured, semi-structured, or structured
data that should be put to good use by addressing a wide spectrum of social-good problems.

Concerns about the black-box nature and opaqueness of deep-learning systems have hampered more widespread
AI applications [667]. To address the problem, a strong case is being made for Human-centric and explainable AI as
a framework towards human-understandable interpretations of algorithmic behaviour. In this way, human operators
should be put back into the driver’s seat to continually improve the robustness, fairness, accountability, transparency,
and explainability [544] of AI technologies.

Furthermore, agreed upon methods to assess the sustained effects of AI on human populations in social, cultural,
and political contexts are currently non-existent [667]. Such methods are much needed if AI technologies are to fulfil
their promise as an enabler for tackling societal issues or improving human well being. Concrete examples here would
be helping to attain sustainable development goals [539] or to alleviate the effects of the Covid-19 pandemic through
molecular and clinical breakthroughs [563]. More broadly, but under the condition that the above-stated concerns are
resolved, we expect AI to permeate a myriad of research domains and topics, including environmental sustainability
(e.g., climate, resource, and biodiversity conservation), social-media abuses (e.g., fake-news, hate-speech, and fraud
detection), public safety (e.g., disaster and crime prevention), and more.

8. Criminology

Controlling crime remains a major challenge across human societies. Empirical data show consistently that crime is
recurrent and proliferates, even more so if it is left unchecked. Fig. 40 shows data provided by the United States Federal
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Fig. 40. The recurrent nature of crime through lens of data from the Federal Bureau of Investigation. Regardless of type and severity, crime is
emarkably recurrent despite our best prevention and punishment efforts. While positive and negative trends are inferrable, crime events (measured
s number of offenses per 100,000 population) between 1960 and 2010 fluctuate more or less persistently. More importantly, there is no trend
nferable to suggest that crime rates are going down, let alone that crime is vanishing. The U.S. state index is a numerical representation of U.S.
tates in alphabetical order, including the District of Columbia being 9th, and the U.S. total being 52nd.
ource: Reprinted figure from Ref. [668].

ureau of Investigation, indicating that even in strongly monitored and policed states, crime deterrence approaches do
ot have the desired impact. Indeed, eradicating crime culture is a steep uphill battle, especially in underprivileged social
ircumstances that do not foster the sense of shared social responsibility. Crime is also problematic in power-driven
nvironments, where greed often overrides the moral compass.
In the realm of physics research, crime is considered as a complex phenomenon, where non-linear feedback loops and

elf-organisation create conditions that are difficult to foretell, control, and often also difficult to understand [668–670].
omplexity science in general contends with models in which a large number of relatively simple agents exhibits complex,
ounterintuitive, and often unexpected behaviours, and models of crime are in this regard no exception.
Although our understanding of the emergence and diffusion of crime is an ongoing learning experience, recent research

hows that methods of statistical physics can significantly contribute to a better understanding of criminal activity. Herein,
e review different approaches aimed at modelling and improving our understanding of crime, focusing in particular
n the mathematical description of crime hotspots with partial differential equations, on the self-exciting point process
nd agent-based modelling, adversarial evolutionary games, and the network science behind the formation of gangs and
arge-scale organised crime. As we hope we will succeed in showing, physics can relevantly inform the design of successful
63
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rime prevention strategies, as well as improve the accuracy of expectations about how different policing interventions
hould impact malicious human activity that deviates from social norms.

.1. The broken windows theory

The 1982 seminal paper by Wilson and Kelling [671] contains many examples and stories that bring the ‘broken
indows theory’ to life. For example, how an unattended broken window invites by-passers to behave mischievously
r disorderly. Or how a subway graffiti points to an unkempt environment that people can desecrate, signalling also that
ore egregious behaviour might be tolerated. Or how drunks, addicts, prostitutes, and loiterers are more likely to frequent
eglected subway stations than orderly and carefully patrolled ones. Thus, on first glance unimportant and petty signals
f disorder invite antisocial behaviour and, over time, serious crime—i.e., one broken window soon becomes many.
To physicists, this broken windows theory may be reminiscent of complexity science and self-organised criticality [83],

here seemingly small and irrelevant changes at one point in time might have significant and often unexpected and
nwanted consequences later on. Moreover, feedback loops, bifurcations, and catastrophes [672], as well as phase
ransitions [673], are commonly associated with emergent phenomena in complex social systems [674].

Besides the ‘broken windows theory’, there exist other theories of criminal behaviour. According to ‘routine activity
heory’ [675], for example, most criminal acts are born out of the convergence of three factors, namely the presence of
ikely offenders, the presence of suitable targets, and the absence of guardians to protect against the attempted crime.
esidential burglary, armed robberies, pick-pocketing, and rape are all examples of such criminal acts.
While intuitively the above three factors are relatively straightforward conditions that obviously favour criminal

ctivity, mathematically they allow us to model the dynamics of criminal offenses as deviations from simple randomwalks.
his is due to built-in heterogeneities in target selection that may drive criminal activity towards preferred locations and
way from less desired ones. The degree of target attractiveness may change in time and depend on mundane factors such
s the day of the week or weather conditions, or on the more sophisticated interplay between landscape, criminal activity,
nd law enforcement responses. Crime dynamics may also include learning mechanisms or feedback loops. These elements
ltimately lead to the emergence of non-trivial patterns such as spatially localised crime hotspots [676] and repeat and
ear-repeat victimisation [677–680], wherein the odds of a second victimisation of the original target or a target in its
icinity are greatly enhanced.
The complexity of crime dynamics that stems from the above-described fundamental considerations has as a conse-

uence the fact that the mitigation and displacement of crime is a highly non-trivial task—a task which, based for example
n data shown in Fig. 40, we often fail at [681–685].
In this light, it is important to note that straightforward gain–loss principles that underlie rational choice theories are

ikely too simple and naive. Anticipating that stronger punishment would just lead to less crime is simply not aligned
ith the reality, not in empirical data, and not from mathematical models that at least to some degree attempt to capture
he complexity of crime [686,687].

.2. Crime hotspots

Presented empirical observations of spatio-temporal clusters of crime in urban areas (Fig. 41) motivated the develop-
ent of a statistical model of criminal behaviour [676]. The model was developed to study residential burglary, where

arget sites are stationary, which is not that case in crimes where offenders and targets are mobile, as in assault or pick-
ocketing. The model builds on the assumption that burglars are opportunistic, and that they thus victimise areas that are
ufficiently close to where they live, and where possibly they have committed crimes before [688]. Another important
ssumption is that the distances that criminals are willing to travel to engage in criminal acts are best described by
onotonically decreasing functions [689]. The movement of offenders is usually described as a biased random walk,
hereby the bias is twofold as follows. In the first place, a given home may be intrinsically more attractive to a burglar
ue to its perceived wealth, the ease of access, or the predictable routine of its residents. Secondly, there may be learned
lements that bias the burglar towards a specific location, for example to a previously victimised home where a successful
reak-in was once already possible.
To quantify the bias towards any given location and to determine the subsequent rate of burglary, the hotspot crime

odel includes a dynamically changing attractiveness field [676]. Moreover, the tendency for repeat victimisation is
ncluded in the model by temporarily increasing the attractiveness field in response to past crimes [690,691]. Since
esidential burglary entails non-moving crime targets, and for simplicity, it is convenient to start with a discrete model
n a square lattice with periodic boundary conditions. Each lattice site s = (i, j) is a real estate with attractiveness As(t)
nd the number of criminals ns(t). The higher the value of As(t), the higher the bias towards site s and the more likely it
ill be the subject of crime. Moreover, once site s has been victimised, its attractiveness further increases. The following
ecomposition is introduced

As(t) = A0
s + Bs(t), (79)

here A0
s is the static, though possibly spatially varying, component of the attractiveness field, and Bs(t) represents the

ynamic component associated with repeat and near-repeat victimisation. More precisely, B (t+1) = B (t)(1−ω)+E (t),
s s s
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Fig. 41. Dynamic changes in residential burglary hotspots in Long Beach California, as observed for two consecutive three-month periods, starting
in June 2011. The emergence of different burglary patterns is related to how offenders move within their environments and how they respond
to the successes and failures of their illicit activities. Returns to previously victimised locations or locations in their vicinities are common and in
agreement with the ‘routine activity theory’ [675].
Source: Reprinted figure from Ref. [676].

here ω sets a time scale over which repeat victimisations are most likely to occur, while Es(t) is the number of events
hat occurred at site s between t and t + 1. To take into account the broken windows theory [671], we let Bs(t) spread
ocally from each site s towards its nearest neighbours s′ according to

Bs(t + 1) =

[
(1− η)Bs(t)+

η

z

∑
s′

Bs′ (t)

]
(1− ω)+ Es(t) (80)

where the sum runs over the nearest neighbour sites associated to site s, z is the coordination number of the lattice, and
is a parameter between zero and one that determines the significance of neighbourhood effects. Higher values of η

ead to a greater degree of spreading of the attractiveness generated by a given burglary event, and vice-versa for lower
alues. For simplicity, we can further assume that the spacing between sites ℓ and the discrete time unit δt over which
riminal actions occur are both equal to one, and that every time a site s is subject to crime its dynamic attractiveness
s(t) increases by one. Interaction networks other than the square lattice, which better describe the city grid or social
etworks can be easily accommodated as well.
Criminal activity is included in the model by allowing individuals to perform one of two actions at every time step. A

riminal may either burglarise the site they currently occupy, or move to a neighbouring one. Burglaries are modelled as
andom events occurring with probability ps(t) = 1− exp[−As(t)]. Whenever site s is subject to crime, the corresponding
riminal is removed from the lattice, representing the tendency of actual burglars to flee the location of their crime. To
alance this removal, new criminal agents are generated at a rate Γ uniformly at random on the lattice. If site s is not
urglarised, the criminal will move to one of its neighbouring sites with probability 1−ps(t) = exp[−As(t)]. The movement
s thus modelled as a biased random walk so that site s′ is visited with probability

qs→s′ (t) =
As′ (t)∑
s′ As′ (t)

, (81)

here the sum runs over all neighbouring sites of s. The position of the criminals and the biasing attractiveness field in
qs. (79) and (80) create non-linear feedback loops which give rise to complex patterns of aggregation that are reminiscent
f actual crime hotspots, similar to those depicted in Fig. 41. The model actually displays four different regimes of As(t),
s shown in Fig. 3 of Ref. [676], all of which apply to different realities of residential burglary.
A continuum version of the above-described discrete model has also been introduced [692,693], the bifurcation analysis

f which can also outline suggestions for crime hotspot suppression and policing. According to Ref. [676], the continuum
ersion of the dynamics of the attractiveness field takes the form

∂B
=
ηD
∇

2B− ωB+ ϵDρA, (82)

∂t z
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Fig. 42. Failure and success of crime hotspot suppression. In the upper row, crime hotspots emerge as a supercritical bifurcation. When subjected to
suppression, they simply displace but never vanish completely. New hotspots always emerge in positions adjacent to the original ones. In the lower
row, crime hotspots emerge via a subcritical bifurcation. When subjected to suppression, the hotspot gradually vanishes without giving rise to new
hotspots in nearby locations. The colour maps encode the time evolution of the attractiveness field B. We refer to Ref. [692] for further details.
ource: Reprinted figure from Ref. [692].

here D = ℓ2/δt , ϵ = δt , and ρ(s, t) = ns(t)/ℓ2. The continuum equation for criminal number density, denoted as ρ, is
iven by

∂ρ

∂t
=

D
z
∇⃗

[
∇⃗ρ −

2ρ
A
∇⃗A
]
− ρA+ γ , (83)

here offenders exit the system at a rate ρA, and are reintroduced at a constant rate per unit area γ = Γ /ℓ2. Eqs. (82)
nd (83) are coupled partial differential equations that describe the spatio-temporal evolution of the attractiveness B and

the offender population ρ, and they belong to the general class of reaction–diffusion equations that frequently exhibit
spatial pattern formation [694].

In order to study the effects of police intervention, the crime rate ρA in Eq. (83) is set to zero at given hotspot locations
and for a given time frame [692]. Calculations then show that only subcritical crime hotspots may be permanently
eradicated by means of a suitable suppression mechanism, while supercritical hotspots are only displaced but never fully
removed from the population (Fig. 42).

The mathematical models describing the nucleation and diffusion of crime hotspots can be upgraded to include spatial
disorder, as well as approaches to dynamically adapt suppression measures to evolving crime patterns, or to choose from
different deployment strategies and more rigorous analysis [695–699]. Along similar lines, related research includes the
consideration of dynamical systems that take into account the competition between citizens, criminals, and guards [700],
the effects of socio-economic classes and changes in police efficiency and resources allocated to them [701], the impact
of imprisonment and recidivism [702], and the possibility of self-defence of communities against crime [703].

8.3. Crime as a self-exciting point process

Certain types of crime exhibit similar space and time clustering as earthquake activity. Examples include burglary,
gang violence, and property crime. Just like clustering patterns observed by seismologists indicate that the occurrence of
an earthquake is likely to induce a series of aftershocks near the location of the initial event, so are these types of crime
likely to reoccur near initially victimised spots, thus leading to crime swarms and clusters, and lending themselves to the
application of seismology methods to model criminal activity. The self-exciting point process is one such method [704].

A space–time point process is defined by a collection of points with location (x, y) at time t , where a certain event took
place. This event can be an earthquake, a lightning strike, or a criminal act. The process is then described by a conditional
rate λ(x, y, t), which gives the occurrence rate at location (x, y) in dependence on the history H(t) of the point process up
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o time t [705]. There is typically an initial or parent crime, akin to a parent earthquake, which generates several follow-
p or offspring crimes, akin to aftershocks. The follow-up crimes are described by a triggering function g(x, y, t), which
epends on previous criminal activity, but with an amplitude that decreases with increasing spatio-temporal distance from
t. In modelling crime, a multiplicative factor ν(t) for the background activity is also needed, which takes into account
luctuations due to weather, seasonality, or day time. Decades of research in seismology have lead to well-defined forms
or above functions. In crime, on the other hand, non-parametric methods and calibrations using data are necessary for
heir estimation. For details we refer to the seminal work by Mohler et al. [704].

The self-exciting point process has been applied and tested on urban crime using residential burglary data from the
os Angeles Police Department [704]. Traditionally, crime hotspot maps were generated by means of a pre-assigned fixed
ernel, using previous crime occurrences as input [706]. However, the point process methodology has been found to
ield better results, and this also for types of crime where near-repeat effects do not play such a prominent role, like
obberies and car theft. The main source of this superiority has been attributed to a better balance between exogenous
nd endogenous contributions to crime rates and to the method relying on direct inference from data, rather than on an
mposition of hotspot maps using a pre-assigned fixed kernel.

Self-exciting point processes have also been used to analyse temporal patterns of civilian death reports in Iraq [707].
imilarly to urban crimes, the rate of violent events has been partitioned into the sum of a Poisson background rate and a
elf-exciting component in which previous bombings or other episodes of violence generate a sequence of offspring events
ccording to a Poisson distribution. The study showed that point processes are well suited for modelling the temporal
ynamics of violence in Iraq.
The geographic profiling of criminal offenders can also be made using self-exciting point processes in order to estimate

he probability density for the home base of a criminal who has committed a given set of spatially distributed crimes.
arget selection from a hypothetical home base is informed by geographic inhomogeneities such as housing types, parks,
reeways or other physical barriers, as well as directional bias and preferred distances to crime [708]. These techniques
ave also been used to model intra-gang violence that results from retaliation after an initial attack [699].
Future research along this line could be aimed at further refining point process models towards crime type and local

eography. Doing so would facilitate the application of this promising methodology.

.4. Social dilemmas of crime

The prisoner’s dilemma game (see Section 5.1) is amongst the most frequently employed theoretical frameworks to
tudy pairwise social dilemmas [709]. In the prisoner’s dilemma game, two players should simultaneously decide whether
o cooperate or defect, and then based on their choices receive payoffs accordingly. A social dilemma arises because
utual cooperation yields the highest collective payoff, but the payoff for a defector is higher if the opponent decides

o cooperate. Mutual defection is therefore the only rational outcome if we assume that both players act in self-interest
o as to maximise their individual payoffs. In the long run this leads to the proliferation of defection and ultimately to
he ‘tragedy of the commons’ [34,710], where common resources are lost to societies due to overexploitation and lack of
hared social responsibility.
While criminal behaviour does not map directly to the prisoner’s dilemma game, the framework of evolutionary games,

nd evolutionary social dilemmas in particular [234,291], lends itself very well to modelling crime. In this context, social
rder can be considered as the public good that is threatened by criminal activity, with competition arising between
riminals and those trying to prevent crime. However, committing crimes is not necessarily equivalent to defection,
ecause unlike defectors, criminals may actively seek to harm others. Likewise, fighting crime is often more than just
ooperating, in particular because it may involve risk that goes beyond contributing some fraction of one’s wealth into
common pool. Thus, a more deliberate formulation of competing strategies may elevate, and is in fact needed for, the
ccuracy of the modelling approach.
With the above considerations in mind, an adversarial evolutionary game with four competing strategies, as shown in

ig. 43, has been proposed in Ref. [711]. The game entails informants (I) and villains (V ) as those who commit crimes,
s well as paladins (P) and apathetics (A) as those who do not. Informants and paladins actively contribute to crime
batement by collaborating with authorities whenever asked to do so. All players may witness crimes or be the victims
f crime, in agreement with victimisation surveys [712]. Thus, paladins are model citizens that do not commit crimes
nd collaborate with authorities. At the other end of the spectrum we have the villains, who commit crimes and do not
eport them. Somewhere in between we have informants who report on other offenders while still committing crimes, and
pathetics who neither commit crimes nor report crimes of others. The lack of active cooperation in apathetics may be due
o inherent apathy, fear of retaliation, or ostracism from the community at large. Apathetics are similar to second-order
ree riders in the context of the public goods game with punishment [713,714], in that they cooperate at first order by
ontributing to the public goods as in not committing crimes, but defect at second order by not punishing offenders.
At each round of the game a criminal is selected randomly from the V + I pool together with a potential victim from

he N − 1 remainder of the population. The two selected players begin the game with a unitary payoff. After a crime
ccurs, the criminal player increases their payoff by δ, while the victim looses δ. If the victim is either an apathetic or
villain, the crime is not reported to the authorities and therefore successful: the victim’s payoff is decreased to 1 − δ
nd the victimiser’s is increased to 1 + δ. If, on the other hand, the victim is a paladin or an informant, the crime is
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Fig. 43. Crime as a four-strategy evolutionary game, comprising informants, paladins, villains, and apathetics. The four strategies are defined by their
propensities to commit crimes and serve as witnesses in criminal investigations. Arrows between strategies indicate the number of possible game
pairings and outcomes in which the update step leads to a strategy change. For example, there are two ways by means of which a villain can be
converted into a paladin. Circular arrows within each strategy quadrant indicate updates such that player strategies remain unchanged.
Source: Reprinted figure from Ref. [711].

reported to the authorities and an investigation begins. For this, a subset M of the N − 2 remaining players is drawn,
and the victimiser is convicted with probability w = (mP + mI )/M , where mP and mI are the number of paladins and
informants within M . In case of a conviction, the victim is refunded δ, and the payoff of the criminal becomes 1−θ , where
θ determines the punishment fine. With probability 1−w the crime is left unpunished, in which case the criminal retains
1+ δ, while the victim’s payoff is further decreased to 1− δ− ϵ, where ϵ is due to retaliation of the accused who, having
escaped punishment, feels empowered in their revenge. Other interpretations of ϵ may be damages to personal image or
credibility, or loss of faith in the system after making an accusation that is unsubstantiated by the community. Notably,
in the latter case, the choice of reporting one’s victimisation to authorities may be even more detrimental to the witness
than the original criminal act (ϵ > δ), which is common in societies that are heavily marred by war, by mafia, or drug
cartels, where very few people will serve as witnesses to crimes.

Parameter values of δ, θ , and ϵ are always used such that all payoffs remain positive. At the end of each round of
the game, the player with the smaller payoff changes its strategy according to proportional imitation [715]. In particular,
if the victimiser is emulated, the loser simply adopts the victimiser’s strategy and ends the update as either a villain
or an informant. If the victim is emulated, the loser mimics the victim’s propensity to serve as a witness but adopts a
noncriminal strategy regardless of the victim’s. In this case, the update results with the loser becoming either a paladin
or an apathetic (see Fig. 43 for details).

Simulations of the four-strategy evolutionary game described above reveal that informants are key to the emergence of
utopia—a crime-free society. Indeed, a crime-dominated society can become crime-free by imposing an optimal number
of informants I0 at the onset of the game. The dynamics depends on the chosen parameter values. A utopia may be elusive
in extremely adversarial societies in which initially we have high numbers of villains and apathetics. However, by deriving
a deterministic version of the above described game [711], it is possible to show that if there are at least some informants
initially present in the population (I0 > 0), the final state is always utopia regardless of δ, θ , and ϵ (Fig. 44).

While beneficial, the presence of informants may come at a cost, either in training an undercover informant, or
in convincing a criminal to collaborate with authorities, or in tolerating the criminal acts that informants will keep
committing. One may thus consider an optimal control problem [716] to investigate the active recruitment of informants
from the general population in terms of associated costs and benefits. Higher recruitment levels may be the most beneficial
in abating crime, but they may also be prohibitively expensive. The optimal control problem was expressed via three
control functions subject to a system of delay differential equations. The research showed that optimal recruitment
strategies change drastically as parameters and resource constraints vary, and moreover, that more information about
individual player strategies leads only to marginally lower costs [716].

The important role of informants within the reviewed adversarial evolutionary game [711] has also been studied by
means of human experiments in [717]. The goal was to test whether, and if yes to what degree, informants are actually
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Fig. 44. The emergence of utopia in a society with informants. All trajectories with I0 > 0 evolve towards a crime-free state. The ternary diagram
hows unstable fixed points in light red, unstable fixed lines in thick light red, stable fixed lines in thick dark blue, and trajectories beginning (or
nding) along various eigenvectors as thick green arrows. The dystopian fixed point d and the saddle point s are unstable to increases in I , so that

the only attracting final states for I0 > 0 are those utopias with P > Pc . These results were obtained with δ = 0.3, θ = 0.6, and ϵ = 0.2.
Source: Reprinted figure from Ref. [711].

critical for crime abatement as predicted by theory. Remarkably good agreements between simulations and laboratory
experiments have been observed for different parameterisations of the game, thus lending full support to the approach.

In addition to social dilemmas, the evolution of crime can also be studied by means of the inspection game [718].
Rational choice theories predict that increasing fines should diminish crime [686]. However, a three-strategy inspection
game in which, in addition to criminals (C) and punishing inspectors (P), ordinary individuals (O) are present leads
to significantly different and counterintuitive outcomes [719,720]. The O players neither commit crimes nor do they
participate in inspection activities. They represent the masses that catalyse rewards for criminals and costs for inspectors.
Ordinary individuals receive no bonus payoffs upon encountering inspectors or their peers. Only when paired with
criminals do they suffer the consequences of crime in form of a negative payoff −g ≤ 0. Criminals, on the other hand,
gain the reward g ≥ 0 for committing a crime. When paired with inspectors, criminals receive a payoff g − f , where
f ≥ 0 is a punishment fine. When two criminals are paired none of them receive any benefits. Inspectors, on the other
hand, always have the cost of inspection, c ≥ 0, but when confronted with a criminal, an inspector receives the reward
r ≥ 0 for a successful apprehension. This game was studied via Monte Carlo simulations on a square lattice with periodic
boundary conditions where each lattice site is occupied either by a criminal, a punishing inspector, or an ordinary citizen.
The game evolves by first randomly selecting player s to play the inspection game with their four nearest neighbours,
yielding the payoff Ps. One of the nearest neighbours of player s, s′, is then chosen randomly to play the game with their
four nearest neighbours, leading to Ps′ . Finally, player s′ imitates the strategy of player s with probability

q =
1

1+ exp
(

Ps′−Ps
K

) , (84)

here K determines the level of uncertainty in the strategy adoption process. The chosen form in Eq. (84) corresponds
o the empirically supported multinomial logit model [721], which for two decision alternatives becomes the Fermi
unction [302,722]. A finite value of K accounts for the fact that better performing players are readily imitated, although
t is possible to adopt a strategy by player who is performing worse, for example due to imperfect information or errors
n decision making.

Monte Carlo simulations reveal that the collective behaviour of the three-strategy spatial inspection game is indeed
omplex and counterintuitive, with both continuous and discontinuous transitions between different phases. Here a phase
s either a single-strategy or a multi-strategy stable state that is uninvadable by any other combination of strategies or a
ingle strategy. Usually, evolutionary games with more than two competing strategies require the stability of subsystem
olutions be performed for the accurate and correct determination of phase transitions [723]. A subsystem solution can
e formed by any subset of all possible strategies. The winner between two subsystem solutions can be determined by
he average moving direction of the invasion front that separates them, yet it is crucial that the competing subsystem
olutions are characterised by a proper composition and spatio-temporal structure before the competition starts. In this
ay the three-strategy inspection game also yields a cyclic dominance phase [259]. This phase emerges spontaneously
ue to pattern formation and is robust against initial condition variations, and in which all three competing strategies
oexist.
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Taken together, these results indicate that crime should be viewed not only as the result of offending actions committed
by certain individuals, but also as the result of social interactions between people who adjust their behaviour in response
to societal cues and imitative interactions. The emergence of crime thus should not be ascribed merely to the ‘criminal
nature’ of particular individuals, but also to the social context, the systems of reward and punishment, the level of
engagement of the community, as well as to the interactions between individuals. This more comprehensive view of
crime may have relevant implications for policies and law enforcement.

8.5. Criminal networks

The goal of this section is to review how methods of physics, and in particular of network science [273,282,422,425,
426,439,724,725], can contribute to better understanding organised crime [726], such as drug cartels, the formation of
gangs, or political corruption networks [727].

Criminal structures like the Italian Mafia [728], street gangs, or drug cartels [729] often emerge when fear and despair
become so ingrained within a society that the social norm is simply to accept crime. In such a case, witnesses and even
victims of crime often choose not to cooperate with law enforcement in the prosecution of criminals. Instead, people
sometimes try to fit in, although acquiescence and acceptance are usually slippery slopes towards later forms of active
engagement. Ultimately this thus leads to the growth of a criminal network.

Criminological research has identified a number of factors that may promote the regional development of crime, includ-
ing unemployment [730,731], economic deprivation [732], untoward youth culture [733], failing social institutions [734],
issues with political legitimacy [732], as well as lenient local law enforcement strategies [735,736], to name the most
prominent examples. Policies aimed at reducing recruitment into organised crime have also been incorporated in agent-
based models with a multiplex-network structure to capture the effects of household, kinship, school, work, friends, and
co-offending social relations [737]. Recent work on declining criminal behaviour in the U.S. suggests that trends in the
levels of crime may be best understood as arising from a complex interplay of a rich myriad of said factors [738,739], while
most recent empirical data indicate that social networks of criminals have a particularly strong impact on the occurrence
of crime—the more the criminals are connected into networks, the higher the crime rate [740,741].

The assumption that there is a network structure behind organised crime invites the idea that removing the leader, or
the most important hubs of the network [742], will disrupt the organisation sufficiently to hinder or at least heavily disrupt
criminal activity. Law enforcement agencies thus often attempt to identify and arrest the ‘ring leader’ of an identified
criminal organisation. But even if successful, such operations rarely have the desired effect. A recent study analysing
cannabis production and distribution networks in the Netherlands shows that this strategy may in fact be fundamentally
flawed [743]. All attempts towards network disruption analysed in the study proved to be at best unsuccessful (Fig. 45).
At worst, they had the opposite effect in that they have increased the efficiency of the network. The latter was achieved
by means of nifty reorganisations, such that the attack ultimately made these networks stronger and more resilient to
future such attempts. By combining computational modelling and social network analysis with unique criminal network
intelligence data from the Dutch Police, Duijn et al. [743] have concluded that criminal network interventions are likely
to be effective only if applied at the very early stages of network growth, before the network gets a chance to organise,
or to reorganise to maximum resilience.

Gang rivalries have been studied by means of agent-based simulations in conjunction with data from the Hollenbeck
policing division of the Los Angeles Police Department [744]. The details of the model were as follows. Each agent is
part of an evolving rivalry network that includes past interactions between gang members. Individuals perform random
walks where the jump length is drawn from a truncated Lévy distribution and where bias in the direction of rivals is
included. Gang home bases, historical turfs, and geographic details that may limit movement such as freeways, rivers,
and parks were all taken into account in the simulated biased Lévy walk network. Typical gang behaviour, as inferred
from the criminology literature, has also been considered. Using metrics from graph theory, it was possible to show that
simulated biased Lévy walk network modelling is in fact the most accurate in replicating actual gang networks. In Fig. 46,
we reproduce a picture from [744], showing simulated results and an actual map of violent crimes in Hollenbeck, which
are indeed in very good agreement. This approach can also be used to infer unknown rivalry interactions, in particular
because the simulated biased Lévy walk network converges to stable long-term configurations. The authors of Ref. [744]
have also noted that the method is portable and can be applied to other geographical locations, offering insight into gang
rivalry distributions even in the absence of data. The method may also be extended to test sociological concepts related
to gang interactions such as territoriality and allegiances within gangs.

Police department field interview cards were later used to study the behavioural patterns of roughly 748 suspected
gang members who were stopped and questioned in Hollenbeck [745]. The goal was to identify any social communities
among street gang members by creating a fully-connected ad hoc network where individuals represent nodes and links
encode geographical and social data. Individuals stopped together were assumed to share a friendly or social link and
the distance di,j between stop locations of individuals was recorded. This information was used to determine the affinity
matrix Wi,j associated with the network. Its entries are composed of a term that decays as a function of di,j, representing
eographical information, and of an adjacency matrix whose entries are zero or one depending on whether individuals
ere stopped together or not. The latter represents social information. By using spectral clustering methods, distinct
roups were then identified and interpreted as distinct social communities among Hollenbeck gang members. These

lustered communities were finally matched with actual gang affiliations recorded from the police field interview cards.
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Fig. 45. A criminal network in the Netherlands involved in cannabis cultivation. Nodes represent the actors that are needed for successful production
nd distribution of cannabis. The network is highly resilient to targeted disruption strategies. Even worse, research shows that perturbations may
ead to reorganisation towards an even more robust and resilient network. Node sizes represent the number of actors fulfilling the associated role,
nd link thickness corresponds to the total number of links between actor groups.
ource: Reprinted figure from Ref. [743].

To evaluate the quality of identified clusters, the authors of Ref. [745] used a purity measure, defined as the number
f correctly identified gang members in each cluster divided by the total number of gang members. Results showed that
sing geographical information alone leads to clustering purity of about 56% with respect to the true affiliations of the
48 individuals taken in consideration. Adding social data may improve purity levels, especially if this data is used in
onjunction with other information, such as friendship or rivalry networks. These results may be used as a practical tool
or law enforcement in providing useful starting points when trying to identify possible culprits of a gang attack.

An interesting physics-inspired approach to modelling gang aggregation and territory formation by means of an
sing-like model has also been proposed in Ref. [746]. In particular, otherwise indistinguishable agents were allowed
o aggregate within two distinct gangs and to lay graffiti on the sites they occupy. Interactions among individuals were
ndirect and occurred only via the graffiti markings present on-site and on nearest-neighbour sites. Within this model,
ang clustering and territory formation may arise under specific parameter choices, and a phase transition may occur
etween well-mixed and well separated, clustered configurations. In the mean-field version of the model, parameter
egimes were identified where the transition is first or second order. In all cases, however, these clustering transitions
ere driven by gang-to-graffiti couplings since direct gang-to-gang interactions were not included in the model. The role
f graffiti and vandalism has been reviewed also by Thompson et al. [747], who analysed the urban-rail transportation,
here graffiti have significant impact on expenditure, timely operation of services, and on passenger perception of safety.
Methods of network science are also well suited to study a more subtle form of crime, namely political corruption.

ndeed, corrupt behaviour in politics limits economic growth [748–752], embezzles public funds [753], and promotes
ocio-economic inequality in modern democracies [750,754]. The World Bank estimates that the annual cost of corruption
xceeds 5% of the global Gross Domestic Product, which amounts to $2.6 trillion USD, with $1 trillion USD being paid in
ribes around the world. In another estimation by the non-governmental organisation Transparency International, corrupt
fficials receive as much as $40 billion USD bribes per year in developing countries, and nearly two out of five business
xecutives have to pay bribes when dealing with public institutions. Despite the difficulties in trying to estimate the
ost of global corruption, there is consensus that massive financial resources are lost every year to this cause, leading to
evastating consequences for companies, countries, and the society as a whole.
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Fig. 46. Reconstructing a gang network from data with the biased Lévy walk network method. Interactions between agents simulated using the
biased Lévy walk network method are shown left, while the actual density map of gang-related violent crimes in Hollenbeck between 1998 and
2000 is shown right. Thick lines represent major freeways crossing the city.
Source: Reprinted figure from Ref. [744].

The shortage of studies aimed at understanding the finer details of corruption processes is in considerable part due
o the difficulties in finding reliable and representative data about people who are involved [755]. On the one hand, this
s certainly also because those who are involved do their best to remain undetected, but also because information that
oes leak into the public is often spread over different media outlets offering conflicting points of view. In short, lack of
nformation and misinformation [756] both act to prevent in-depth research.

To overcome these challenges, Refs. [727,757,758] have employed datasets that allow in-depth insights into corruption
candals in Brazil and Mexico. The Brazilian dataset [727] in particular provides details of political-corruption activities
f 404 people who were from 1987 to 2014 involved in 65 important and well-documented scandals. Notably, Brazil has
een ranked 79th in the Corruption Perceptions Index, which surveyed 176 countries in its 2016 edition, which places it
ehind African countries such as Suriname (64th) and Ghana (70th), and way behind its neighbouring countries such as
ruguay (21th) and Chile (24th). Methods of time series analysis and network science have been applied to reveal the
ynamical organisation of political corruption networks in Brazil, which in turn reveals fascinating details about individual
nvolvement in particular scandals, and it allows the prediction of future corruption partners with useful accuracy [727].
esearch showed that the number of people involved in corruption cases is exponentially distributed, and that the time
eries of the yearly number of people involved in corruption has a correlation function that oscillates with a four-year
eriod. This indicates a strong relationship with the changes in political power due to the four-year election cycle. By
inking together people that were involved in the same political scandal in a given year, it was also possible to create a
etwork representation of people that took part in corruption scandals (Fig. 47). The network has an exponential degree
istributions with plateaus that follow abrupt variations in years associated with important changes in the political powers
overning Brazil. By maximising the modularity of the latest stage of the corruption network, we can observe statistically
ignificant modular structures that do not coincide with corruption cases but usually merge more than one case.
Based on this research, it is also possible to apply different algorithms for predicting missing links in corruption

etworks. By using a snapshot of the network in a given year, Ribeiro et al. [727] have tested the ability of these algorithms
o predict missing links that appear in future iterations of the corruption network. Obtained results show that some of
hese algorithms have a significant predictive power in that they can correctly predict missing links between individuals
n the corruption network, which could be used effectively in prosecution and mitigation of future corruption scandals.

Lastly, we mention promising efforts to detect criminal organisations [760] and to predict crime [761] based on
emographics and mobile data. It is known that the usage of communication media such as mobile phones and

nline social networks leaves digital traces, and research shows that this data can be used successfully for detecting
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Fig. 47. Network representation of people involved in corruption scandals in Brazil from 1987 to 2014 (from Ref. [727]). Each vertex represents a
erson and the edges among them occur when two individuals appear at least once in the same corruption scandal. Node sizes are proportional to
heir degrees and the colour code refers to the modular structure of the network, as obtained with the network-cartography approach [759]. There
re 27 significant modules, and 14 of them are within the giant component indicated by the red dashed loop.
ource: Reprinted figure from Ref. [727].

nd characterising criminal organisations. We hope that this section shows that, with the help of network science
nd community detection [423,424], law enforcement agencies could better understand hierarchies within criminal
rganisations, more reliably identify members who play central roles in them, as well as obtain valuable information
n connections among different sub-groups and their respective responsibilities in the illicit undertakings.

.6. Rehabilitation and recidivism

The final, and perhaps even the most important, stage in treating crime is the rehabilitation of past offenders. Only if
ast offenders acknowledge and understand their wrongdoing, and only if after paying their dues they can be integrated
uccessfully back into society, can we consider the problem solved. Otherwise, we are patching the problem of crime with
emporary solutions that in the long run do not actually lead to better societal outcomes. Sadly, the available data indicate
hat it is in these later stages of crime abatement where societies fail the most, and in particular fail to give offenders a
econd chance at a new start in life, which often pushes them, or at least provides a nudge, into recidivism.
The dilemma that commonly shows in such cases is often referred to as the ‘stick versus carrot’ dilemma. In other

ords, should rehabilitation programs focus on punishing wrongdoing (stick), or should they focus on generously
ewarding steps of progress along the way (carrot)? There is ample research in evolutionary game theory that addresses
his dilemma in the context of cooperation in the public goods game [34]. Notably, there is no simple conclusion or
esolution of the dilemma, due to the fact that the outcome depends substantially on the context and other circumstances
hat are taken into account in the model. Theoretically at least, punishment seems to be more promising simply because
t can stop once the target behaviour is achieved. Rewarding, on the other hand, often creates a self-enforcing loop in that
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he more progress is achieved, the higher the rewards that are expected to uphold the good trend. However, research
n punishment also emphasises the very negative consequences of antisocial punishment and with it related concerns to
se sanctions as a means to promote collaborative efforts and to raise social welfare [762,763]. Evidence suggesting that
ewards may be as effective as punishment and lead to higher total earnings without potential damage to reputation [764]
r fear from retaliation [318] has also been mounting. Moreover, Rand and Nowak [765] provide firm evidence that
ntisocial punishment renders the concept of sanctioning ineffective, and argue further that healthy levels of cooperation
re likelier to be achieved through less destructive means.
Regardless of whether the burden is placed on punishment [714,766–768] or reward [769–774] or both [775], the

roblem with both actions is that they are costly. Cooperators who abstain from either punishing or rewarding therefore
ecome second-order free riders, and they can seriously challenge the success of sanctioning as well as rewarding. In
he context of rehabilitating criminals, the question is how much punishment for the crime and how much reward for
schewing wrongdoing in the future is in order for optimal results, as well as whether these efforts should be placed on
ndividuals or institutions [776,777], all the while also assuming of course that the resources are limited [778,779].

To improve our understanding of these important considerations, Berenji et al. [780] have introduced an evolutionary
ame to study the effects of carrot and stick intervention programs on criminal recidivism. Their model assumes that each
layer may commit crimes and may be arrested after a criminal offence. In the case of a conviction, a criminal is punished
nd later given resources for rehabilitation in order to prevent recidivism. After their release into society, players may
hoose to continue committing crimes or to become paladins (P). The later option is an optimal outcome, indicating they
have been permanently reformed. Players are given r chances to become paladins. If after the rth arrest and rehabilitation
an individual relapses into crime it is marked as an unreformable (U). States P and U are sinks, meaning they mark the
end of the evolutionary process for each particular individual. The P/U ratio is therefore a natural order parameter, such
that societies with a lot of crime are characterised by P/U → 0 while crime-free societies are characterised by P/U →∞.
he main parameters of the game are the resources allocated for rehabilitation h, the duration of the rehabilitation τ , and
he severity of punishment θ .

Simulations of this model have been performed which include the constraint hτ + θ = C , where C is the total amount
f available resources, and where hτ is the part of these resources that are spent on rehabilitation—the carrots—while θ
s the remainder, spent on punishment—the sticks. Because C is finite, increasing one effort decreases the other, hence
he ‘stick versus carrot’ dilemma. As C increases, the ratio P/U will increase as well (Fig. 48). This means that with more
eneral resources available, the conversion to paladins becomes more efficient. For a given value of C , the most successful
trategy in reducing crime, warranting the highest P/U ratio, is to optimally allocate resources so that after being punished,
riminals experience impactful intervention programs, especially during the first stages of their return to society. Indeed,
he upper right panel of Fig. 48 reveals that for the case of N = 400 players, the optimal parameter values are h = 0.3,
= 1.5 and θ = 0.35, which indicates that the available resources C need to be balanced so that there is enough stick (a
ufficiently high θ ) and enough carrots (a sufficiently high h) for a long enough time (a sufficiently high τ ). Within this
odel, excessively harsh or lenient punishment is less effective than when the two are well-balanced. In the first case,

here are not enough resources for rehabilitation left, in the second, punishment was not strong enough to discourage
riminals from committing further crimes upon release to society.
The findings reviewed in this section have important sociological implications, and they provide useful guidance on

ow to minimise recidivism while maximising social reintegration of criminal offenders. At the same time, we note that
esearch dedicated specifically to rehabilitation and recidivism at the interface of physics and criminology is rather sparse,
o that this is certainly an avenue worth exploring more prominently in the future, especially given its importance in
ssuring long-term success of prior crime prevention strategies.

.7. Rosy outlooks for less crime

The physics of crime is a developing and vibrant field, with ample opportunities for novel discoveries and improve-
ents of existing models and theory. The model of crime hotspots, for example, could be upgraded to account for the
istribution of real estate that better reflects the layout of an actual city. It would then be interesting to learn whether
nd how the introduced heterogeneity in the interaction network affects the emergence and diffusion of hotspots. If the
rime is no longer residential burglary but crime that involves moving targets, further extensions towards social networks
hose structure varies over time also become viable. If crime is treated as an evolutionary game the possibilities for
pgrades range from increased strategic complexity to the integration of more realistic, possibly co-evolving, interaction
etworks that describe human interactions. In the realm of adversarial evolutionary games, it would be interesting to
tudy the impact of different strategy adoption rules, in particular because imitation-based rules are frequently contested
ith best-response dynamics in the realm of human behaviour. In addition to the outlined extensions and upgrades of
xisting models, it is also possible to envisage new classes of models, especially such that would build more on self-
rganisation and growth from first principles to eventually arrive at model societies with varying levels of crime. Here
he hierarchical growth of criminal networks involving persuasion to join an organisation and fidelity to either committing
r not committing crimes could be fertile starting grounds.
As we hope this section shows, the physics of crime can provide useful insights into the emergence of criminal

ehaviour, as well as indicate effective policies for crime mitigation. We also hope the reviewed results may be useful to
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Fig. 48. Minimising recidivism requires carefully balanced rehabilitation programs, where both punishment and reward play a crucial role. Either
neglecting punishment in favour of generous rehabilitation or vice versa will ultimately fail in successfully reintegrating offenders into society.
Depicted is the ratio between paladins and unreformables P/U in dependence on the amount of resources for rehabilitation h, as obtained for
different values of the duration of intervention τ (see top of individual graphs). In all cases the severity of punishment θ is adjusted so that
hτ + θ = C (see legend in the top left graph), taking into account the fact that available resources are finite. The upper right graph reveals that the
optimal parameter values are h = 0.3, τ = 1.5, and θ = 0.35, which indicates that the most successful strategy is to allocate the limited resources
so that after being punished, criminals experience impactful intervention programs, especially during the first stages of their return to society.
Source: Reprinted figure from Ref. [780] under the Creative Commons Attribution 4.0 International (CC BY 4.0).

police and other security agencies in developing better and more cost-effective crime mitigation schemes while optimising
the use of their limited resources. Indeed, the physics of crime has far-reaching implications, and we emphasise that
the time is ripe for these insights to be used in synergy with traditional crime-related research to yield more effective
crime mitigation policies. Many examples of ineffective policies clearly highlight that an insufficient understanding of the
complex dynamical interactions underlying criminal activity may cause adverse effects from well-intended deterrence
strategies. A new way of thinking, maybe even a new kind of science for deterring crime is thus needed—in particular one
that takes into account not just the obvious and similarly linear relations between various factors, but one that also looks
at the interdependence and interactions of each individual and its social environment. One then finds that this gives rise
to strongly counterintuitive results that can only be understood as the outcome of emergent, collective dynamics. This is
why physics can make important and substantial contributions to the better understanding and containment of crime.

The aim here is to highlight valuable theoretical resources that can help us bridge the gaps between data and models
of criminal activity. Employing these resources should certainly contribute to rosier outlooks for human societies with
less crime.

9. Migration

Incoming and outgoing migration, respectively called immigration and emigration, pose substantial challenges to
society. Unsuccessful integration of immigrants, for instance, often leads to cultural and socio-economic segregation
that, if unchecked, may trigger unrest and ethnic clashes. The explosiveness of such situations reveals that interethnic
tolerance is subject to cascades and tipping points as the harbingers of radical political transformations. Once a tipping
point is crossed, tolerance typically evaporates fast on its own, but the transformation can further be catalysed by
shocks in the form of economic crises or pandemics. Fortunately, concepts and methods studied in statistical physics
and its relatives, complexity and network sciences, can help develop our quantitative understanding of large-scale social
dynamics. Examples in this context include, but are not limited to, tipping points and phase transitions [673,781,782],
cascade failures [266,783], resilience or robustness [742,784], and recoveries or repairs [785,786].

When migrations take place, numbers matter. The European Union (EU), for example, handled in an orderly manner
about 300,000 asylum seekers yearly up until 2014, but as that number quadrupled in two short years (Fig. 49), a deep
crisis emerged, prompting prominent political figures to prognosticate an end to the EU as a political project [787]. Some
members of the Schengen Zone responded to the crisis by invoking the ’exceptional circumstances’ provision of the Article
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Fig. 49. Main corridors and destination countries during the European migrant crisis. The crisis started in 2014, peaked in 2015, and was declared
ver in 2019. Germany received by far the largest number of asylum requests in 2015, followed by Hungary, Sweden, Austria, Italy, and France
vertical bars).
ource: Reprinted figure from Ref. [790].

6 of the EU’s Borders Code to unilaterally reinstate internal border controls, while others chose to erect barbed-wire
ences along borders with their non-Schengen neighbours. Without a clear solution in sight, the debate on the subject
olarised around two ’ideological blackmails’; one side argued that the EU’s borders must stay fully opened to refugees,
hereas the other side argued that the borders must be swiftly and completely closed [788]. The crisis furthermore served
s a platform for the rise of right-wing political populism throughout Europe [535]. That a large increase in migrant inflows
an provoke such a knee-jerk reaction in terms of strengthening border controls and embracing populist policies suggests
onditional—albeit heterogeneous—tolerance levels towards diversity of peoples, values, lifestyles, etc. Indeed, the general
opulation seems to heed Karl Popper’s maxim that unconditional tolerance must lead to the demise of tolerance [789].
In the language of thermodynamics, and as evidenced by the existence of international borders, human society is far

rom an equilibrium state. Maintaining a steady non-equilibrium state requires a costly investment of energy, which is
recisely the cost that the European countries attempted to avoid by forming the EU and the Schengen Area. The recent
igrant crisis, however, is a stark reminder that freeing trade and the movement of people demands utmost care to
armonise relations not only between political elites who orchestrate agreements, but also on the microscopic scale of
ndividual interactions. It is in this latter context that the economist Durlauf argued that statistical mechanics can inform
esearch in social sciences [791]. The basic idea of statistical mechanics—that every atom is influenced by other atoms
ven beyond just the immediate neighbours—is similar to the ideas of social science that an individual’s decisions depend
pon the decisions of others. This, in turn, has led to an intriguing possibility that a common mathematical formalism
nderlies natural and social phenomena [792–794].
When people migrate, be it for personal safety (refugees) or in search of better life (economic migrants), they are forced

o establish new contacts and friendships, as well as acclimatise to a new language and culture as a part of an integration
rocess [795]. Individual socio-economic interactions that take place during this process often pose social dilemmas that
nvolve balancing selfish interests and common good [225,796]. Evolutionary game theory offers a formal framework
o resolve social dilemmas, bringing into focus five mechanisms that help ‘lubricate’ interactions between individuals.
hese mechanisms include three types of reciprocities, direct, indirect, and network, and two types of selection, kin and
roup [234]. Intriguingly, evolutionary game theory has maintained a close tie to statistical physics ever since the discovery
f game-driven spatial chaos in structured populations [244,797]. Later, this has led to an even stronger tie to network
cience, especially via the emergence of network reciprocity [242] and subsequent discoveries that put social networks
t the forefront of resolving key social dilemmas [250,301].
We have, heretofore, identified statistical physics, complexity and network sciences, and evolutionary game theory as

ome of the fields that could help model large-scale social dynamics due to migrations. Incidentally, the concept of phase
ransitions has exerted tremendous influence on all these fields [798–801], begging the question as to what causes such
idespread fascination with this concept. It has become increasingly evident that, aside from physical systems such as
ater and ferromagnetic materials, many dynamical complex systems also possess critical thresholds—called tipping or
rossover points—near which the system undergoes a swift transition from one state to another [802]. Among the famous
xamples of this are ecosystems [803], but similar arguments have been made for stock-market crashes and political
evolutions [804,805].
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In the wake of the EU’s migrant crisis, and in view of momentary flirting with border controls and populist policies
during the crisis, it is worthwhile examining if the EU members approached a tipping point sometime in 2015 or
2016. Although a devastating phase transition that would put a stop to the EU political project has been averted for
now, some signs of a system transitioning from one state to another have remained in public records. For instance,
by the second half of 2015, an estimated 58% of the EU citizens harboured concerns about immigration, more than a
double compared to a year before (24%) and more than a triple compared to two years before (16%) [806]. A similar
rise of a single overwhelming concern had previously been seen in the second half of 2011, when economic situation
preoccupied an estimated 59% of the EU citizens, and thus paved the way for a landmark surrender of the European
Central Bank to ultra-low interest-rate policies. More important, however, is the fact that both in 2011 and 2015, a
normally multidimensional space of a population’s concerns shrank to the point when one dimension dominated all. This
shared-concern phenomenon has many parallels with long-range order in physical systems by which a system’s remote
constituents exhibit highly correlated behaviour [807]. The ordered state is often established via symmetry breaking
upon a phase transition from a disordered state, with a famous example of this being the spontaneous magnetisation
of ferromagnetic materials below the Curie temperature [808]. Aside from physical systems, long-range order in terms
of the cross-correlation between remote constituents has been observed in biological systems, concretely, the healthy
operation of cellulo-social collectives [809]. Natural and social sciences have thereafter made progress by generalising
the described ideas to the notion of self-organisation. This notion has proven relevant to human endeavours on all scales
ranging from economics [810] to robotics [811] to traffic flows [124] and many others [812].

Returning to the problem of migrations, the EU crisis had in the meantime abated, especially when the focus shifted to
the ongoing Covid-19 pandemic [566]. The underlying causes of migrations, however, have not been resolved (e.g., Middle
Eastern turmoils and African armed conflicts [813]). Adding to this state of affairs the predicted consequences of climate
change, future migrant waves are to be expected [814]. The question is then is the current world order ready?

9.1. Tolerance

A way to define the notion of tolerance, or toleration, is mutual acceptance of conflicting worldviews without resorting
to suppressive violence. The worldview of others is in this notion seen in a negative light, yet there are vindicating
circumstances that outweigh the negatives [815,816]. Immigration squarely fits into this ‘tolerance dichotomy’ because
immigrants are commonly seen as a threat to job security and a source of increased competition in the job market,
especially during economic downturns, yet immigrants also serve as a much needed workforce in labour-deficient sectors,
especially during the periods of economic growth [817]. Aside from the economic dimension, the space of factors that
shape attitudes towards immigrants has multiple other dimensions. These can roughly be classified as individual or
collective [818]. The former include educational attainment, cultural conflicts, political involvement, interpersonal trust,
and public safety, whereas the latter include immigrant abundance and foreign investments.

That there exists a plethora of factors affecting attitudes towards immigrants goes a long way in confirming that
tolerance is conditional rather than unconditional. In Germany, for example, a sudden increase in the immigrant inflow
at the onset of the migrant crisis tightly correlated with the increase in the popularity of an anti-immigrant right-wing
populist party (Fig. 50). An even starker example is that in nine out of 15 polled Eastern European countries in 2016, more
than half the population expressed views that their country should refuse any Syrian refugees [819]. Interestingly, none of
these nine countries have been the main refugee destination, and yet their appetite for immigration was minute compared
to that of their Western European neighbours, suggesting a strong cultural divide in tolerance. The described conditional
nature of tolerance in the real world is in sharp contrast with primary legislation, specifically the European Convention on
Human Rights, which envisions unconditional tolerance by stating that any refugee or displaced person has the right to
EU protection if an asylum is claimed within the EU. It is this latter notion of tolerance that Karl Popper challenged [789],
as do simple models of the evolution of human cooperation. In the model of Nowak and Sigmund [820], cooperation
evolves via indirect reciprocity as practised by conditional cooperators, whereas unconditional cooperators inadvertently
undermine cooperation because they help others regardless of how those others behave, thus giving defectors an edge to
invade and prevail. Similarly in the tag-based model of cooperation by Riolo, Cohen, and Axelrod [821], an overly tolerant
population is vulnerable to mutants who rarely give help to others.

The conditional nature of tolerance, and especially its manifestations such as anti-immigrant sentiments and right-
wing populism [535,806,822–824], indicate that we need a better quantitative understanding of the interplay between the
processes of immigration and integration. To this end, Ref. [825] studies the balance between immigration and integration
rates in relation to the tolerance of the local population for newcomers. Combining the elements of evolutionary game
theory and network science, an artificial society is envisioned to form a social network that grows not just intrinsically, but
also by attracting newcomers from the outside. Newcomers are attracted to a benefit differential gained by cooperating
with the locals. All cooperative interactions, represented by social-network links, yield a per-capita fitness Φ1 for locals
nd Φ2 for newcomers such that the growth of the two sub-populations is given by N1(t + 1) = Φ1(t)N1(t) and
2(t + 1) = Φ2(t)N2(t). Denoting the fraction of newcomers in the population with fn = N2/N , where N = N1 + N2
s the population size, we have that fn(t + 1) = R(t)fn(t). Here, R = Φ2/Φ is the newcomer-to-population fitness ratio
nd Φ = (1− fn)Φ1 + fnΦ2 is the average population fitness. As long as the benefit differential is positive, it holds that

R > 1, causing the fraction of newcomers in the social network to grow. The benefit differential is a government policy
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Fig. 50. Right-wing populist parties gain popularity when the immigrant inflow increases. A, In Germany, the increasing inflow of immigrants rather
learly coincided with the increasing support for a right-wing populist party. B, Significant regression emerges when the German case is presented
s a scatter plot between the immigrant inflow and the percentage of right-wing populist voters.
ource: Reprinted figure from Ref. [535] under the Creative Commons Attribution 4.0 International (CC BY 4.0).

hat cannot be changed by individuals which is why the following individual-scale processes take place. First, as locals get
ncreasingly surrounded by newcomers, the tolerance of the former for the latter gradually saturates. Second, tolerance
aturation causes a local to either radicalise and stop cooperating with newcomers altogether, or to remain cooperative
ut tacitly support radicals. Third, depending on their surroundings, newcomers can pick up the cultural patterns of locals,
hus becoming integrated and no longer exerting pressure on the tolerance of locals. The social dynamics arising from the
escribed setup, as will be explained next, distinguishes between a successful and an unsuccessful immigration policy.
Outcomes of a given immigration policy can be predicted analytically using a mean-field approximation or estimated

umerically using computer simulations. Examples of predictable outcomes are the probability Pr(X) that a randomly
chosen local is radicalised or the probability Pr(Y ) that the number of radicals and their tacit supporters exceeds a
critical threshold (Nc

1) necessary to initiate oppressive action against newcomers. In a democracy, this might be electing
a right-wing populist party to power. The mean-field analysis shows that

Pr(X) =
1

kmax − kmin + 1

kmax∑
l=kmin

⟨k⟩∑
k=l

(
⟨k⟩
k

)
f kn (1− fn)⟨k⟩−k , (85)

where kmin (respectively, kmax) is the number of newcomer neighbours at which the least (resp., the most) tolerant local
radicalises, whereas ⟨k⟩ is the average number of neighbours (i.e., the average node degree) rounded to the nearest integer.
The mean-field analysis further shows that

Pr(Y ) = e−λ
∑
l≥Nc

1

λl

l!
≈ 1− Fnorm

(
Nc

1

N1
;
λ

N1
;

√
λ

N1

)
, (86)

here λ = N1fn(1 − gr) and gr is the fraction of radicalised locals. The function Fnorm is the cumulative distribution
unction of a normal random variable with the mean µ = λ/N1 and the standard deviation σ =

√
λ/N1. The mean-field

nd numerical results are in good agreement (Fig. 51).
Ultimately, the phase space of immigration policies can be explored using numerical simulations. By doing so, three

ypes of outcomes reveal themselves:

• Mutualism is a set of equilibrium states reached by a smooth reduction of the fitness ratio R to a level at which locals
maintain a sustainable majority (continuous blue curve in Fig. 52A).
• Newcomer dominance is a set of equilibrium states, also reached by a smooth reduction of the fitness ratio R, but to

a level at which newcomers form a majority (continuous blue curve in Fig. 52A).
• Antagonism is a set of non-equilibrium, absorbing states due to a complete breakdown of cooperation between the

two sub-populations (discontinuous red curve in Fig. 52A).

f society is sufficiently tolerant and integrates newcomers at a reasonable rate, it is likely for local and newcomer
opulations to interact in a mutually beneficial manner (Fig. 52B). If, however, integration is too slow, a peaceful transition
o the newcomer majority may take place (Fig. 52B). Finally, peace may succumb to turmoil and violence if slow
ntegration is matched with low tolerance (Fig. 52B). These outcomes show that a successful immigration policy must
e carefully though out, taking into account (i.e., measuring and monitoring) the tolerance of locals and the integrability
f newcomers.
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Fig. 51. Outcomes of immigration policies. A, Probability of a randomly selected local being radicalised is a monotonically increasing function of
he fraction of newcomers. The tolerance of the local population for newcomers controls how strongly the former react to the latter, as well as
he maximum abundance of the latter. B, Probability of reaching the critical number of radicals and their tacit supporters to attain a majority need
ot always increase with the fraction of newcomers. If the tolerance of the local population is sufficient, tolerant locals together with newcomers
omprise the majority.
ource: Reprinted figure from Ref. [825].

Fig. 52. Immigration-policy outcomes. A, Newcomer-to-population fitness ratio R decreases because abundant newcomers saturate the tolerance of
locals who then stop being cooperative. If locals are relatively tolerant, the decrease in R is continuous. By contrast, if locals are relatively intolerant,
the decrease in R may be discontinuous, signifying a sudden collapse of cooperation between newcomers and locals. Solid curves are simulations,
whereas dotted curves are a mean-field approximation. B, Success of immigration policies depends on the tolerance of locals and the integration
rate of newcomers. Tolerant locals and integrable newcomers are likely to interact in a mutually beneficial manner. Tolerant locals, however, may
lose the majority to non-integrable newcomers. Finally, intolerant locals and non-integrable newcomers make for an explosive combination.
Source: Reprinted figure from Ref. [825].

9.2. Integration and culture

Defining an exact criterion that would mark the end of the integration process is difficult. To partly circumvent
the problem and quantitatively analyse the situation, economists often look at economic integration that compares the
earnings of immigrants to those of natives. Early cross-sectional analysis showed that at the time of arrival in the United
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tates immigrants earn 17% less than natives, but the difference disappears in 15 years, whereas after 30 years immigrants
ven earn 11% more than natives [826]. Borjas, however, argued that the cross-sectional picture fails to account for a
radual decline in skills of immigrant cohorts after 1965, concluding that almost all immigrants since the second half of
he sixties experience ‘‘the same sluggish relative earnings growth’’ and that earnings parity between immigrants and
atives is ‘‘extremely unlikely’’ [827].
Cultural integration is particularly difficult to express in quantitative terms. Some anecdotal evidence paints a picture

hat integration is facilitated by ‘cultural similarity’ between native and immigrant populations. Largely successful
mmigration policies in this context are considered to be those of Australia and Canada, whereas within the EU borders,
here are Luxembourg, Portugal, and Spain. In Luxembourg, for example, 45% of the total population are foreign nationals,
ho over 90% originate from other EU countries, meaning that the cultural similarity between native and immigrant
opulations is relatively large. If Luxembourg is too small and too rich to be taken as a representative example, there
s the case of Portugal, where somewhat over 3% of the population is foreign and dominated by the Brazilians (who are
cultural neighbours’ of the Portuguese). The 3% number, however, is deceptively small because Portugal has naturalised
any of its immigrants, illustrating the importance of successful integration of the migrant population. Furthermore, in
pain, slightly under 10% of the population comprises foreign nationals, again dominated by cultural neighbours from Latin
merican countries. Interestingly, there is also a sizeable proportion of culturally more distant minorities, and Spain has
ven been targeted by terrorist attacks, yet the right-wing populist movement has never gained a foothold. The Spanish
ase thus illustrates the importance of a balanced approach which secures peaceful and prosperous co-existence of a
ighly diverse population.
It is instructive to contrast the above-mentioned successful cases with the situation in France. The French population

omprises about 8.5% of foreign nationals, but also an additional 10.5% direct descendants of immigrants. About half of
hese are of culturally distant origin, such as Arab-Berber, Sub-Saharan, and Turkish. Difficulties in absorbing such a large
nd culturally distant migrant population prompted a series of terrorist attacks across France to which the native majority
esponded by increasingly swinging towards the political right. Ultimately, the French case is a sort of antithesis to the
panish one, and illustrates just how hard it may be to strike the much needed balance when dealing with an inflow of
igrants. All the aforementioned percentages follow from publicly available information provided by national statistical
ureaus; a convenient summary is available at https://en.wikipedia.org/wiki/Demographics_of_the_European_Union.
The cultural-similarity hypothesis finds some empirical support in the data on economic integration as well. Being of

on-EU origins and living in a non-mixed household (i.e., having a non-native spouse) had a significant negative impact
n immigrant earnings in a range of EU countries [828]. This negative effect was smaller for immigrants with non-EU
rigins who lived in a mixed household (i.e., with a native spouse) or for EU-born immigrants who lived in a non-mixed
ousehold. Finally, the effect was insignificant for EU-born immigrants who lived in a mixed household. From a theoretical
erspective, the concept of cultural similarity was introduced by Axelrod in the context of his seminal model of social
nfluence and cultural change [829].

Axelrod’s model of social influence is based on three principles:

(1) Agent-based modelling means that mechanisms are first specified at the individual scale, and then the consequences
of such mechanisms are examined at the population scale to discover the collective or emergent properties of the
system.

(2) The lack of a central authority means that cultural change occurs in a bottom-up manner without coordination from
a global overseer.

(3) Adaptive instead of rational actors means that local circumstances dictate how influencing or being influenced takes
place (cf. Ref. [830]). There is no cost–benefit analysis nor forward-looking strategic evaluation.

ulture in Axelrod’s model is a multidimensional trait set. Each cultural dimension (say, formal wear) is accompanied by its
wn traits (say, morning dress, dress suit, ceremonial dress, uniform, religious clothing, national costumes, or frock coats).
n an abstract form, a trait is represented by an ordinal number, implying that culture itself is a list of trait numbers. If two
ctors have the same culture, then all their corresponding trait numbers are equal. Cultural similarity is the percentage of
ultural dimensions that share the same trait values. An interaction between two neighbours happens with a probability
roportional to their cultural similarity such that the focal actor adopts one trait value from the neighbouring actor.
Axelrod’s model is set up to ensure a local convergence of culture, and yet, global polarisation may emerge from the

odel [829]. Such an outcome is more likely with fewer cultural dimensions, but lots of traits per dimension. In the
ontext of immigrant integration, these results imply that without a concerted effort from the central government, social
nfluence by natives may actually push immigrants aside rather then integrate them. Crises are likely to exacerbate the
roblem because they tend to narrow the number of cultural dimensions that pervade political discourse as exemplified
n the introduction. The shrinkage in the number of relevant cultural dimensions is consistent with the mathematical
ormalism of phase transitions in the vicinity of tipping points, suggesting a way for quantitative surveys to measure how
ar a population is from the tipping point at which radical societal and political changes become probable.

Speaking of phase transitions, physicists have extended Axelrod’s social-influence model and subjected it to intensive
tudy in order to understand the model’s dynamics [831–835]. Ref. [831], in particular, discusses a phase transition in
xelrod’s model separating an ordered from a disordered phase. In the ordered phase, a dominant cultural region spans a
arge fraction of the whole system, whereas in the disordered phase, the system’s state is fragmented into many cultural
80
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egions whose sizes are distributed in a non-trivial manner. The transition turns from continuous to discontinuous as the
umber of cultural dimensions increases. In relation to immigration policies, these results imply that seemingly similar
onditions may lead to greatly different outcomes; there could be a dominant cultural region enveloping most of society, or
ociety could get shattered into many isolated cultural regions. It is questionable whether this latter outcome is compatible
ith modern-day nation states.
Unlike Axelrod’s model in which local convergence is encouraged, there are models of social dynamics that favour

ivergent individuals [836–838]. A typical example is the seceder model [839–841]. This model leads to complex group
ormation such that, at random times, new groups split from old ones or existing groups go extinct. In medium-sized
opulations, the distance between two groups that are furthest apart tends to saturate, but in large-sized populations, this
istance seems to increase linearly forever. The model thus mimics how subcultures pop in and out of existence [842],
ut may also offer insights into how immigrant communities develop while seeking to preserve cultural heritage and
niqueness. Conditions that lead to radicalisation, or the prevention thereof, could perhaps be better understood by
rawing inspiration from the seceder model.

.3. Populism and polarisation

Since its rise in the 1980s, populism has become a tool wielded by parties across the whole political spectrum [843].
n the context of migrations, however, it is right-wing populism that is of most interest. This particular type of populism
s widely seen as pathological and pseudo-democratic in the sense that it is accompanied by a radically xenophobic and
uthoritarian political programme [844].
Examining the determinants of right-wing populism, Ref. [845] suggests that economic parameters play a smaller role

han it is often assumed. An analysis of the results of the European Social Survey points in the direction that the electorates
f the right-wing populist parties are more afraid of the negative influence of immigrants on a country’s culture and
eritage than on the country’s economy. Data, in fact, suggests that low unemployment rates provide a fertile soil for the
rowth of right-wing populism [846,847]. Ref. [848] furthermore finds that right-wing populist parties benefit from more
rime, especially by linking crime to more immigration.
Analysing poll data from a group of EU countries affected by the recent migrant crisis, Ref. [535] finds that over the

hree-year period from 2014 to 2016 (i.e., in the midst of the migrant crisis), the percentage of right-wing populist voters
n a given country depended on the prevalence of immigrants in this country’s population and the total immigration inflow
nto the entire EU. The latter was likely due to the perception that the EU functions as a supranational state in which a
ack of inner borders means that ‘someone else’s problem’ can easily become ‘my problem’. When the annual immigrant
nflow exceeded 0.4% of a country’s population, it invariably led to an annual increase in the right-wing populist voters
nywhere between 1% and 5%, implying that a prolonged large inflow could eventually cause right-wing populism to
revail.
Ref. [535] proceeds to mechanistically describe the rise of right-wing populism using a network-science model that

ccounts for the existence of tipping points in social dynamics. The model is constructed by placing a constant number of
ative ‘insider’ agents in a random network of social contacts. Immigrant ‘outsider’ agents subsequently enter the network.
ach insider notices the percentage of outsiders in their neighbourhood and based on this percentage decides whether
r not to turn to right-wing populism. Such a decision is based on local information, but non-local information can also
ffect decisions, as can misinformation. Three assumptions formalise these ideas:

1. Global influences, such as unfavourable socioeconomics and media reports, are assumed to induce a small negative
bias in the decision making of any insider agent anywhere in the network. Direct contact with immigrants is
unnecessary for anti-immigrant sentiments as evidenced by the BREXIT referendum in which low-immigrant areas
mainly voted Leave [849].

2. Opinion contagion, complementing global influences, allows the seeds of populism to take root and turn into a
full fledged right-wing populist movement. The contagion happens because of connections between insider agents.
Namely, when an insider agent is surrounded by a critical number of right-wing populist-supporting neighbours,
the agent’s decision making becomes negatively biased.

3. Local influences, specifically the perceived abundance of outsiders, are assumed to negatively bias the decision
making of insider agents whose tolerance threshold has been exceeded by the number of outsider neighbours.
For example, in local elections in Greece in November 2010, the far-right Golden Dawn party received only 5.3% of
the vote, but in some neighbourhoods of Athens with large immigrant communities the party won nearly 20%.

Simulation runs with an annual outsider inflow of 0.5% of the total population show that a tipping point starts
anifesting itself as the fraction of outsiders approaches the tolerance threshold of insiders. The abundance of right-wing
opulist supporters increases non-linearly and eventually undergoes a sudden, discontinuous jump at about 37 years (450
onths) into the simulation (black curve in Fig. 53A). The jump occurs much earlier if there are inflow shocks. Such shocks
appen at times t1 and t2, and cause inflows that are equivalent to about 5% of the total population. The closer the system
o the tipping point, the effect of exactly the same shock becomes disproportionately larger (red curve in Fig. 53A).

Examining contributions to the rise of right-wing populism, it is evident that global influences can seed populist ideas
ere and there, but such ideas cannot be sustained without other processes. At first it is local influences that drive the
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Fig. 53. Rise of right-wing populism in a finitely tolerant population. A, Simple assumptions about the interactions of insider and outsider agents
n a social network lead to a non-linear dynamics and discontinuous jumps in the abundance of right-wing populist supporters. B, Breakdown of
he causes behind right-wing populism reveals that relatively far from the tipping point, the abundance of right-wing populist supporters responds
o local influences. As the network approaches its tipping point, however, opinion contagion takes over and accelerates the transition to society
ominated by right-wing populism.
ource: Reprinted figure from Ref. [535] under the Creative Commons Attribution 4.0 International (CC BY 4.0).

ncrease in the abundance of right-wing populist supporters in the network (Fig. 53B). Opinion contagion remains a
elatively small contributor until the tipping point is approached (Fig. 53B). Near the tipping point, however, opinion
ontagion is explosive and overtakes local influences as the main source of right-wing populism. Thereafter right-wing
opulist supporters dominate society.
Right-wing populist policies are deeply divisive with a large potential to polarise societies. Similarly to how models

f social influence helped us to gain insights into cultural integration in the preceding section, here we rely on models
f opinion dynamics to gain insights into social polarisation. Ref. [850] is an early and influential work in this context,
xamining the dynamics of continuous opinions in well-mixed and lattice-structured populations. Continuous opinions
icely correspond to a variety of possible positions on the political spectrum.
The opinion-dynamics model in Ref. [850] has a very simple structure that in some aspects resembles the structure

f previously discussed Axelrod’s model of social influence. Each agent holds an opinion xi ∈ [0, 1] that is initially drawn
at random from the uniform distribution. In simulations, a pair of agents meets either by chance (well-mixed case) or
because they are neighbours in the social network (lattice-structured case). If their opinions are closer than a threshold
d, |xi − xj| < d, the two agents’ opinions approach one another at a convergence rate µ; otherwise, the opinions remain
nchanged. Just as two cultures interact only if they share some common points, so do two opinions interact only if they
re close enough to begin with.
Simulation results reveal a critical role of the threshold d. Opinions converge by the very nature of the model, but

onsensus is observed only for large enough d values (Fig. 54A). For smaller d values the population polarises, first forming
wo distinct opinions whose gap cannot be closed (Fig. 54B), and then even more, with the approximate number of distinct
pinions being ⌊2d⌋. In a lattice-structured population, the results are similar, although not without some additional
nteresting properties. For large enough d values, one percolating opinion dominates the lattice, while a small number of
solated opinions get randomly scattered around. As the d values decrease, it is still possible to observe one percolating
pinion, but also a few sizeable clusters of distinct opinions. Interestingly, opinions within any single non-percolating
luster are quite similar but not entirely identical.
Interpreting the described results in the context of migrations, when less tolerant natives start resorting to right-wing

opulism, many of the right-wing populist policies are unpalatable to more tolerant natives, thus creating a rift in the
opulation. If communication across the rift is very limited, opinion dynamics suggests that society is likely to polarise.
side from immigration, evidence shows that a similar, catalytic role is played by partisanship, religious orientation,
nd even geographical differences [851,852]. Polarisation, furthermore, leads to more political participation [851], hinting
hat once a rift forms, each sub-population doubles down on its own opinion. Evidence that rifts across which limited
ommunication occur is found in the phenomenon of echo chambers, that is, groups of like-minded individuals who
ubscribe to, and mutually reinforce, a certain narrative [853–857]. Of note here is that the extent to which online echo
hambers impact society is a matter of debate [858].
Similar to Axelrod’s model of social influence, the opinion-dynamics model of Deffuant et al. [850] has attracted a lot of

ttention among physicists [859–863]. In adaptive networks [864], for instance, agents can sever links with those agents
ho harbour very different opinions, while preferentially linking with those agents who harbour similar opinions. Such
daptability reduces the chances of reaching both the consensus state and any of the highly fragmented states, thus in
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Fig. 54. Opinion dynamics may lead to a consensus or polarise society. A, Assuming that individuals tolerate opinions that differ from their own
opinion by at most a distance d, sufficiently large d values lead to consensus. B, As the d value decreases, society gets polarised between two
ompeting opinions. Even smaller d values cause more than two competing opinions to persevere.
ource: Reprinted figure from Ref. [850].

ffect promoting polarisation [865]. Extending the opinion-dynamics model even further, a recent study aims at explaining
he above-mentioned phenomenon of echo chambers and polarisation on social media [866]. This same body of research
lso encompasses voting phenomena and the emergence of language. The voter model is concerned with capturing opinion
ynamics under a strong influence of an individual’s social context [867–869], including statistical regularities of real-
orld electoral processes [870,871]. The theory of language emergence is concerned with communication strategies
mployed by individual speakers, and how the systematic use of such strategies leads to a consensus by which one
ord conveys the same idea to everyone [872–877]. All this goes to show that the research on opinion dynamics has
n enormous scope and breadth, with many important contributions yet to come.

.4. Future outlook

Although it could be argued that the geopolitical situation leading to the migrant crisis that hit Europe in recent years
s a one-off event, neither the EU nor other destination countries have the luxury of ignoring large-scale migrations in
he near- to mid-term future. Climate change, for example, is expected to displace millions of people over the next few
ecades [814]. Worse yet, the recent crisis thought us that large-scale migrations can be accompanied with immeasurable
uffering and the loss of human life. For these reasons, we see the need for an interdisciplinary research agenda whose
ain goal would be attaining a quantitative understanding of migrations and the underlying social dilemmas. The
ecessary scientific tools that could aid sociological and economic research are available in the form of network science
collective phenomena), statistical physics (tipping points and phase transitions), evolutionary game theory (cooperative
ash equilibria), and others. We furthermore believe that modern approaches should be data driven, and therefore rely
n the methods of Bayesian statistics, econometrics, and machine learning.

ast and slow migrations. Current research indicates that serious imbalances between (i) the inflow of migrants, (ii) the
illingness of the native population to accept them, and (iii) migrant integration causes a knee-jerk political response by
hich right-wing populists are voted into offices. Subsequently, discriminatory laws and regulations targeting migrants
r underrepresented minorities are often proposed and even enacted. It thus becomes essential to consider the role of
peed at which processes in social dynamics unravel. If the inflow of migrants is moderate, the native population should
eel secure and adapt, but if the inflow is extremely high, the natives may perceive migrants as a threat and—in a sort of
opperian twist—respond antagonistically. These two limits suggest that tolerance is a relative category depending on the
agnitude of immigrant inflow, which is an effect that must be included in a genuine model of large-scale migrations.
therwise, rising right-wing populism may lead to a demise of values such as free thought, liberty, democracy, human
ights, and even peace.

igration dilemma. Countries today face a migration dilemma that has two complementary dimensions. The first dimen-
ion is faced by countries with a positive net inflow of migrants (i.e., immigrants). Such countries, comprising mostly ‘old
emocracies’, must decide whether to decline or accept immigrants, and in the latter case, decide the rate of acceptance
83
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efore the integration capacity is fully utilised. Therein lies the dilemma for old democracies. The second dimension is
aced by countries with a positive net outflow of migrants (i.e., emigrants), usually economic ones, who seek better life
lsewhere. Such countries, comprising mostly ‘new democracies’, must decide whether to replenish their populations with
mmigrants or face socio-economic instabilities in the future. Therein lies the dilemma for new democracies. Irrespective
f how individual countries choose to resolve the dilemma, it is important to recognise that the consequences will likely
e non-local because of strong socio-economic interdependencies in a globalised world. This finally returns us to network
cience, statistical physics, and evolutionary game theory as theoretical frameworks equipped to handle interdependent
omplex systems [266], tipping points [878], and incentives for human behaviour [233]. Intertwining these frameworks
ith sociological and economic knowledge might provide us with a detailed enough picture of how to resolve the
igration dilemma for the benefit of all.

0. Contagion phenomena

At the time of writing, the Covid-19 pandemic has been raging around the world for nearly two years, while the cause
f this pandemic, the SARS-CoV-2 virus, has infected over 200 million people. At this scale, the pandemic is of course a
lobal public health issue of which general population is acutely aware. Viral outbreaks, however, oftentimes fall short of
uch widespread awareness despite their recurrent occurrences and deadly potential. To understand just how frequent and
angerous viral outbreaks are, it is illustrative to consider the following examples. Influenza A(H1N1) outbreak started
n Mexico in 2009 and subsequently reached 214 countries and regions, causing 18,500 deaths [879]. Avian influenza
(H7N9) outbreak started in mainland China in 2013, giving rise to only 419 cases because of no sustained human-human
ransmission, but still causing 127 deaths due to high virulence in humans [880]. Ebola virus disease emerged in West
frica in 2014 and went on to infect more than 25,000 people, resulting in over 11,000 known fatalities although the true
ase fatality rate is suspected to be above 70% [881]. Finally, the MERS-CoV outbreak started in the Middle East in 2012
nd proceeded to cause over 1350 human infections with a death toll of more than 500 people from 26 countries [882].
For nearly 100 years, the bread and butter of research into disease outbreaks have been compartmental epidemiological

odels. It was Kermack and McKendrick who in 1927 put forth a mathematical framework for compartmental models
n epidemiology [883]. Furthermore, the work of Reed and Frost from about the same time, but exposed later by
thers [884], had been the first to introduce a chain-binomial model with the recognisable susceptible–infectious–
ecovered (SIR) structure. In SIR models, a population exposed to an active pathogen is divided into three compartments.
ealthy individuals are susceptible to the pathogen (S), infectious individuals transmit the pathogen (I), while recovered
ndividuals no longer respond to the pathogen due to acquired immunity (R). The simplest SIR model is therefore given
y

dS
dt
= −βSI, (87a)

dI
dt
= βSI − γ I, (87b)

dR
dt
= γ I, (87c)

here β and γ are infection and recovery rates, respectively. The pathogen cannot spread if dI
dt ≤ 0, which leads to the

condition R0 =
βS(0)
γ
≤ 1. The quantity R0 is called the basic reproductive number, and stands for the expected number

of cases caused by a single case in a completely susceptible population. Once the epidemic takes off, its decline is subject
to the condition Re =

βS(t)
γ

, in which case we are talking about an effective reproductive number because the population
s no longer completely susceptible. Among the common extensions of the model is to add a population growth rate Λ,
s well as the different mortality rates for each compartment di, i ∈ {S, I, R}. The model then takes the shape

dS
dt
= Λ− βSI − dSS, (88a)

dI
dt
= βSI − γ I − dII, (88b)

dR
dt
= γ I − dRR. (88c)

Another straightforward extension of the SIR model is to consider a network of populations (e.g., cities). The model
then becomes

dSi
dt
= Λi − βiSiIi − dSi Si +

n∑
i=1

aijSj − Si
n∑

i=1

aji, (89a)

dIi
dt
= βiSiIi − γiIi − dIiIi +

n∑
bijIj − Ii

n∑
bji, (89b)
i=1 i=1
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w

dRi

dt
= γ Ii − dRi Ri +

n∑
i=1

cijRj − Ri

n∑
i=1

cji, (89c)

here the matrices A = [aij], B = [bij], and C = [cij] quantify mobility rates between populations i and j [885]. Models
of this type are often referred to as metapopulation epidemiological models. Since the 1980s, metapopulation models
built around data on the worldwide air-transportation network [886] have become one of the main tools for studying the
global spread of emerging epidemics. This is also where our focus lies in the subsequent sections of this chapter.

10.1. Data-driven metapopulation models

Metapopulation epidemiological models are built as a network of populations such that transmission dynamics occurs
on two scales. The smaller scale describes the local disease spread within each population, while the larger scale describes
the disease spread between populations due to the movements of infectious individuals.

Disease spread within a population. Let us consider a disease that can be described by an SIR compartmental model, such
as pandemic influenza or measles. Susceptible individuals (S) become infectious (I) at a rate β after encountering an
infectious individual, whereas each infectious individual becomes recovered or dies at a rate µ. Assuming that the contacts
between susceptible and infectious individuals are frequency dependent, we can model transitions in population i from
susceptible to infectious individuals and from infectious to recovered individuals over the unit time period ∆t using the
following equations

Si(t +∆t) = Si(t)−∆Si(t), (90a)

Ii(t +∆t) = Ii(t)+∆Si(t)−∆Ii(t), (90b)

Ri(t +∆t) = Ri(t)+∆Ii(t) (90c)

∆Si(t) ∼ B(Si(t), β
Ii(t)
Ni
∆t) (90d)

∆Ii(t) ∼ B(Ii(t), µ∆t) (90e)

where B(n, p) denotes a binomial random variable with the parameters n for the number of trials and p for the probability
of success, whereas Ni = Si(t)+ Ii(t)+ Ri(t) denotes the size of the ith population. For pathogens with a relatively short
doubling time (e.g., SARS-CoV-2, MERS-CoV, influenza A(H1N1), Ebola, measles, etc.), it is appropriate to set a short unit
time period (e.g., ∆t = 0.05d).

Disease spread between populations. In metapopulation models, individuals are imagined to jump between populations
using a transportation network. The simplest scenario is to consider that individual movement is stochastic, which
approximates well the international spread of infectious diseases [887–890]. To account for more complex patterns of
human mobility, metapopulation models have also been extended to address the memory effects of individual mobility
(e.g., daily commuting) [891–893], differential social mixing patterns due to socioeconomic stratification [894], and age-
related factors [895]. Using as an example the simplest metapopulation epidemiological model with G populations, the
spread of epidemics from each population i to downstream populations that are directly connected to population i can
be described using

Xi(t) = {Xi1(t), . . . , XiG(t)} ∼M(Si(t), wi1∆t, . . . , wiG∆t), (91a)

Yi(t) = {Yi1(t), . . . , YiG(t)} ∼M(Ii(t), wi1∆t, . . . , wiG∆t), (91b)

Zi(t) = {Zi1(t), . . . , ZiG(t)} ∼M(Ri(t), wi1∆t, . . . , wiG∆t), (91c)

where M denotes a multinomial random variable, wij denotes the mobility rate between populations i and j, Xij(t), Yij(t),
and Zij(t) respectively denote the number of susceptible, infectious, and recovered individuals who travel from population
i to population j between the times t and t +∆t .

The need for data. To build metapopulation epidemiological models for studying real-world epidemics, it is essential to
parameterise the connectivity of the underlying transportation network, as well as population flows along this network.
This has been made possible by recent advancements in digital data collection and storage (see Chapter 7). Examples of
suitable data sources include:

• Official Aviation Guide, a data-subscription service covering the worldwide flight booking database that has previously
been used for building state-of-the-art global epidemic simulators (e.g., GLEAM) [893].
• Mobile service providers (e.g., the Telenor Group or Orange) whose data-subscription services offer access to

anonymous call detail records (CDRs), which allow the quantification of aggregated population movements between
cities [896,897].
• Search-engine and social-media companies (e.g., Google, Baidu, Facebook, Tencent, etc.) whose open-access data portals

or data-subscription services offer population-movement information derived from mobile location-based services
(LBS) [898,899].
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ompared to the CDR data, the LBS data allows the stratification of population flows by points of interests or modes of
ransportation. For example, Google’s Covid-19 Community Mobility Reports provide six data-streams called ‘grocery and
harmacy’, ‘parks’, ‘transit stations’, ‘retail and recreation’, ‘residential’, and ‘workplaces’ [900]. Tencent’s migration-data
ortal separates travel by aeroplanes, railways, or highways [901]. Overall, modern sources of digital data useable in
pidemiology have become so rich that the term ‘digital epidemiology’ is now being used to describe the extent to which
pidemiologists have come to rely on such sources. This is the topic of our next section.

0.2. Digital epidemiology

efinition. Relative to traditional epidemiology that uses data generated by the public health system to understand the
ncidence, distribution, and possible control of diseases and other health-related factors, digital epidemiology uses digital
ata generated elsewhere [902]. Among the main reasons for this is that data collected by professionals in clinics, hospitals,
nd laboratories is accurate but very costly in terms of logistics, time, labour, and materials. Tapping into alternative and
ost-efficient sources therefore seems like a natural way to move forward [903].
Internet and mobile-phone uses result in billions of digital-communication records that document health-related

ehaviours such as symptom reports or attitudes towards vaccines. For example, Google searches provide estimates of
nfluenza activity in a near real-time manner [530], whereas mobile-phone data tracks population movements during
isease outbreaks [904]. Such capabilities have led to the applications of digital epidemiology in surveilling and predicting
he spread of air-borne and vector-borne viruses, parasites, and other pathogens.

ata sources. Google Trends is a free service providing normalised trends in search activity depending on user-specified
eographical regions and time frames. Refs. [530,905] found that the relative frequency of certain queries about influenza
s closely correlated with influenza cases reported by public health agencies in the United States. These pioneering works
hus opened the door to using search queries to detect near real-time influenza epidemics.

The original algorithm in Refs. [530,905] has later been shown to suffer from several major limitations that lead
o inaccurate estimates [906,907]. The algorithm is static and fails to account for time-series properties such as the
easonality of influenza activity, whereas aggregating multiple query terms into a single variable ignores changes in
nternet-search behaviour over time. In response, Ref. [908] proposed the AutoRegression with Google search data (ARGO)
odel to address the above-said shortcomings. Based on the ARGOmodel, Ref. [909] further improved influenza prediction
y incorporating spatial and temporal synchronicities seen in historical flu activity at the state-level in the US.
In addition to success stories from developed countries such as the data-rich United States, Google Trends has proven

aluable in developing countries with poorer data environments for infectious disease nowcasting and forecasting. For
xample, Ref. [910] has demonstrated the power of the ARGO model to improve influenza predictions for 8 different
atin-American countries: Argentina, Bolivia, Brazil, Chile, Mexico, Paraguay, Peru, and Uruguay.
In addition to monitoring influenza-like illnesses, internet search queries have also been applied to vector-borne

iseases such as dengue, malaria, and Chagas disease in tropical and temperate low- to middle-income countries
911–915]. Because of an increasing internet-access availability, but relatively limited traditional epidemiological data-
ollection capabilities [916], internet-based surveillance methods have the potential to greatly complement the work of
ublic-health agencies on preparedness against vector-born diseases. Two independent studies [911,912] have shown
hat web search query data has a high correlation ranging from 0.82 to 0.99 with dengue activity in Bolivia, Brazil, India,
ndonesia, and Singapore. Afterwards, Google developed a prediction tool called Google Dengue Trends to provide timely
nformation to public health agencies from Mexico [917], Taiwan [918], Venezuela [919], and the Philippines [920].

Twitter is another big-data source of interest to public-health researchers because of the real-time nature of content,
recise geotagged locations, and publicly available information. Tweet-based disease surveillance and prediction exploits
ime-series trends in health-related keyword volumes as a predictor variable in regression models, which is conceptually
imilar to how Google Trends is used. However, because most tweets employ everyday language to describe a combination
f symptoms rather than a diagnosis, there is a need for natural-language processing in order to identify relevant
nformation. Ref. [921] found a large correlation coefficient between the trends of influenza mentions on Twitter and
nfluenza-like illnesses identified by traditional surveillance systems in the US. Ref. [922] further recorded a high
rediction accuracy (85%) in relation to the weekly change of influenza prevalence on both national and city scales (e.g., in
he New York city).

When it comes to vector-borne diseases, Twitter has proven useful in surveying and predicting dengue in Brazil on
ational, regional, and city scales [923]. The best performance has been observed on the national scale, on which the
orrelation coefficient between predictions and dengue activity was as large as 0.98.
Twitter is also an important source of data to assess health-related behaviours such as concerns about disease outbreaks

nd attitudes to public-health measures [924,925]. Ref. [926] relied on publicly available Twitter data to resolve the
patio-temporal sentiment towards a new influenza A (H1N1) vaccine in 2009. The study identified a strong correlation
etween the online sentiment and estimated vaccination rates by region. Subsequent data-driven simulations of disease
pread found that the clusters of a negative vaccine sentiment tend to coincide with an increased likelihood of disease
utbreaks. Ref. [927] additionally found that sentiments themselves are contagious. Negative sentiments in particular are
ore contagious than positive ones.
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To exhaust the potential of Twitter data, the following two applications must also be considered. Tweets provide an
opportunity to discuss medications, which perhaps could be used to detect drug-related adverse events and thus improve
pharmacovigilance. Ref. [928] showcases an analysis of 2 billion tweets in search of adverse events related to 5 different
cancer drugs. The analysis identified 239 potential drug users. Each potential case was then examined by two experts,
which led to 72 definite positives. From these positives, 27 drug-related adverse events were detected, thus providing a
proof-of-concept solution towards improving pharmacovigilance based on Twitter data. The other application arises from
the fact that tweets are geo-referenced. This implies the possibility to capture human-movement patterns in order to
track and control infectious diseases. Twitter stores geographic coordinates that offer insights into movements on various
temporal (from daily onward) and spatial (from local to national to international) scales [929,930].

Facebook is among the most visited websites in the world, but has not been used as much in public-health contexts
because of limited data access in the past. Facebook Data for Good is a recent project aimed at broadening access for
social-welfare purposes [931]. One of the major advantages of Facebook data is the information on social connections.
Albeit these connections are established in an online environment, there is a strong correlation with the geography of
health-related activities. Ref. [932] thus found that Covid-19 tends to spread between regions with more social-network
connections as indicated by Facebook. This showcases that data from online social networks could be used to forecast the
spread of air-borne diseases based on proximity indicators derived from digital interactions.

Integrating the information on human movements into epidemiological models leads to insights into the disease
spread, as well as the optimal resource allocation to contain the spread. Ref. [933] is an attempt to do so using Facebook
movement data while evaluating the economic consequences of alternative lockdown-lifting scenarios in various Italian
districts. The results show that there is a tradeoff between disease transmission and worker mobility such that a given
economic loss on the national scale induces heterogeneous regional losses. Furthermore, humanitarian organisations need
to know where to allocate resources to help people who are most affected by a disease outbreak or other disasters.
Ref. [934] shows how aggregating Facebook usage in areas impacted by such events can be used to produce disaster
maps outlining population evacuations and long-term displacements.

Ensemble estimates. Despite the apparent success of relying on digital-data sources for surveilling and predicting conta-
gions, this methodology has been criticised and concerns have been raised [906,907,935–937]. Ensemble models have been
developed in response to such criticisms, following the idea that combining multiple digital-data sources circumvents the
weaknesses that any individual source might have.

Ref. [938] outlines an ensemble machine-learning model to predict influenza activity in the US by leveraging Google
Trends, Twitter data, Flu Near You [939], and the CDC data on influenza-like illnesses. The results demonstrate that
combining information from multiple data sources improves real-time predictions up to four weeks ahead. Encouraging
results have also been obtained in middle-income countries from Latin America where available data is scarcer [940].
Similarly, Ref. [941] combines the information on Zika virus disease from Google searches, Twitter, HealthMap [942], and
suspected cases during the 2015–2016 Latin American outbreak to predict new weekly cases up to three weeks ahead.

Refining spatial resolution decreases the correlation between predictions by digital-surveillance systems and estimates
by public-health systems [943]. Ensemble models are a promising way forward in this context. Ref. [944], for example,
combines official health reports, internet searches for Covid-19 on Baidu, news media, and results from an agent-based
epidemiological model to produce accurate forecasts two days ahead on the provincial scale in China. Another similar
example is Ref. [945] which combines Google searches, Twitter data, electronic health records, and Flu Near You [939] to
predict influenza outbreaks in the Boston metropolitan area one week ahead (Fig. 55).

This brief overview by no means exhausts all possible sources of digital data that can be used in epidemiology. What is
more, the variety of such sources is bound to increase in the short- to mid-term future. A key development, however, will
be to couple them with models that offer mechanistic insights into epidemics. This, of course, includes state-of-the-art
metapopulation models discussed in detail in this chapter.

10.3. Analytical results from metapopulation models

From the viewpoint of statistical physics, the epidemic threshold is an important concept inspired by the studies of
critical phenomena and phase transitions [946]. The epidemic threshold delineates where in the parameter space an
epidemic wanes and where in the parameter space the epidemic intensifies. Interestingly, studying the spread of computer
viruses on the Internet has shown that the epidemic threshold can be negligibly small if the node-degree distribution of
a network is strongly heterogeneous, as is the case for scale-free networks [947,948]. This was a surprising finding at the
time, motivating various searches for novel public-health policies. For example, subsequent attempts to formulate effective
vaccination strategies in networks have largely focused on vaccinating hub nodes, that is, those nodes that possess the
most connections [949].

The research on epidemic threshold has eventually been extended to metapopulation epidemiological models.
Refs. [950,951], for example, describe a mean-field derivation leading to a closed-form expression for the epidemic
threshold of a multiple-population network in which individuals randomly move between populations. The threshold
was found to decrease as the network becomes more node-degree heterogeneous. Refs. [952,953] extend this line of
work to account for recurrent mobility patterns.
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Fig. 55. Nowcasts and one-week forecasts (with errors) of influenza-like illnesses in the Boston metropolitan area from September 2012 to May
2017. BPHC stands for Boston Public Health Commission. AR52 stands for an autoregressive baseline model using 52 weeks of past data to make
predictions. ARGO stands for autoregression with general online information with the sources of online information being athenahealth (athena),
Google Trends (Google), and Flu Near You (FNY).
Source: Reprinted figure from Ref. [945] under the Creative Commons Attribution 4.0 International (CC BY 4.0).

A concept of interest in addition to the epidemic threshold is the epidemic arrival time (EAT). After a disease outbreak
n a city of origin, for example, Wuhan in case of the Covid-19 pandemic, the disease can spread to other cities through
he travel of individuals. The EAT for each downstream city j is the time at which an infected case is imported into this
ity. The EAT measures the spreading velocity of the disease and encodes relatively reliable information for inferring key
pidemiological parameters in the early phases of novel epidemics [890,954–956].
Although several seminal studies [957–959] have explored the potential for developing a simple summary statistics to

pproximate the EAT, a general analytical framework leading to a closed-form expression for the probability distribution
f the EAT has remained elusive. To fill this knowledge gap, Ref. [890] derives the probability distribution of the EAT
n three metapopulation models with increasingly complex network structure: (i) the simplest two-population model,
ii) the shortest-path tree of the worldwide air-transportation network, and (iii) the whole worldwide air-transportation
etwork.

wo-population model. The simplest problem for which the EAT distribution can be found analytically is that of two
opulations. An infectious diseases is assumed to originate from population i which is connected only to population j
Fig. 56A). This situation corresponds to initial stages of an epidemic when new infections emerge in the origin population,
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Fig. 56. Two-population epidemiological model. A, Model schematics showing the situation in which origin population i connects only to population
. B–D, Q–Q plots showing the analytical and simulated quantiles of the random variables T 1

ij , T
5
ij , and T 10

ij . Insets show the corresponding histograms
f the percent error in E[T n

ij ]. Simulations entail 100 epidemic scenarios sampled using the Latin-hypercube sampling from the following parameter
pace. Doubling and generation times both ranged between 3 and 30 days, the seed size si ranged between 1 and 100, the mobility rate wij ranged
etween 10−6 and 10−3 , and the population size Ni ranged between 0.1 and 10 million. The latter two parameters were respectively chosen according
o the Official Airline Guide (OAG) air-traffic data and the Gridded Population of the World dataset (Version 4). Simulated quantiles for each of
hese 100 scenarios were computed from 10,000 stochastic realisations. Points on the diagonal indicate that analytically calculated and numerically
imulated arrival-time quantiles are equal. Blue and yellow points distinguish scenarios in which P(Xij ≥ n) = 1 from those in which P(Xij ≥ n) < 1,
where Xij is the number of exportations.
Source: Reprinted figure from Ref. [890] under the Creative Commons Attribution 4.0 International (CC BY 4.0).

while all the other populations are aggregated into a single population momentarily unaffected by the disease [889]. Two
key mathematical assumptions [890,957,958] made at this point are:

1. Exportation of infections from population i to j is a non-homogeneous Poisson process [960] with the intensity
function (i.e., the expected number of infections exported from population i to population j at time t) given by
wijIi(t), where Ii(t) is the number of infectious people (i.e., disease prevalence) in population i at time t , and wij is
the per-capita mobility rate from population i to population j.

2. After the new epidemic establishes itself in origin population i, the first few exportations from population i to
population j occur while disease prevalence is still growing exponentially in the origin, that is, Ii(t) = si exp(λit),
where si is the initial seed size in origin population i at time t = 0, and λi is the local epidemic growth rate.

With the above-stated assumptions, the nth EAT in population j, denoted T n
ij , is a random variable whose probability

ensity function can be expressed in closed form

fn(t|λi, αij) =
(
eλit − 1
λi

)n−1 αn
ij

(n− 1)!
exp

(
λit − αij

eλit − 1
λi

)
, (92)

here αij = siwij is the adjusted mobility rate. The last expression can be validated numerically. To this end, analytical and
imulated EATs were compared over a wide range of epidemic scenarios (Fig. 56). Among others, doubling and generation
imes varied between 3 and 30 days, which was enough to cover many present-day infectious diseases. Covid-19 has a
oubling time of 5–7 days, whereas Ebola has a doubling time of more than 20 days.
Eq. (92) can be used to derive a number of corollaries:

1. Exportation of the first n infections is a non-homogeneous Poisson process with the intensity function αij exp(λit).
2. The cumulative distribution function of the nth EAT is

Fn(t|λi, αij) = Γ
[
n,
αij

λi

(
eλit − 1

)]
, (93)

where Γ denotes the lower incomplete Gamma function.
3. The expected first EAT is

E[T 1
ij ] =

1
λi

exp
(
αij

λi

)
E1

(
αij

λi

)
, (94)

where Em(x) = xm−1
∫
∞

x µ−me−µdµ is the exponential integral.
4. If αij ≪ λi and γ denotes the Euler–Mascheroni constant, then the expected first EAT can be approximated using

E[T 1
ij ] =

1
λi

[
ln
(
λi

αij

)
− γ

]
, (95)

which is equivalent to the first-EAT statistic in Ref. [957].
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Fig. 57. Network properties of hub populations. A, Histogram shows the distribution of node degrees for all populations in the worldwide air-
ransportation network. The node degree of a given population equals the number of populations to which this population is directly connected. The
nset illustrates that travel-hub population i is connected to multiple populations, including population j. B, List of several major hub cities situated
ll over the world. Shown are the node degree, the daily outbound-traffic volume, and the daily outbound per-capita mobility rate.

5. The expected nth EAT is

E[T n
ij ] =

1
λi

exp
(
αij

λi

) n∑
m=1

Em

(
αij

λi

)
. (96)

6. For any positive integers m and n, m < n, the probability density function of T n
ij − Tm

ij conditional on Tm
ij is

fn−m
(
t|λi, αije

λiTmij
)
, (97)

which can be reinterpreted as the probability density function of the (n−m)th EAT with the seed size si exp(λiTm
ij ).

Using this relation recursively, we deduce that the joint probability density function of T 1
ij = t1, . . . , T n

ij = tn is
n∏

m=1

f1
(
tm|λi, αijeλitm−1

)
, (98)

for all 0 = t0 < t1 < t2 < · · · < tn−1 < tn.
7. The expected (n− 1)th EAT given an epidemic that starts at time T 1

ij with the seed size si exp(λiT 1
ij ) is

E[T n
ij |T

1
ij ] = T 1

ij +
1
λi

exp
(
αij

λi
eλiT

1
ij

) n−1∑
m=1

Em

(
αij

λi
eλiT

1
ij

)
. (99)

hese corollaries will prove useful in extending the two-population model to the analysis of the epidemic arrival process in
he shortest-path tree of the worldwide air-transportation network, and the whole worldwide air-transportation network.

odelling the shortest-path tree. A dominant sub-network of the worldwide air-transportation network is its shortest-path
ree. In this sub-network, each downstream population is connected to the epidemic origin via only one path. Ref. [959]
uggests that an emerging epidemic spreads from the origin population to other populations mainly through the shortest-
ath tree, that is, the infrastructure of the shortest-path tree drives the global spread of the disease across the worldwide
ir-transportation network. Ref. [890] demonstrates that the nth EAT T n

ik from origin population i to any population k in the
hortest-path tree is accurately characterised by Eq. (92), but the local epidemic growth rate λi and the adjusted mobility
ate αij need to be re-parameterised to account for what is called the hub effect (Fig. 57) and the continuous-seeding effect
Fig. 58).

Travel hubs such as Hong Kong, London, and Paris are characterised by direct flights to many locations. In network-
cience terminology, the node degree of travel hubs is much larger than unity. This creates many opportunities for
nfection exportation, perhaps to the point that the local growth of the disease prevalence, Ii(t), is noticeably reduced. If
ndeed a noticeable proportion of infections travel outward as the epidemic unfolds, the local epidemic growth rate, λi,
eeds an adjustment.
Suppose that hub population i is directly connected to two or more populations, one of which is population j (Fig. 57A).

n the shortest-path tree, all infectious individuals who disperse from population i to populations other than j no longer
ontribute to disease exportations to population j. A consequence is that the probability density function of the nth EAT
90
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Fig. 58. Continuous-seeding effect. A, Schematic of the epidemic arrival process (mathematically, a non-homogeneous Poisson process) over an acyclic
ath connecting origin population i to population k via population j (i.e., ψ : i→ j→ k). B, In this example, the epidemic arrives in population k
fter population j has imported three infections from the origin, that is, T 3

ij < T 1
ik < T 4

ij . In the absence of continuous seeding adjustment, infection
rees spawned by the second and subsequent importations in population j are ignored.
ource: Reprinted figure from Ref. [890] under the Creative Commons Attribution 4.0 International (CC BY 4.0).

Fig. 59. Numerical validation of analytics for the shortest-path tree of the worldwide air-transportation network. Shown are the Q–Q plots comparing
the analytical and simulated quantiles of various EATs for downstream populations in the shortest-path tree. Insets show the corresponding histograms
of the percent error in the expected EATs. The origin of the epidemic was assumed to be in Hong Kong. The same 100 epidemic scenarios as in
Fig. 56 were used. The symbol Dc stands for the set of all populations that are separated by c degrees of separation from the epidemic origin.
, The results for the set D1 before (red) and after (blue) adjusting for the hub effect. B, The results for the set D2 before (red) and after (blue)
djusting for the hub effect and continuous seeding. C, The results for the sets D3 and D4 after adjusting for the hub effect and continuous seeding,
nd performing path reduction.
ource: Reprinted figure from Ref. [890] under the Creative Commons Attribution 4.0 International (CC BY 4.0).

s still given by Eq. (92), but the local epidemic growth rate in hub population i from the perspective of population j must
e adjusted to

λij = λi −
∑
k̸=j

wik. (100)

he random variable T n
ij therefore has the probability density function fn(t|λij, αij), implying that the disease prevalence

n hub population i grows exponentially at the effective growth rate λij, while the number of exported infections from
opulation i to population j at time t remains the same as before, that is, wijIi(t). The need for the described adjustment
an be numerically validated in a similar manner as the two-population model (Fig. 59A).
Although a single seeding event seeds the origin population with the disease, all other populations in the shortest-path

ree are continually seeded by infections exported from upstream populations (Fig. 58). Such continuous seeding has been
ocumented in the case of Zika virus in Florida coming from the Caribbean [961] and SARS-CoV-2 in the UK coming from
urope [962].
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Let Dc be the set of populations that are separated by c degrees of separation from the origin population in the
hortest-path tree. Let furthermore population k in D2 be connected to origin population i via population j along the
path ψ : i→ j→ k. After the epidemic arrives in population j at time T 1

ij , population i continues to export infections to
population j before the epidemic arrives in population k at time T 1

ik (Fig. 58). Based on the two-population model, each
imported infection that arrives in population j at times T 1

ij , T
2
ij , . . . causes new exponential spreading at the hub-adjusted

rate λjk. The overall disease prevalence, Ij(t), in population j at time t is therefore the sum of disease prevalence over all
exponential spreadings

Ij(t) =
∞∑

m=1

I{t > Tm
ij }e

λjk(t−Tmij ), (101)

where Tm
ij is the mth EAT in population j and I{·} is the indicator function.

Based on the two-population model, the exportation of infections from population j to population k is a non-
homogeneous Poisson process with the intensity function wijIj(t), which itself is a complex stochastic process due to
ts dependence on the random variables T 1

ij , T
2
ij , . . .. This leads to the probability density function of the random variable

n
ik (for n = 1, 2, . . .), conditional on the prevalence Ij(t) (and hence T 1

ij , T
2
ij , . . .), in the form

gn(t|wjkIj) = fPoisson

[
n− 1, wjk

∫ t

0
Ij(u)du

]
wjkIj(t), (102)

here fPoisson(·, µ) is the probability mass function of a Poisson random variable with the mean µ. Consequently, the
nconditional probability density function of the random variable T n

ik is

ET1ij ,T2ij ,...
[
gn(t|wjkIj)

]
, (103)

where integration proceeds over the joint probability density function of T 1
ij = t1, T 2

ij = t2, . . ., which in turn is given by
Eq. (98) after replacing λi with λij to account for the hub effect.

Ref. [890] proceeds to demonstrate that the complex dependence on T 1
ij = t1, T 2

ij = t2, . . . can be simplified with a
little loss of accuracy. To this end, the following certainty equivalent approximation (CEA) is made; Tm

ij ≈ E[Tm
ij |T

1
ij ] for all

m > 1. An intuitive interpretation is that most of uncertainty in the mth EAT in population j is due to uncertainty in the
first EAT in this population, where the latter uncertainty is characterised by the probability density function in Eq. (92)
after inserting n = 1 and replacing λi with λij to account for the hub effect. The prevalence Ij(t) becomes

ICEAj (t) =
∞∑

m=1

I
{
t > E

[
Tm
ij |T

1
ij

]}
eλjk

(
t−E[Tmij |T

1
ij ]
)
=

∞∑
m=1

I
{
t > T 1

ij +∆Tm
ij

}
eλjk

(
t−T1ij−∆Tmij

)
, (104)

where from Eq. (99) it follows

∆Tm
ij = E

[
Tm
ij |T

1
ij

]
− T 1

ij =
1
λij

exp
(
αij

λij
eλijT

1
ij

) m−1∑
q=1

Eq

(
αij

λij
eλijT

1
ij

)
. (105)

inally, the unconditional probability density function of T n
ik is given by

ET1ij
[
gn
(
t|wjkICEAj

)]
. (106)

Although the last expression is perfectly suitable to handle EATs for all populations in the set D2, additional
pproximations are necessary to handle populations in sets Dc , c ≥ 3. One such approximation is path reduction [890] by

which the path ψ : i→ j→ k is treated as the direct path ψ ′ : i→ k. This allows us, for n = 1, to replace the probability
density function in Eq. (106) with the probability density function in Eq. (92), but with suitably corrected parameters
f1(t|λψ , αψ ). The corrected parameters λψ and αψ are obtained by minimising the Kullback–Leibler divergence (i.e., the
relative entropy) [890,963] for the first EAT through the path ψ

DKL =

∫
∞

0
ET1ij

[
g1
(
t|wjkICEAj

)]
ln

ET1ij
[
g1
(
t|wjkICEAj

)]
f1(t|λψ , αψ )

. (107)

he quantity DKL can be understood as a measure of how much one probability distribution differs from another, reference
robability distribution. By minimising the quantity DKL, we therefore reduce the two leg path ψ to the one-leg path ψ ′
uch that the probability distribution of the first EAT in population k remains unaffected. Epidemic spread from the origin
opulation i to any population k in D2 is thus regarded as a two-population problem, but with the local epidemic growth
ate λψ and the adjusted mobility rate αψ . If we now have an even longer path ϕ : i → j → k → m (i.e., ϕ ∈ D3), we
first apply path reduction to the two-leg part i→ j→ k, and then treat the remainder with the methods developed for
the set D (Fig. 59B, C).
2
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Fig. 60. Numerical validation of analytics for the whole worldwide air-transportation network. A, Multiple acyclic paths may connect downstream
population k to origin population i. B, Q–Q plots comparing the analytical and simulated quantiles of various EATs for downstream populations in
the whole worldwide air-transportation network. Insets show the corresponding histograms of the percent error in the expected EATs. The origin of
the epidemic was again assumed to be in Hong Kong. The same 100 epidemic scenarios as in Fig. 56 were used. Data points are coloured in blue
for 255 D1 populations, yellow for 1839 D2 populations, and red for 207 D3 and 7 D4 populations.
ource: Reprinted figure from Ref. [890] under the Creative Commons Attribution 4.0 International (CC BY 4.0).

odelling the whole worldwide air-transportation network. To find EATs for the whole worldwide air-transportation
network, it is necessary to account for the fact that each downstream population k can be connected to origin population
i via multiple paths (Fig. 60A). Furthermore, paths may include cycles and may intersect one another, implying that there
is some degree of dependence between them. It is intuitive to assume that cycles introduce considerable delays, which
makes path with cycles largely irrelevant relative to acyclic paths. If it also holds that dependence between acyclic paths
is sufficiently weak to treat them as almost independent, then the following calculation becomes plausible. First, all paths
that connect origin population i to downstream population k should be decomposed into a set Ψik of ‘independent’ acyclic
paths. Then, all these pseudo-independent paths are fully reduced until they are characterised by the parameters λψ and
αψ . Finally, EATs for population k can be approximated by the superposition of non-homogeneous Poisson processes [960]
such that the intensity function of the superpositioned process is

∑
ψ∈Ψik

αψ exp(λψ t). Numerical results show that
the entire analytical framework combining the two-population analytics, adjustment for the hub effect, adjustment for
continuous seeding, path reduction, and path superposition accurately estimates EATs for almost all populations in the
worldwide air-transportation network (Fig. 60B).

10.4. Bayesian inference of epidemiological quantities

Bayesian inference is a class of statistical methods for data analysis and parameter estimation based on Bayes’
theorem [964]. Let P(A) and P(B) be the probabilities of observing events A and B, respectively. Let P(A|B) be the conditional
probability of observing event A given the observation of event B, and P(B|A) the conditional probability of observing event
given the observation of event A. Bayes’ theorem says that these two conditional probabilities are related by

P(A|B) =
P(B|A)P(A)

P(B)
. (108)

n analogous relationship links data to model parameters. With D denoting the observed data and θ denoting the model
arameters of the data generating process, Eq. (108) can be rewritten as

P(θ |D) =
P(D|θ )P(θ )∫
P(D|θ )P(θ )dθ

. (109)

he prior probability P(θ ) represents initial beliefs about the model parameters before any data analysis. The likelihood
unction P(D|θ ) represents the conditional probability of observing the data D given the parameters θ . The posterior
probability P(θ |D) summarises the updated knowledge about the parameters upon synthesising the prior knowledge with
the observed data.

The denominator of Eq. (109) requires integration over all model parameters θ , which is often very complex and
analytically intractable. Numerical integration may also become computationally prohibitive as the number of parameters
increases. However, the denominator only plays the role of a normalisation constant. Sufficient for inference is the
proportionality

P(θ |D) ∝ P(D|θ )P(θ ). (110)
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ccordingly, Bayesian inference mainly comprises two steps; (i) formalising the prior distribution of each model parameter
sing background knowledge and literature reviews and (ii) designing the likelihood function by using probabilistic
odels to account for the underlying data-generating process.
Specifying prior distributions is a nontrivial task [964]. Existing studies in the fields of infectious diseases modelling,

etwork theory, bioinformatics, and statistical physics tend to use the simplest uninformative flat or diffuse prior [965].
he main aim of such a simplification is to assess the capacity of the likelihood model in fitting the observed data. Despite
eing useful in resolving low-dimensional problems with a few parameters to infer, the flat or diffuse prior cannot be
egarded as a universal tool for fitting. In particular, for high-dimensional problems with many parameters to infer, the
sage of flat or diffuse priors can lead to biased estimations or convergence failures [964]. Recent progress in the field of
ayesian inference suggests that even weakly informative priors may be a better option. How to set up prior distributions
s explained in detail in Refs. [966,967].

To estimate model parameters, Bayesian methods often formulate the likelihood function using probabilistic models.
he purpose of such models is to describe the data-generating process behind observed data. In this section, we proceed
y outlining two epidemiological case studies to explain how to develop the likelihood function using probabilistic models
or Bayesian inference.

nferring the basic reproductive number R0 for the 2009 influenza A(H1N1) in greater Mexico city. As briefly discussed at the
eginning of this section, the basic reproductive number R0 is an important epidemiological quantity, giving the expected
umber of secondary infections induced by an infectious person in a fully susceptible population. Estimating R0 during
he early stage of an outbreak is key to understanding the potential of the disease for interpersonal transmissions, the
equirements for a vaccine to achieve herd immunity, and the extent of non-pharmaceutical interventions to control the
utbreak.
Here, we look at the estimation of R0 in the case of the 2009 influenza A (H1N1) epidemic in Greater Mexico City.

ef. [968] is well-known for presenting a maximum likelihood method that was used to estimate R0 in this particular
ase. The method runs a large number of computer simulations to explore the parameter space, which is computationally
o intensive that it requires the use of a supercomputer. Ref. [890] lessens the computational burden by using Bayesian
nference in conjunction with disease-exportation records from Mexico to the first 12 countries as summarised in
ef. [968]. This inference combines the two-population model in Eq. (92) with adjustments for the hub effect in Eq. (100).
The estimates of the basic reproductive number R0 for the 2009 influenza A(H1N1) using the GLEAM simulator powered

y high-performance computing [968] equal 1.65 with the 95%-confidence interval (CI) [1.54, 1.77], 1.75 with the 95% CI
1.64, 1.88], or 1.89 with the 95% CI [1.77, 2.01] depending on whether the outbreak in La Gloria, Mexico, started on 11,
8, or 25 February 2009, respectively. Bayesian inference, by contrasts, rests on a likelihood function that can be written
n a closed form that only depends on the basic reproductive number R0

L(R0) =
∏
j∈A

f1(tj|λij, αij)
∏
j∈B

F1(tj|λij, αij), (111)

where population i denotes the Greater Mexico City as the epidemic origin, tj denotes the observed first EAT for population
j which can be exact (set A) or left-censored (set B), λij = λi −

∑
k̸=jwik denotes the hub-adjusted epidemic growth rate,

nd αij denotes the adjusted mobility rate. It holds that R0 = 1+λiZ , where Z is the mean infectious period. This likelihood
function leads to the same estimates of R0 as the GLEAM simulator but without relying on high-performance computing
(Fig. 61). Such a substantial reduction in computational complexity and resource requirements is expected to greatly
improve the efficiency and timeliness of pandemic forecasting in the future.

Estimating the transportation risk of Covid-19 from wuhan to other cities in China. Covid-19 is caused by the SARS-CoV-2
virus. Due to the rapid global expansion of this virus, rising death numbers, unknown animal reservoir, and the increasing
evidence of interpersonal transmissions [969], the World Health Organisation (WHO) declared a public-health emergency
of international concern on 30 January 2020. An important concern at the time was the risk of new cases spreading from
Wuhan to other locations. This concern was addressed in Ref. [955], a quick case study performed during early 2020 using
the methods proposed in Ref. [890].

Estimating the risk of new cases spreading from an origin population outwards begins with an epidemiological model.
Let ∆IW(t) be the daily number of new infections in Wuhan from 1 December 2019 through 22 January 2020. Based on
the epidemiological data from the first 425 Covid-19 cases confirmed in Wuhan by 22 January 2020 [969], the epidemic
was assumed to grow exponentially

∆IW(t) = i0 exp(λt), (112)

where i0 is the number of initial cases on 1 December 2019, and λ is the local epidemic growth rate between 1 December
019 and 22 January 2020. New Covid-19 cases were typically detected with a mean delay of D = 10 days [970], which
ncluded an incubation period of 5–6 days [969] and a delay from symptom onset to detection of 4–5 days. With this in
ind, the number of infectious cases at time t is given by

IW(t) =
t∑
∆IW(u), (113)
u=t−D
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Fig. 61. Inference of the basic reproductive number R0 for the 2009 influenza A(H1N1) pandemic in Greater Mexico City. The value of R0 is inferred
sing the first EATs for the first 12 countries seeded by Mexico, as documented in Ref. [968]. The red curve and the red-shaded area respectively
ndicate the posterior medians and the 95% credible intervals. The blue dots and error bars respectively show the mean and the 95% confidence
ntervals from Ref. [968] depending on whether the influenza A(H1N1) pandemic started in La Gloria, Mexico on 11, 18, or 25 February 2009.
ource: Reprinted figure from Ref. [890] under the Creative Commons Attribution 4.0 International (CC BY 4.0).

nd the prevalence of infectious cases is

η(t) = IW(t)/NW, (114)

ith NW = 11.1 million denoting the population size of Wuhan.
The next step in estimating the risk of new cases spreading from an origin population outwards entails specifying
model of mobility. Assuming that the visitors to Wuhan and the residents of Wuhan share the same daily risk of

nfection, a non-homogeneous Poisson process can be used to estimate the risk for exporting Covid-19 infections from
uhan [890,957,958]. Let Wj(t) be the number of Wuhan residents travelling to city j on day t , and Mj(t) the number

of travellers from city j travelling back from Wuhan on the same day. The intensity function of the non-homogeneous
Poisson process is then η(t)

[
Wj(t)+Mj(t)

]
, and the probability of introducing at least one Covid-19 case from Wuhan to

city j by time t is

1− exp
(
−

∫ t

t0

η(u)
[
Wj(u)+Mj(u)

]
du
)
, (115)

where t0 is the start of the study period, that is, 1 December 2019.
To estimate the unknown parameters, such as the number of initial cases i0 and the local epidemic growth rate λ,

likelihood function is needed. This function can incorporate diverse information, including the information on disease
xportations outside of China even if risk is to be quantified solely for Chinese cities. Ref. [955] in particular used the data
n the first EATs due to 19 Wuhan residents who travelled to 11 cities outside of China before 22 January 2020.
Let Nj be the number of infectious Wuhan residents detected at location j outside of China, and t ij the time at which

the ith detection occurs. Furthermore, let t0j denote 1 January 2020, which is the date on which international surveillance
for infected travellers from Wuhan began. Finally, let te denote 22 January 2020 which is the end of the study period. As
mentioned above, the rate at which infected residents of Wuhan arrive at location j at time t is η(t)Wj(t). Accordingly,
the likelihood function for observing the EATs due to 19 Wuhan residents travelling outside of China by 22 January 2020
is

11∏
j=0

exp

(
−

∫ te

t
Nj
j

η(t)Wj(t)dt

) Nj∏
i=1

η(t ij )Wj(t ij ) exp

(
−

∫ t ij

t i−1j

η(t)Wj(t)dt

)
. (116)

The first product quantifies the probability of not seeing any exportations at location j between the time of the Njth
exportation and the study end. The second product quantifies the probability density of seeing the ith exportation at
location j at time t ij . All cities included in the study but without observed Covid-19 cases before 22 January 2020 were
treated as a single location indexed by j = 0.

With the likelihood function in Eq. (116), it becomes possible to estimate the number of initial cases i0 on 1 December
2019 and the local epidemic growth rate λ between 1 December 2019 and 22 January 2020. Ref. [955] used the Markov
Chain Monte Carlo method with the Hamiltonian Monte Carlo sampling and non-informative flat priors. By assuming
that the incubation period is exponentially distributed with the mean L of 3–6 days and the infectious period is also
exponentially distributed with the mean Z of 2–7 days, the basic reproduction number is R = (1 + λL)(1 + λZ). With
0
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Fig. 62. Risks of exporting Covid-19 from Wuhan, China, before the lockdown on 23 January 2020. A, Daily travel volume to and from Wuhan. B,
Estimated and confirmed cumulative Covid-19 cases in Wuhan. Green line and grey shaded area indicate the mean and the 95% credible interval
(CrI) of the estimated cumulative true infections since 1 December 2019. Black dots indicate the cumulative confirmed-case counts during 1–22
January 2020. January 10 marks the beginning of the Spring Festival travel season in China. C, Probabilities that Chinese cities import more than
one Covid-19 case from Wuhan by 22 January 2020. 131 cities (orange and red circles) exhibited a high risk of more than 50%.
Source: Reprinted figure from Ref. [955] under the Creative Commons Attribution 4.0 International (CC BY 4.0).

all the parameters estimated, Eq. (115) calculates the risk of transporting at least one case from Wuhan to a downstream
city j before the lockdown of Wuhan on 23 January 2020 (Fig. 62).

Ref. [955] estimates the Covid-19 doubling time (= ln(2)/λ) at 7.31 days with the 95% credible interval (CrI) [6.26, 9.66]
days. Other studies using similar methods have yielded congruent results; for example, Ref. [956] estimates the doubling
time at 6.4 days with the 95% CrI [5.8, 7.1] days and the basic reproductive number R0 at 2.7 with the 95% CrI [2.5, 2.9].
Ref. [971] presents a metapopulation network model covering 375 Chinese cities and employs Tencent migration data to
capture population movements during the 2021 Spring Festival period in China. By fitting the model to the reported 801
Covid-19 cases throughout China after the lockdown of Wuhan on 23 January 2020, the basic reproductive number R0 is
estimated at 2.38 with the 95% CrI [2.03, 2.77]. Interestingly, Ref. [972] estimates the basic reproduction number during
the first wave of Covid-19 in mainland China at R0 = 5.7 with the 95% confidence interval [3.8, 8.9], which is inconsistent
with other studies. This extreme result, however, may be due to an improper assumption of a single infection occurring
at the initial time.

10.5. Challenges and future work

We have taken a look at the state of the art in epidemiological modelling and how it relates to the budding field of
digital epidemiology. Here, we outline some pressing issues and ideas for further progress.
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The metapopulation approach described herein considers mixing in each of the populations (i.e., cities) to be
homogeneous. However, looking at mobility patterns only on the intercity scale hides away important epidemiological
phenomena that happen on the intracity scale [973,974]. Ref. [975], for instance, describes a metapopulation susceptible–
exposed–infectious–removed (SEIR) model that incorporates intracity mobility to explore the spread dynamic of Covid-19
in ten metropolitan areas in the US. Doing so has enabled identifying higher infection rates among disadvantaged racial
and socioeconomic groups because of the differences in mobility. Specifically, disadvantaged groups have relatively little
control over reducing their mobility and consequent exposure to infectious diseases.

In addition to mobility patterns, the epidemiological importance of contact patterns is impossible to overlook. These
latter patterns have been shown to be highly assortative with age; especially school children and young adults tend to mix
with similarly aged people [976–978]. This leaves younger populations potentially more vulnerable to infectious diseases
unless there are attenuating biological circumstances, as is the case with (the early variants of) SARS-CoV-2 [979].

Another key factor in epidemiology is individual heterogeneity in the ability to transmit an infectious disease. Super-
spreaders, for example, cause disproportionate number of secondary cases during the outbreaks of measles, influenza,
rubella, smallpox, Ebola, monkeypox, SARS, and Covid-19. In the case of Covid-19, about 19% of infectious individuals
seed 80% of all local transmissions [980]. SARS-CoV and SARS-CoV-2 viruses have, in fact, recently been shown to cause
the number of secondary infections that follows a fat-tailed distribution, thus emphasising a large heterogeneity in
transmission ability among individuals [981]. Accounting for this heterogeneity in epidemiological models generates the
results that differ substantially from average-based approaches such that outbreaks are rarer but more explosive [982].
Future models should therefore account not only for heterogeneity in contact networks, but also heterogeneity in
infectiousness and possibly other epidemiological parameters.

Since the onset of the Covid-19 pandemic in December 2019, the amount of research on non-pharmaceutical
interventions has exploded [983]. A big reason for such an explosion of interest is that non-pharmaceutical interventions
are the only means of reducing the spread of a novel pathogen. They are also effective. For example, social distancing alone
has proven sufficient to control Covid-19 in China [984]. Fast isolation of infectious individuals has furthermore reduced
the time between successive disease onsets in a transmission chain (i.e., the serial interval), thus signalling effectiveness
in preventing multiple secondary infections that would have arisen without isolation [985]. These examples show that
determining the optimal combinations of non-pharmaceutical interventions in given circumstances may save many lives,
and should therefore be a major component of epidemiological modelling.

This chapter has hopefully demonstrated just how much data-hungry epidemiology is. A major limitation in the use
of digital-data sources, such as Google Trends, Twitter, and Facebook, is that none of them have been constructed with
epidemiology in mind. This limitation can be overcome by establishing data standards and specialised systems akin to
HealthMap [942] and Influenzanet [986], but also proving the usefulness of these systems to public-health agencies.
Achieving so is no small feat because complicated data-analysis and modelling methodologies are often too demanding
for otherwise busy public-health officials. In this context, relying on easy-to-use interactive interfaces called visual
analytics [987] may help. Ref. [988], for example, demonstrates how to effectively couple data mining and agent-based
epidemic modelling with a visual-analytics environment to facilitate human decision making in controlling infectious
diseases.

11. Environment

Anthropogenic impact on the geological record is such that the 20th century saw a start of a new geological
epoch—Anthropocene [989]. While climate change may be the (politically) most prominent issue today, our civilisation
has additional profound impacts on every single ecosystem through pollution and habitat loss. Surprisingly, these are
ultimately social issues because only through societal consensus on the need for action can they be controlled [990].

Building social consensus against environmental degradation is extremely difficult. Preventing environmental degra-
dation incurs unwanted costs either through the need for direct investment into unprofitable infrastructure and processes
(e.g., water treatment facilities, carbon capture, safe waste disposal), or through opportunity costs (mostly land use
restrictions due to ecosystem conservation, e.g., nature protected areas). Hence, to stay competitive, economies generally
allow externalisation of environmental degradation costs until it is proven that costs of environmental degradation
outweigh their economic benefits. Even once proven, building the social consensus can be extremely difficult; climate
change and plastic pollution are just the two most prominent current cases that highlight the difficulties.

Despite the difficulties, change is possible if sufficiently strong scientific case can be made, and costs of environmental
degradation can be quantified. For example, theory on the adverse effect of at least some chlorofluorocarbons (CFCs)
on the protective ozone layer was settled in 1974 [991], and experimentally confirmed in 1985 [992]. It took only two
years following the indisputable evidence for international ratification of a treaty to phase out the use of ozone-depleting
substances [993], and the ozone layer is recovering [994]. Tetraethyllead in gasoline followed a similar path from suspicion
in mid-1920s [995] to ban in 1990s and 2000s as scientific evidence pioneered by Patterson [996] accumulated. Due to
largely local nature of the problem, nations were able to take regulatory steps independently, with Japan banning low-
octane lead gasoline in as early as 1975 [997], and some countries continuing the use to date. Similar stories can be told of
numerous other chemicals ranging from mercury, to dichlorodiphenyltrichloroethane (DDT), to polychlorinated biphenyls
(PCBs) and polybrominated diphenyl ethers (PBDEs).
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History—and the present—clearly demonstrate that the burden of proof that an externality is overly damaging squarely
lies with environmental science, declaratory proclamations of the precautionary principle notwithstanding. Furthermore,
the weight of the evidence required to elicit science-based activism that may eventually lead to societal consensus
and (ultimately) solutions is extremely high. To provide sufficiently strong evidence, environmental science had to
evolve, mostly towards physics. Because climate change will be—due to its importance—discussed in a separate section
(Section 12), this section will focus on pollution and physical habitat loss. Historically, physical habitat loss due to
competition of wildlife for natural resources with humans has been the chief driver of extinctions; pollution as an
environmental problem, however, is a relatively new phenomenon. Before the industrial age, humans simply could not
(and had no motivation to) produce toxic chemicals at a scale that could severely impact wildlife.

11.1. Pollution

There are many types of pollution, all traceable to introduction of materials or energy into the environment. The
materials range from simple to complex chemicals, to particles, or even displaced natural materials. Energy pollution
can also be diverse, ranging from noise, to non-ionising electromagnetic radiation (including light), to ionising radiation.
Judging impact of pollution can be challenging because the judgement depends on both the point of view, and on
the existing knowledge. For example, radioactive debris from the Chernobyl nuclear plant explosion were not negative
from the point of view of wildlife; in fact, wildlife is thriving despite the moderately toxic environment [998] simply
because anthropogenic influence before evacuation was even worse. Focusing on the organismal level helps minimise
such ambiguities.

Traditionally, toxicity has been estimated by exposing model organisms to varying concentrations and doses of
chemicals in food or the environment while tracking endpoints like survivorship or mortality, fertility, cognitive ability,
and—more recently—biomolecular targets like gene expression, protein levels, and reactive oxygen species. Such data
yields dose–response curves used to predict the no-effect concentration, that is, the environmental concentration at which
no negative effects are expected. Some calculations of the no-effect concentration simply divide by 1000 the concentration
at which 50% of organisms in short-term experiments showed a response, such as death or some other endpoint [999].

Considering the consequences of getting it wrong, the inadequacy of testing and observations as bases for regulation
is staggering:

• Species or even individuals have different sensitivities to toxic exposure; the precautionary principle demands that
generally the most sensitive model organisms should be used [999], but the choice of test organism is limited because
in general only animals thriving in laboratory environments can realistically be utilised, and endangered species
cannot be used at all.
• Exposures in the lab are standardised, and typically last only a small fraction of organisms’ life span [1000].

Consequently, multigenerational studies are extremely rare and effects of long-term or cross-generational exposure
are rarely captured.
• Environmental conditions such as food availability, temperature, and humidity change exposure and its effects [1001].

Relevance of tests in standardised laboratory environments to effects in highly variable natural environments is,
therefore, limited.
• Ecological feedbacks that concentrate toxicants, such as biotransformation and bioaccumulation, can result in much

higher exposure for some species than indicated by experimental observations [1002].
• Even though chemicals mix in the environment, and mixtures can exacerbate toxicity [1003], most chemicals are

tested—and their legal limits set—independently.
• Only a small fraction of new chemical compounds are tested for toxicity. More than 20 million substances

were reported as of January 2017, with about a million compounds added annually at an exponentially growing
rate [1004]; number of tested chemicals is measured in thousands.

Accordingly, relying on testing for legislation is highly impractical at best, misleading or wrong at worst. Consequences of
underrating dangers may be dire—as previous examples show, it is extremely difficult to eliminate impacts of a chemical
once it permeates the environment. Microplastics [1005] and whatever is causing the decline of pollinators [1006] are
shaping up to be the next major problems, but each new compound presents a new risk by itself or in synergy with other
pollutants. High-throughput screening could help identify the most dangerous chemicals and direct preventive research
in the future [1007], but process-based modelling is leading the way in predictive ecotoxicology.

Process-based models rely on physical principles to explain observations, predict effects of hitherto unobserved
exposures, and capture interactions between organisms and the environment. Although process-based models cover the
whole range of scales, from molecular to landscape and ecosystem, the scales are not sufficiently linked [1008].

For example, quantitative structure–activity relationship (QSAR) models link characteristics of chemicals to their
physicochemical, biological, and environmental properties. While essentially correlative in nature, QSARs use mechanistic
descriptors derived from physico-chemical properties of chemicals. Types of the properties used to derive the descriptors
determine QSAR dimension: chemical formula (0D), sub-structural fragment (1D), graph theory (2D), spatial geometry
(3D), conformation/orientation/protonation state (4D), induced fit on ligand-based virtual or pseudo-receptor model (5D),

5D plus other solvation conditions (6D), and real target receptor model data (7D). In particular, descriptors in 3D QSARs
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nvolve a number of concepts from physics such as energy minimisation, classical approaches to molecular mechanics,
uantummechanics implemented using Born–Oppenheimer or Hartree–Fock approximations, or density functional theory
o reduce computational loads and reduce descriptors to quantitative variables suitable for the correlative step in QSAR
nalysis. The correlative step, that is, relating descriptors to outcomes, can utilise any of the number of statistical methods
anging from multiple regression to artificial neural networks.

Despite their proven track record, QSARs have limitations. Due to the statistical nature of development and rigorous
alidation requirements, QSARs are still very data-intensive. Furthermore, when used to predict high-level responses (such
s mortality), QSARs offer limited insight into metabolic pathways of toxic action. Understanding these, however, can
e crucial for considering effects of chemicals in untested systems and mixtures. To overcome these shortcomings, the
rganisation for Economic Co-operation and Development (OECD) actively supports development of a modular framework
f metabolic cause–effect transfer functions: adverse-outcome-pathway (AOP) framework [1009].
The AOP framework captures effects of exposure by modelling a sequence of all relevant molecular and cellular events.

he framework consists (as of January 2021) of more than 2000 Key Events (KEs). Exposure to a stressor triggers a KE that
assumes the status of a Molecular Initiating Event (MIE), which initiates a chain of KEs through a series of KE Relationships
KER) akin to if→then prescriptions. The chain terminates with an Adverse Outcome (AO). For example, in AOP #15 any one
f 10 stressors recognised by the framework can cause DNA alkylation (MIE), which through KER #24 leads to inadequate
NA repair (KE #155). KE #155 then through KER #164 leads to KE #185 (increase in mutations). The increase, through
ER #202, leads to a heritable increase of mutations in offspring (AO #336). Elements of AOP #15 relate to seven other
OPs. Each element in the AOP chain has detailed documentation, a rigorous scientific background, and has been reviewed
y experts.
Due to stringent background and review requirements, only 16 of more than 300 existing pathways have been

ndorsed across the OECD, but the framework is expected to expand exponentially as new pathways reuse old events and
elationships, thus requiring fewer new ones. Currently, the framework focuses on humans, but similarity of organisms on
io-molecular level offers hope that eventually other organisms could benefit as well. High-throughput screening could
rovide a fast and affordable way to determine new key events and relationships. Currently, AOPs are not suitable for
nvironmental ecotoxicology, making Dynamic Energy Budget (DEB) model the tool of choice for advanced links between
nvironmental exposure and ecologically relevant organism-level endpoints.
DEB theory [8] is, essentially, an application of the laws of thermodynamics to all three types of macrochemical

eactions of a heterotrophic aerobe: assimilation, growth, and dissipation [9]. Focusing on (i) the four building blocks
onstituting 99% of living biomass (C, H, O, and N), and (ii) effects of a fairly limited number of ‘hub’ metabolites crucial for
etabolic-network function that are markedly similar between species on macromolecular and cellular levels, the theory
akes a number of simplifications leading to a robust theoretical framework able to capture ontogeny of living organisms
nd make testable predictions. Standardised DEB models are aggregated in the AmP database [1010], which at the moment
f writing contains entries for over 2800 species. Detailed derivation of the standard DEB for the physics-minded reader
s given in Ref. [9].

Starting from the first law of thermodynamics applied to an organism, the rate of change in internal energy U is:

dU
dt
= Q̇ + Ẇ +

∑
i

h̄i
dMi

dt

⏐⏐⏐⏐
in
−

∑
i

h̄i
dMi

dt

⏐⏐⏐⏐
out
, (117)

here Q̇ and Ẇ respectively represent heat-transfer rate and mechanical power, i ∈ {X, P} stands for organic substances
n food and faeces, i ∈ {C,H,O,N} stands for metabolites, h̄i are molar enthalpies, and Mi is the amount of substance i in
he organism. Next, using the mass, energy, and entropy balances, it can be shown that the total organismal Gibbs free
nergy is a sum of Gibbs free energies in compartments of the organism, assuming homeostasis of each compartment, that
s, the chemical composition of each compartment remains constant throughout the life of the organism. The standard
EB theory recognises two compartments: energy reserve and structure, with an additional compartment tracking energy
ommitted to maturation and reproduction (Fig. 63). If the organism is isomorphic (i.e., of constant shape), energy reserve
nd structure in a standard DEB model can be described by a simple set of coupled ordinary differential equations,
specially when scaled

de
dτ
= g

f − e
l
, (118a)

dl
dτ
=

g
3
e− l− lT
e+ g

, (118b)

here 0 ≤ f ≤ 1 is the scaled functional response representing surface-specific assimilation rate relative to the maximum,
is the energy density of reserve relative to the maximum, l is the length of the organism relative to the maximum possible

length for f = 1, g is a compound parameter called the energy investment ratio, and lT is the heating length, scaled
parameter accounting for energy spent on maintaining target body temperature in endotherms. In constant environments,
the standard DEB model converges to the von Bertalanffy growth equation [1011], which is still the most widely used
energy-based equation for organismal growth. The von Bertalanffy growth equation is, however, a demand-side model; it
can help estimate energy required for observed growth, but cannot predict how growth (or any other processes) would
respond to changes in the environment.
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Fig. 63. Basic metabolic processes of heterotrophic aerobes according to standard DEB theory. Food is assimilated into reserve. In turn, the reserve is
(i) converted into structure representing growth, (ii) committed to reproduction when possible, and (iii) used to power various dissipative processes
such as maturation, maintenance, and metabolic inefficiencies (i.e., overheads) of growth, assimilation, and reproduction. Non-assimilated food (faeces)
and other excess metabolites such as carbon dioxide, water, and nitrogenous waste are excreted into the environment.

Fig. 64. Cadmium-ion toxicity. DEB model for Cd-ion toxicity predicts bacterial population dynamics for exposures of up to 150mg(Cd)/L (solid
curves) with a single common parameter set fitted only using observations at 0, 10, and 20mg(Cd)/L (dotted curves).
Source: Reprinted figure from Ref. [1013] under the Creative Commons Attribution 4.0 International (CC BY 4.0).

DEB models, on the other hand, make a quantum leap in that they causally link environmental energy and material
availability to organismal growth and reproduction whilst preserving mass and energy balances. Additionally, the standard
DEB theory also enables tracking of metabolism- and stress-related hazard rate, that is, the risk of death due to
accumulated (cellular) damage. These features make some extraordinary feats possible. For example, the ability to
track material fluxes in the context of interactions between the environment and the organism enabled a revolution
in toxicokinetic (the distribution of toxicants) and toxicodynamic (toxicant effects) modelling by (i) resolving a number
of long-standing issues of empirical dose–response curves [1012], and (ii) enabling prediction of bacterial population
dynamics under exposure seven times greater than used for model fitting [1013] (Fig. 64), as well as identification of
nano-toxicity and its mechanisms [1014].

Further exemplary successes achieved by mechanistic modelling advocated by DEB theory include reconstructing
otolith growth in anchovy [1015,1016] that enables tracking of historic environmental conditions and therefore determi-
nation of organism’s population range (Fig. 65). Ecological interactions can explain why a level of exposure that measurably
harms a plant can increase its growth and yield (Fig. 66). Finally, the concept of hazard rate unifies the Weibull (allometric)
and Gompertz (exponential) models of ageing, and is able to explain why hungry mice live longer (Fig. 67).

DEB makes strides in understanding toxic effects of exposure on individual and population levels, but falls short
of the ultimate goal of ecotoxicology: understanding multi-generational effects of toxicants in environmental settings
where multiple toxicants combine and interact with other stressors, and where complex ecological interactions could
greatly affect outcomes. Reaching the goal requires modelling multiple populations exposed to a variety of toxicants in
heterogeneous (spatially explicit) environments.

Many building blocks necessary to reach said ultimate goal of ecotoxicology already exist, and tools reduce barriers
to entry. A conceptual framework has been developed that links the sub-cellular and sub-organismal AOP framework to
individual-level DEB models [1008].
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Fig. 65. Comparison of real and simulated otoliths. A, Seasonal variability in opacity patterns. Observed (dashed) and simulated (solid) variability in
opacity of southern North Sea (NS, black) and Barents Sea (BS, red) anchovy otoliths. B, Opacity images: actual (top left) and simulated (bottom left)
North Sea anchovy otoliths, and actual (top right) and simulated (bottom right) Barents Sea anchovy otoliths. Of note is that only environmental
forcing (temperature and food) differ between the two populations; the model and parameter values are equal in both simulations.
Source: Reprinted figure from Ref. [1015] under the Creative Commons Attribution 4.0 International (CC BY 4.0).

General Unified Threshold model for Survival (GUTS) is a modelling framework for toxicity test analysis in which
‘survival’ is the endpoint [1018], with open source software toolbox available at https://openguts.info. The framework
has been recognised in the Organisation for Economic Co-operation and Development (OECD) guidance for toxicity
testing since 2006 [1019]. Effects of toxicant mixtures have successfully been estimated from effects of each toxicant
alone [1020–1022].

DEBKiss is a simplified version of the standard DEB model that, at the expense of generality, substantially reduces
the barrier to entry to DEB modelling whilst preserving much of the utility, especially for specific questions for which
cross-species comparison is not of primary importance [1023]. Older simple energy budget models exist, most notably
net-assimilation and net-production models [1024]. These too have been proven useful in specific circumstances, but lack
scientific rigour and generality of the standard DEB family of models.

DEBTool is a set of open-source Matlab scripts to estimate parameters of a DEB model and run it. Accompanying this
tool is Add-my-Pet (AmP) database of DEB model parameters containing parameters and data for over 2800 species and
growing. Ref. [1010] provides a good overview of the database functionality.

DEB models are naturally suited for individual based modelling in which each organism is modelled separately;
Ref. [1025] provides a graphical user interface in NetLogo for simple individual-based population modelling. The standard
DEB model can be run via the interface, but more complex features—including spatial heterogeneity—require additional
programming. Population dynamics can be modelled in a number of ways if individual-based approaches are impractical,
including the Euler–Lotka equation [1026,1027], matrix population models [1028,1029], continuous-time physiologically
structured [1030,1031], and integral-projection models [1032]. Of those, matrix population models have a particularly
low barrier to entry and can also separate the population into patches [1033], include predation, and other ecological
interactions. Escalator Boxcar Train tool (EBTtool) is a graphical environment for implementation and analysis of
physiologically structured models based on any physiological model of an individual including DEB.

Maxent [1034] is a Java application that utilises data on species occurrences and environmental conditions to predict
the geographic distribution of species using a maximum entropy approach. The software, appearing in thousands of
publications, has been open source since 2017 [1035]. NicheMapR is an R package available at that serves roughly the
same purpose as Maxent, but is substantially more advanced. While Maxent integrates only observation data, NicheMapR

is able to integrate metabolic models such as DEB, account for heat and water exchange using principles of biophysical
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Fig. 66. Ecological interactions affect the outcome of pollution. Despite clear soybean plant cellular damage caused by exposure to CeO2 nanoparticles
nd negative effects of low exposure to growth and yield, higher exposures surprisingly improve plant growth and yield (inset). DEB model of coupled
lant-bacteroid dynamics provides an explanation. Photosynthate (energy) is utilised for (i) maintenance of the plant, (ii) growth of bacteroids;
emaining energy is used for (iii) seed production with proportion Θ , and plant growth with proportion 1−Θ . Bioaccumulated toxicant affects both
he bacteroids (fR) and the plant (fP ). In nitrogen-poor soil, the bacteroids provide nitrogen needed for plant growth, but in nitrogen-rich soil, the
acteroids reduce energy available to the plant without providing any benefits. Small exposure affects the plant without killing bacteroids, causing
depression in growth and yield. Higher exposures, however, kill off the bacteroids but not the plant. This leaves more energy for the plant, thus

mproving growth and yield. See Ref. [1017] for further details.

Fig. 67. Longevity of mice depends on food abundance. A, Growth of mice. B, Survival probability. Solid curves (model simulations) and data (‘+’)
re shown for food abundances of 0.44 (blue), 0.75 (green), and 1 (red) relative to the maximum. Mice at restricted diets have a smaller metabolic
ctivity that produces less damage-inducing compounds, thus accumulating less damage per unit of time, and living longer. See Ref. [8] for further
etails.
ource: Courtesy of Sebastiaan A. L. M. Kooijman.

cology including behaviour, as well as for microclimate—using micrometereology, soil physics, and hydrology—to which
he organism is exposed [11].

Therefore, frameworks and tools linking scales of biological organisation already exist, with physics providing the
ecessary glue. Crucially, frameworks make predictions that can be falsified, thus respecting the scientific process. Due to
heir mechanistic origins, the tools and frameworks are largely modular and can therefore be used to investigate effects
f other anthropogenic pressures, including climate change and habitat loss.
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1.2. Physical habitat loss

Physical habitat loss happens when a domestic species can no longer inhabit an area. Anthropogenic pressures,
ncluding climate change, can drive habitat loss through change of local environmental conditions that can facilitate
xclusion of a domestic species by introducing—or merely making the local environment better for—an invasive species.
ost habitat loss to date, however, has been due to land and sea use, that is, direct competition between wildlife and
umans for space and related natural resources such as water and, in the case of predators, prey biomass. Measurable
uman influence on the environment may have started millions of years ago [1036]; today, 95% of Earth’s land masses
how human influence, with the remaining 5% being mostly in inhospitable areas, including ice [1037].
Unlike human-driven extinctions, the idea that we might need to preserve at least some of the natural biodiversity is

elatively new. First legal environmental protections focusing on ecosystem preservation sprung up in the second half of
he 18th century, and significantly proliferated only in the 20th. The idea that environmental impact should be assessed at
least for large-scale projects is even newer. The USA was in 1969 the first to require environmental impact assessments for
large-scale projects. To date, protected areas and the assessments remain the most effective tools for habitat preservation
and biodiversity conservation; the number of protected areas has rapidly grown in the past decades, and the range of
projects required to have an environmental impact assessment has been greatly expanded in the developed world.

To date, 15.4% of terrestrial areas and 7.6% of marine areas are classified as protected. These include protected areas
ranging from strict nature preserves to airports [1038]. Strict nature preserves where no human activities are allowed
except scientific monitoring and management interventions are rare. The vast majority of protections allow at least some
activities. Therefore, management of protected areas involves balancing human activities with nature preservation.

More often than not, such management is focused on maximising human activities while keeping indicators of
environmental damage within acceptable limits. Hence, protected areas are managed to a level of human activities just
shy of environmental destruction, that is, to maximum damage levels that the environment can sustain in the long term.
Clearly, this is not ideal even if the managing authority has the greenest of intentions. What we may perceive as the
safe level of damage based on current data may reduce the resilience of the protected ecosystem to the point at which it
succumbs to new pressures, such as the climate change. Tourism in national parks is a poster child for such a balancing
act. Because nature is the main product offered to tourists, managing authorities have a vested interest in preserving the
environment. Nevertheless, visitations are often maximised at the expense of nature [1039].

Similar considerations hold for fisheries, with the added complication that the fishing industry has to contend with
both the regulatory and natural uncertainties. For example, EU sets total allowable catch on (bi)annual basis to preserve
fish stock and biodiversity. Without public subsidies, a particularly low value could decimate the fishing fleet because
the industry may not be able to absorb the reduction in earnings. Such a reduction carries negative social and economic
implications, but also makes the industry unable to respond to a higher allowed catch in the future. Hence, the regulatory
authority has to balance the industry’s need for income stability with conservation goals, often sacrificing one for the
other.

Likewise, environmental impact studies have to balance conservation with the industry’s interest in externalising
as many costs as possible. Typically, a study has to show that the planned project meets environmental standards
set by relevant authorities in terms of environmental indicators (e.g., water purity) and risk mitigation of catastrophic
environmental incidents (e.g., oil spills). Because mitigation of environmental impact is expensive, companies have
large incentives to aim towards the minimums required by the standards. Therefore, as in the case of activities in
protected areas, environmental impact of industry is effectively managed towards the maximum acceptable environmental
degradation.

Defining acceptability is not exclusively in the domain of environmental sciences. Lower environmental standards
attract investments, thus incentivising legislators to be as lax with the standards as the local population will allow.
The willingness of the locals to tolerate environmental destruction partly depends on their awareness of environmental
and health issues, but more so on their standards of living and needs for employment. Therefore, the balance between
conservation and environmental degradation is set at the intersection of environmental sciences, economics, social
sciences, health sciences, and politics. In countries where the population can afford to worry about environmental and
health issues, red lines are drawn at ecological and health tipping points, that is, at environmental damage levels that,
if increased, are all but guaranteed to cause unacceptable irreparable long-term damage to ecosystems or have clearly
measurable effects on human health.

11.3. Tipping points

Tipping point is a point in parameter space at which a small perturbation induces a significant change in the state
of the system (Fig. 68). Such points are a common feature of complex systems, and affect ecology at all scales—from
molecular through organismal, individual and population, to ecosystem level.

Molecular-level tipping points in ecology typically occur when a negative feedback maintaining homeostasis is
overcome by a forcing variable such as exposure to toxicants (Fig. 69). For low levels of exposure, the cell is able to
maintain homeostasis by up-regulating molecular defence and repair mechanisms, even for large amounts of cellular

damage. At the exposure level that exceeds the capacity of biomolecular control, even a small additional exposure will
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Fig. 68. Example of a tipping point in ecosystems. Curves show an ecosystem’s equilibrium state as a function of environmental forcings such as
utrient abundance, temperature, salinity, precipitation, human exploitation etc. Arrows show the direction in which the ecosystem’s non-equilibrium
tate shifts over time given the conditions. A, Ecosystem equilibrium is a monotonic, slightly convex function of conditions. If the ecosystem state
is initially below (above) the equilibrium curve, an upward (downward) shift is to be expected over time. B, Non-linear feedbacks may lead to
pitchfork bifurcation where, for a given condition, multiple equilibria exist (here, three equilibria exist between points P and P ′). This transforms the
ecosystem’s convergence dramatically. If conditions in the tipping point P ′ change ever so slightly, the ecosystem undergoes a large forward shift.
Even if conditions remain constant, a small perturbation close to the tipping point P ′ could induce the shift. This is because the unstable part of
the equilibrium curve (dashed) indicates unstable equilibria around which the direction of convergence changes abruptly. Finally, akin to hysteresis
in ferromagnetic materials, recovery following a forward shift at P ′ requires return of the forcing variable (conditions) all the way to the tipping
point P . See Refs. [802,803,1040,1041] for further details.

initiate a positive feedback loop of damage creation; additional cellular damage reduces the cell’s ability to defend
against exposure and increase in damage, thus accelerating (runaway) damage accumulation. Therefore, runaway damage
accumulation initiated by a molecular tipping point (breakdown of molecular control) leads to death of the individual cell
or organism, thus creating an individual-level tipping point. For complex systems, there could be intermediate states in
which, for example, the organism is able to prevent runaway damage creation if damage levels are low, but not if the
initial damage levels are high (Fig. 69). In such cases, any preexisting damage or additional damage-creating stress would
result in death from exposure levels that would not harm an otherwise unstressed organism. This is particularly important
to note when using experimental exposure data to interpret real-world situations in which organisms are rarely subject
to a single source of stress.

Food abundance is a major forcing in ecosystems that can initiate a number of ecological tipping points. For example,
when food abundance reduces below corresponding tipping-point levels, ontogeny changes dramatically as individuals
cannot grow, mature, or survive. Interestingly, however, even if an individual seems to be thriving, a population might
have crossed a tipping point leading to species extinction (Fig. 70).

There is ample evidence of ecological tipping points, that is, tipping points at the level of whole ecosystems. Among
the best-known examples is overfishing-induced ecosystem regime shift off the coast of Newfoundland in the early
1990s [1044,1045]. The northern cod fishery that operated in the area was a product of systematic cod exploitation from
the 16th century onwards. Since the 1880s, the fishery yielded over 200,000 tonnes of cod annually, but introduction of
new technologies in the 1960s led to an explosion in yields which peaked at 810,000 tonnes in 1968. Technologies in
question included more powerful trawlers equipped with radars, electronic navigation, and sonars. This enabled fishing
longer, over larger areas, and at greater depths. Considerable amounts of non-commercial bycatch was extracted from the
sea, including cod’s prey, the capelin.

The marine ecosystem off the coast of Newfoundland finally gave in to enormous pressure in the early 1990s. In 1991,
the fishery still landed about 129,000 tonnes of cod, which was roughly 69% of the plan for 1992. This plan, however, was
entirely unrealistic, and in the same year, authorities announced a two-year moratorium on cod fishing in response to a
dire state of fish stocks [1046]. The moratorium was eventually extended to a full decade, but even in 2002, there was
no sign of cod recovery. Instead the ecosystem was dominated by invertebrates, crabs and shrimps.

First signs of recovery were reported in 2011 [1047], suggesting that prey-fish stocks (such as the aforementioned
capelin) had exploded in the wake of the cod-fishery collapse. This in turn had put enormous pressure on cod eggs and
larvae. By 2005, however, prey-fish stocks themselves went into a downward spiral, providing a window of opportunity
for the cod. An optimistic assessment of the situation was reiterated in 2015 [1048]. The reported recovery proposes a
dynamically intriguing possibility; namely, a predator species (cod) historically held a prey species (capelin) in check,
but upon the collapse of the predator, the prey multiplied enough to exert pressure on the predator’s offspring, thus
preventing a recovery. Such dynamics will be examined next through the prism of mathematical modelling.

Ref. [1049] presents a food-chain model consisting of an unstructured predator population feeding on a structured
prey species, which in turn feeds on an unstructured resource (i.e., zooplankton) species. The term ‘structured’ designates
that in the prey population there is an explicit distinction between juvenile and adult individuals. This is not the case
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Fig. 69. Example of a molecular tipping point turning to an individual-level tipping point. Solid curves delineate areas of distinct damage dynamics
( dDdt ) as a function of damage (D); the dashed line represents an equilibrium ( dDdt = 0). As damage production due to exposure (P) increases from
ero, the system has a single stable equilibrium, and damage levels are small. When P reaches a critical value of PΦ (black solid curve), further
ncrease in exposure results in two distinct equilibria, a stable and an unstable one (shaded area with a blue solid curve for illustration); damage
evels are controlled unless initial damage levels are too high (D greater than the unstable equilibrium point for the given P). Further increase of P
ast PC leads to a saddle–node bifurcation in that the two equilibria combine into one neutral equilibrium and disappear, thus initiating runaway
ynamics for any D; damage is not controlled, and the organism eventually dies from exposure. See Ref. [1042] for further details.

Fig. 70. Individual- and population-level tipping points caused by plastics. Effects of plastic debris on loggerhead turtles were investigated using
EB. Black curves represent maturation age, while the colour on the graph represents population growth rate depending on the ratio of debris to
ood (y-axis), and residence time of debris in the gut (x-axis). If both are high enough, individuals can neither maturate nor reproduce (the dark
blue zone; individual-level tipping point). In this zone one would not observe reproducing individuals at all. If the ratio and the residence time are
low enough, population is growing, and reproducing individuals can be observed. However, there is a zone (light blue between the white and grey
curves) in which healthy reproducing individuals are observed, but the population is nevertheless going extinct (population-level tipping point). For
loggerhead turtles this is a realistic prospect given that the ratio of debris to food required has already been observed. Process-based modelling
expedites identification of such subtle but extremely important tipping point.
Source: Reprinted figure from Ref. [1043].
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n ‘unstructured’ populations. In the model, the ontogeny of prey individuals is specified in terms of three functions
ependent on the resource abundance, R, and the individual’s body size, l. The ingestion function is

I(R, l) = Iml2
R

Rh + R
, (119)

where Im is the maximum surface-area-specific mass ingestion rate and Rh is the half-saturation constant, that is,
I(Rh, l) = 1

2 Iml
2. The growth function is

g(R, l) = γ
[
I(R, l)
Iml2

lm − l
]
, (120)

where γ is the maximum growth rate and lm is the maximum body size achieved when the resource is abundant, that is,
R→∞. The reproduction function is

b(R, l) =

{
0, for l < lj
rm I(R,l)

Im
, for l ≥ lj,

(121)

where lj is the length at sexual maturation and rm is the maximum surface-area-specific reproduction rate. Additionally,
the prey species is subject to a natural-mortality rate µ and a predator-induced mortality

d(P) =

⎧⎪⎨⎪⎩
0, for l < lb

aP
1+aThB

, for lb ≤ l < lv
0, for l ≥ lv,

(122)

here lb and lv specify the range of body sizes in which the prey species is vulnerable to predation, a is the maximum
redator ingestion rate, and Th is the mass-specific prey-processing time of the predator. The quantity P stands for the

predator abundance, whereas the quantity B is the prey biomass accounting only for individuals with body sizes in the
predation-vulnerability range, lb ≤ l ≤ lv.

The biomass B is not a state variable directly tracked by the model. Instead, the model keeps track of the prey density
c(t, l) of body size l, from which we have

B(t) =
∫ lv

lb

βl3c(t, l)dl, (123)

here a typical weight–length relationship is used with the proportionality constant β . The dynamics of the state variable
(t, l) is given in terms of a partial differential equation

∂c(t, l)
∂t

+
∂

∂t
[g(R, l)c(t, l)] = − [µ+ d(P)] c(t, l). (124a)

To be solvable, this equation needs a boundary condition, which is given in terms of the reproduction function

g(R, l)c(t, l) =
∫ lm

lj

b(R, l)c(t, l)dl. (124b)

The dynamics of the state variable R is given in terms of an integro-differential equation

dR
dt
= ρ(K − R)−

∫ lm

lb

I(R, l)c(t, l)dl, (124c)

here ρ is the zooplankton inflow rate and K is the corresponding carrying capacity. The model is fully specified with a
ifferential equation describing the predator dynamics

dP
dt
= ϵd(P)B− δP, (124d)

where ϵ is the growth efficiency of predator on prey and δ is the predator’s natural mortality.
The described model generates extremely rich dynamics. Here, we are interested in the case of increasing human

exploitation of the predator species, which increases the predator’s mortality rate. Depending on this mortality rate,
there are two key thresholds, the invasion threshold and the persistence threshold (Fig. 71). Below the former threshold,
predator is abundant, as are adult prey and zooplankton, while juvenile prey is rare. Between the two thresholds, the
predator abundance decreases with the mortality rate, allowing adult prey to reach its peak, which in turn means more
offspring (i.e., juvenile prey) and a consequent zooplankton reduction. Above the latter threshold, however, predator
suddenly goes extinct, adult prey and zooplankton become rare, while juvenile prey abounds. This is the ecosystem’s
tipping point.

Close to the tipping point various perturbations may turn the ecosystem’s state upside down even if the predator
mortality rate is below the persistence threshold. For example, an adverse event affecting adult prey would be sufficient
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Fig. 71. Zooplankton, prey, and predator dynamics in a marine ecosystem subjected to human exploitation of the predator species. Below the
invasion threshold, zooplankton, adult prey, and predator are abundant, while juvenile prey is rare. Above the persistence threshold zooplankton and
adult prey are rare, juvenile prey is abundant, while predator goes extinct. Between the two thresholds zooplankton and juvenile prey are inversely
related, while adult prey will be abundant if predator is abundant too or adult prey will be rare if predator goes extinct. Red vertical lines (black
curves) denote stable equilibria without (with) predator. Red arrows indicate the direction of the model’s convergence, whereas the black arrow
represents a perturbation affecting the abundance of adult prey. See Ref. [1049] for further details.
Source: Courtesy of Andre M. de Roos.

o change the model’s convergence in such a way that adult prey becomes rare and predator ultimately collapses (Fig. 71).
s a consequence, the ecosystem would be dominated by juvenile prey, just as was the case off the coast of Newfoundland
here capelin and other prey-fish stocks became abundant after the cod fisher had gone bust.

1.4. Future outlook

Arguably, the primary socially relevant objective of modern environmental sciences should be to identify and improve
ur understanding of tipping points where irreparable environmental damage becomes inevitable. Indeed, incorporation
f physics into environmental sciences leads to an unprecedented improvement in our understanding of such tipping
oints. Simultaneously, incorporation of economics through the concept of ecosystem services has raised awareness of
rade-offs between short-term monetary gain from allowing externalisation of environmental costs, and long-term losses
rom reduced services provided by the ecosystem [1050]. Now more than ever, therefore, environmental sciences can help
he decision-making process by (i) calculating positive and negative externalities, (ii) providing easily available large-scale
ongitudinal monitoring, and (iii) conducting risk assessment of ecological scenarios. Three major issues remain, though,
mplying new environmental research and management opportunities.

he mindset of acceptable change. Thinking that acceptable impacts do not have negative effects is referred to as the
indset of acceptable change. For example, even process-based models in ecotoxicology rely on the concept of no-
ffect concentration. Such a concentration, however, does not actually exist—even traces of a toxicant elicit responses
t the biomolecular level, and can up-regulate a number of cellular processes [1051]. We do not observe effects of
mall concentrations on ontogenetic endpoints (e.g., reproduction or growth) only because of homeostatic regulatory
echanisms. These regulatory mechanisms are complex dynamical systems that utilise feedback loops to buffer against
egative change, and maintain cellular or organismal homeostasis. Hence, detectable effect on an ontogenetic endpoint
an be interpreted as a failure of the homeostatic buffering mechanism, and the no-effect concentration can be viewed as
he concentration at which at least one homeostatic mechanism is about to fail. Is such a concentration safe, or can the
p-regulation of the homeostatic mechanisms lead to harm in the long term? Does the homeostatic mechanism maintain
ts effectiveness when environmental conditions change? Answering such questions requires models of toxic effects that
ncorporate regulatory dynamics at the organismal level, but we are aware of only one such model [1042]. The same
onsiderations are valid when factoring acceptable environmental impact of human activities relevant in environmental
mpact studies and protected area management.

As discussed in the previous section, the mindset of acceptable change tends to result in management towards
aximum environmental impact shy of tipping the environment into unwanted states. Perhaps it is therefore not
urprising that, guided by funding, environmental sciences have been researching the overarching question of the
cceptable change mindset: ‘‘How far can we stretch the environment?’’ We propose to change the question into
omething more constructive.
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For example, in national park management, the question could be: ‘‘How can we improve the environment?’’
Surprisingly, the answer is not to ban tourism. National parks require expensive monitoring, management, scientific
research, and active conservation efforts. Tourism provides the necessary funds either directly through entrance fees, or
indirectly through local taxes collected from economic activities related to tourism. Hence, some tourism activity may be
necessary for preservation, especially in poor regions where funding conservation is not high on the list of priorities.
Tourism then contributes to the ability of a region to fund conservation but, even more importantly, employment
opportunities in tourism provide motivation for conservation at all societal levels. Therefore, the new question does not
affect whether tourists should be allowed to visit a protected area; it may, however, seek to limit the number of tourists,
and affect their spatio-temporal distribution.

The difference in environmental impact between the two approaches can be huge. For example, while still in the
mindset of acceptable change, two major national parks in Croatia (National Park Plitvice and National Park Krka) used to
fight overcrowding by spreading the visitors throughout the park. This approach resulted in newly cleared paths, further
habitat fragmentation, new conflicts between visitors and wildlife, and other negative environmental impacts. Due to
a number of research projects, the mindset changed. Now, the two parks (i) streamline visitor experience to reduce
perception of crowding, (ii) use monetary incentives to reduce peaks in demand, (iii) offer tourist attractions outside
of the protected area, and (iv) limit simultaneous number of visitors in the area to safeguard visitor experience. These
approaches enabled the parks to concentrate a greater number of tourists into a smaller area without sacrificing visitor
experience. The higher concentrations of tourists made advanced environmental impact mitigation measures practical,
thus drastically reducing the impact per visitor.

Re-visiting the management goals, therefore, reduced environmental degradation whilst increasing the number of visi-
tors, their happiness, and income from entrance fees. Getting to the solutions, however, required interdisciplinary research
and collaboration between social science, environmental science, and economics. We suggest goals of environmental
impact studies, and environmental standards, should be revisited similarly.

The big picture. Ecosystems, responsible for the very air we breathe, depend on photosynthesis—processes on atomic
levels that turn light into organic matter (but see Ref. [1052]). This leads to a local decrease in entropy essentially fuelled
by nuclear reactions in the sun. All further interactions increase local entropy, hence our biosphere is limited by that
initial step. Transferring the organic matter through the food chain is extremely inefficient; about 90% of energy is lost at
each step [1053], thus the number of levels in the food chain is also limited. Therefore, as humans co-opt an increasing
proportion of space and the photosynthetic production, ecosystems are put under increasing strain. Because ecosystems
are complex dynamic systems, long-term consequences of changing the forcing of the system (and directly influencing
all of its components) are extremely hard to predict.

Observations can provide only limited insights into small components of the ecosystem. Even large-scale monitoring
can inform us about the past and the present, but not about the future. We can try to extrapolate from experiments,
but they are of limited scope by definition, and therefore applicable to a limited set of environmental conditions and
interactions. Furthermore, investigating organisms informs us about the individual, not the population over multiple
generations in an uncontrolled environment.

To overcome the limitations of observation, we need to continue developing mechanistic models. Ideally, models would
link gene expression to organismal ontogeny, to population status, to ecosystem dynamics. Then, we could truly explore
optimal solutions to environmental and a host of societal and economic problems. Modelling must, however, be tempered
by reality.

Virtual reality. Tools for linking sub-cellular processes to ecosystem-scale effects are being developed at an accelerating
rate. Further development of these tools will create an unprecedented in-silico test-bed for risk assessment and testing
f potential ecological scenarios to minimise effects of anthropogenic pressures on the environment. However, increasing
omplexity of the underlying theory and physics in these tools makes it difficult for any one person to understand the
ackground and assumptions of all the linkages. Simultaneously, the tools are increasingly easy to use, and their interfaces
equire less understanding of the underlying processes. The increasing complexity and ease-of-use could then combine to
ield ’virtual reality’ quasi-scientific consensus where model outputs drive policy even when divorced from reality. This
ffect can already be seen in fisheries where model-driven quota settings repeatedly fail to attain predicted results, and
et neither the procedures nor the modelling have been affected.
Dangers of succumbing to the virtual reality should be avoided by aggressively pursuing integration of data into

odelling. Fortunately, relevant data collection is increasing exponentially. Biophysics generates knowledge on the
sub-)molecular level; remote sensing through satellites and drones, in combination with in-situ sensors creates snapshots
f the environment going back decades; citizen science initiatives and obligatory reporting required by western govern-
ents contain a wealth of information on the environment. These sources are, however, not cross-linked and integrated,
or will they be without sufficiently accurate underlying models spanning relevant levels of biological organisation.
nvironmental science has only recently started the iterative cycle of mutually improving data collection and modelling,
process that brought physics to the forefront of natural sciences. The transition may require a change in attitude as well
s competencies.
Ultimately, long-term solutions to environmental problems will be found at the intersection of environmental sciences,
ocial sciences, economics, and politics. Environmental science can only identify problems and offer potential solutions.
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hoosing and implementing those solutions always has been a matter of policy and governance, which require social
onsensus; getting to the consensus is for social sciences to (re)solve. Economics clearly affects the social dialog, and
ltimately makes implementation of solutions possible by finding ways to make environmentally sound choices in line
ith monetary incentives of the modern society. The high degree of ecosystem complexity implies that the best our
ivilisation can currently do is to aim at precautionary adaptive management fuelled by rigorous interaction between
odelling and data. Advancing such management requires a new generation of environmental scientists versed in
athematics, machine learning, and physics.

2. Global climate change

Climate change is among the greatest challenges that humanity has to face. Overwhelming scientific evidence indicates
hat a changing climate has tremendous influence on societies, both past and present, with serious consequences for the
uture [1054]. Recent advances in quantitative empirical research have illuminated the key connections in the coupled
limate-human system [1055]. Numerous statistical analyses have addressed the causal effects between specific climatic
onditions and social outcomes, such as agriculture, economics, conflict, migration, and health [1056]. Fig. 72 highlights a
umber of empirical studies that demonstrate how climatological events affect various social outcomes on both regional
nd global scales.
Many societal effects of climate have been evidenced. For example, temperatures around the 75th percentile of

vailable records in Italy are associated with the lowest mortality there [1057]. An increase of one standard deviation
n high-temperature days in India increases annual mortality among rural populations by 7.3% [1058]. More intense
ropical cyclones lead to more destruction in a global cross-section of countries [1059]. Non-linear temperature effects
ignal severe damages to the U.S. maize yields [1061]. Insufficient rainfall in Brazil causes steep drops in agricultural
ncome [1062]. Labour productivity in the U.S. is strongly determined by the daily average temperature [1063,1064], as
s residential electricity consumption in California [1065], total income per capita in the U.S. [1067], and total factor
roductivity in China [1068]. The annual average temperature, furthermore, plays a key role in the growth of gross
omestic product per capita [1066]. Interpersonal aggression, both petty and criminal, increases with temperature and
ometimes decreases with rainfall; examples include the use of profanity on social media [1069] on the one end, and
ape [1070] on the other end. Even civil conflicts escalate in the tropics in response to El Niño-type warming that takes
lace in the tropical central and eastern Pacific Ocean [1071]. Finally, changes in the multi-year average temperature
ave a greater effect on permanent outward migration of households in Indonesia than other natural disasters [1072]. All
hese quantitative empirical examples reveal that climate is indeed a major factor affecting social outcomes, often with
irst-order consequences. Even more important, however, is that understanding the relationship between climate and
ociety offers insights into how modern society can best respond to the current climatic events, and how future climate
rajectories may impact humanity.

When considering the climate-human relationship, a crucial realisation is that, while climate drives social outcomes,
uman activities and emissions also impact the dynamics of climate change. According to the Intergovernmental Panel
n Climate Change’s (IPCC) fifth assessment report (available at https://www.ipcc.ch/report/ar5/syr/):

It is extremely likely that more than half of the observed increase in global average surface temperature from 1951
to 2010 was caused by the anthropogenic increase in greenhouse gases concentrations and other anthropogenic
forcings together.

he underlying mechanism of human contributions to global warming is clear. The combustion of fossil fuels like coal
nd oil emits into the atmosphere greenhouse gases (GHGs), primarily carbon dioxide CO2. GHGs block convective heat
rom escaping into space, which ultimately manifests as the rise in temperature.

Given the interdependence between climate and society, mitigating risks due to climate change requires an integrated
erspective that goes beyond just the grasp of physical facts. It is also necessary to mobilise human action, which is,
s a research problem, in the domain of multiple disciplines such as behavioural economics, social psychology, and
volutionary game theory. Scientists are attempting to rise to the challenge through the ongoing integration of climate
cience, social sciences, and humanities, giving rise to a new ‘science of the Earth’ called Earth System Science [1073]. The
im is to build a unified comprehension of energy flows of the Earth and their human and natural drivers.

limate extreme events and global warming. Among the most visible consequences of climate change are increases in the
ntensity and frequency of extreme weather and climate events. These include heat waves, droughts, wildfires, floods,
nd hurricanes, to name a few. Such extreme events endanger not only human lives, but livelihood as well, as evidenced
y, for example, fresh-water shortages and reduced food production. An extreme event is said to occur when the value
f a climatic variable moves beyond the corresponding critical threshold. Of note, however, is that extreme events may
e due to natural climate variability that is unrelated to anthropogenic forcings.
Extreme weather and climate events are grouped into three categories [1074]: (i) extremes of atmospheric weather and

limate variables, including temperature, precipitation, and wind; (ii) weather and climate phenomena that influence the
ccurrence of extremes in weather or climatic variables, or represent extremes themselves, including monsoons, tropical
yclones, and extratropical cyclones; (iii) impacts on the natural physical environment, such as the aforementioned heat
109
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Fig. 72. Social consequences of climate variables. The causal effect of climatological events on various social outcomes is described by a dose–
esponse function. Colours indicate categories of outcome variables: A, B, red, mortality [1057,1058]; C,D, blue, cyclone damage [1059,1060]; E, F,
green, agriculture [1061,1062]; G,H, teal, labour productivity [1063,1064]; I, yellow, electricity consumption [1065]; J–L, grey, aggregate economic
indicators [1066–1068]; M–O, orange, aggression, violence, and conflict [1069–1071]; P, purple, migration [1072]. Shaded areas are confidence
intervals.
Source: Reprinted figure from Ref. [1056].

waves, droughts, floods and more. The distinction between these categories, while intuitive, is also somewhat blurred,
and the categories are highly correlated.

The changes in the frequency, intensity, spatial extent, duration, and timing of weather and climate extremes may
precipitate unprecedented risks and disasters for both natural physical environment and human society. Strengthening
resilience against disruptive weather phenomena and climate change at national, regional, and local levels is therefore
of vital importance. The ability to anticipate and predict extreme events would greatly aid the efforts to strengthen the
resilience of human communities, but non-linear feedbacks, coupled interactions, and complex structure of the climate
system pose formidable challenges. The situation is even more dire when attempts are made to account for the coupled
climate-human system.

Tipping points in climate and social systems. The concept of a tipping point commonly refers to ‘‘a critical threshold
at which a tiny perturbation can qualitatively alter the state or development of a system’’ [1075]. The term ‘tipping
point’ was popularised by the writer Malcolm Gladwell who used it to describe intriguing sociological events during
which little things can make a big difference [1076]. Many complex systems, including climate [1077–1079] and human
society [1080,1081], have tipping points at which an abrupt shift to a contrasting dynamical regime may occur. In relation
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limate system that may approach or exceed a tipping point. Some examples are the ice-loss acceleration in Greenland,
he diminishing sea-ice area in the Arctic, novel pests and fire patterns in boreal forest, the slowdown of the Atlantic
hermohaline circulation, intense droughts in the Amazon rainforest, the large-scale die-offs of coral reefs, the decay of
he Antarctic ice sheet, and others. Climate scientists have long suspected that by the present time, many tipping points
f the climate system will have been exceeded, pushing the Earth ever closer to a global tipping point. Exceeding the

global tipping point would constitute a downright existential threat to civilisation [1082]. It is, therefore, high time for
international action, such as reducing the emissions of GHGs, to improve the planet’s resilience against extreme climate.

Recently, Ref. [1083] proposed a framework of social tipping dynamics for stabilising Earth’s climate such that the
planet is put back on track to halve global emissions by 2030 and tip the scales to net zero emissions by 2050. The study
extends the idea of tipping elements from the components of the climate system to the subdomains of the planetary
socioeconomic system, calling such subdomains social tipping elements, ‘‘where the required disruptive change may take
place and lead to a sufficiently fast reduction in anthropogenic greenhouse gas emissions’’. In this context, social tipping
interventions have the potential to set social tipping elements on the path of change, for example, by (i) highlighting the
moral implications of fossil fuels, (ii) strengthening climate education and engagement, and (iii) disclosing information on
greenhouse gas emissions. By doing so, social tipping dynamics could be harnessed to foster climate-change mitigation.

Anticipating and predicting tipping points before they are breached would yield substantial socioeconomic benefits.
Many techniques have been developed to this end based on the theory of early-warning signals for critical transi-
tions [802]. The phenomenon of critical slowing down is considered as one of the most important clues that a dynamic
system has lost resilience and is fast-approaching a tipping point [782]. Critical slowing down is recognised by an increase
in the auto-correlation and the variance of the system’s state variables. For example, Ref. [1078] analysed eight abrupt
shifts in ancient climate and found that significant increases in the lag-1 auto-correlation had preceded these shifts.
Ref. [1084] examined a lake model in the vicinity of a bifurcation point and found an increasing variance of lake-water
phosphorus about a decade prior to the shift to a new, nutrient-rich state. Other quantities and techniques have also been
proposed as early-warning signals. Examples include the detrended fluctuation analysis [1085], power spectra [1086],
flickering before transitions [1087], skewness and kurtosis [1088,1089], and others. See Ref. [1090] for a more detailed
review on the subject of tipping points and early-warning signals.

12.1. Modelling the climate system

What is a climate model? There are two main tools that supported the development of climate science: (i) observations of
a changing Earth system and (ii) computer modelling and simulations. The term ‘observations’ in the context of climate
science usually refers to instrumental data (i.e., meteorological stations or satellites), reanalyses data (e.g., ECMWF, NCEP-
NCAR, and JRA), and proxy data (e.g., coral records, tree rings and ice-core records, etc.). ‘Computer modelling’ and climate
models, by contrast, refer to attempts to simulate physical, chemical, and biological processes that take place in the
atmosphere, cryosphere, land, ocean, and lithosphere and collectively produce climate. A climate model comprises a series
of equations that describe said processes, and is typically implemented in numerical form that is suitable for processing
on powerful computers. Crucially, scientists use climate models to project how climate may change over the course of
the predictable future.

The history of climate modelling by means of numerical methods likely begins with Richardson’s work in the
1920s [1091], in which he proposed a novel idea to forecast weather using differential equations while viewing the
atmosphere as a network of gridded cells. In 1938, Callendar published a seminal paper [1092] describing a one-
dimensional radiative transfer model to show that rising CO2 levels are warming the atmosphere. The first computerised,
regional-weather forecast was tested in 1950 on the electronic numerical integrator and computer (ENIAC). The first
three-dimensional general circulation model of the global atmosphere that could realistically depict seasonal patterns
in the troposphere was released by Phillips in 1956. This was followed by the establishment of the National Center
for Atmospheric Research (NCAR) in 1960, which soon thereafter became the leading climate modelling centre. The
1967 study by Manabe and Wetherald [1093] introduced an influential 1D radiative–convective model to generate the
first credible prediction of the surface temperature in response to the CO2 content of the atmosphere. NASA’s Nimbus
III satellite was launched in 1969 with the specific task of taking measurements of Earth. The National Oceanic and
Atmospheric Administration (NOAA) was created in 1970, and similar to NCAR soon thereafter became the world’s leading
centre for climate-change research. The Met Office’s first general circulation model released in 1972 rounds up early
developments in the field.

Rising awareness of climate change led to the establishment of the IPCC in 1988 with the aim to ‘‘provide the world
with a clear scientific view on the current state of knowledge in climate change and its potential environmental and socio-
economic impacts’’. The first IPCC assessment report [1094] was published two years later with a summary stating that
‘‘under the IPCC Business-as-Usual emissions of greenhouse gases, the average rate of increase of global mean temperature
during the next century is estimated to be about 0.3 ◦C per decade’’. With the more widespread development of coupled
atmosphere–ocean global circulation models, a need arose for standardising their outputs, which resulted in the launch
of Coupled Model Intercomparison Project in 1995. By the late 2000s climate models could be used in conjunction with
paleoclimate data to explore climatic tipping elements [1075]. The biophysical understanding of Earth, including the
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limate system, was integrated with policy and governance in the planetary boundaries framework [1095]. Interestingly,
etween about 1998 and 2012, Earth seemed hardly to warm, which became known as the global warming hiatus,
rompting some to question previous conclusions. The newer findings, however, reconciled models and data, leading
he authors of Ref. [1096] to conclude that ‘‘we are now more confident than ever that human influence is dominant in
ong-term warming’’.

A variety of climate models to date, from simple energy-balance models to elaborate general circulation models, differ
n their complexity and relative advantages. Especially the general circulation models are highly reliant on the most
dvanced supercomputers in order to assimilate all the required data. Despite the rapid advancement of the field since its
nception, there is no single, comprehensive model that could encapsulate all the non-linear interactions between climate-
etermining subsystems. Consequently, the longer-term predictive skills regarding climate variability and climate change
emain limited and dependent on the precise initial conditions.

ierarchy of climate models. Earth’s climate is a complex system influenced by many factors, for example, solar radiation,
louds, winds, ocean currents, and many others. The system is furthermore subdivided into subsystems—the atmosphere,
he ocean, the cryosphere, the biosphere, the pedosphere, and the lithosphere—that interact at the interfaces such as
ir–ocean, air–ice, ice–ocean, as well as land–air and land–ocean. Over the years, climate modelling has benefited from
variety of approaches to constructing climate models that integrate, to a larger or lesser degree, said components and

nteractions. In particular, much has been learned from models focused on specific aspects of the climate system (e.g., El
iño events and monsoons), while abandoning the pretence that full complexity can be accounted for. This line of thinking
nd climate model development is now known as a hierarchical modelling approach [1097].
We distinguish four model categories based on their complexity:

1. Energy-balance models estimate the changes in the climate system by analysing Earth’s energy budget, that is, by
balancing the incoming solar radiation and the outgoing terrestrial radiation.

2. Radiative–convective models simulate the vertical profile of atmospheric temperature and the associated transfer of
energy under the assumption of radiative–convective equilibrium.

3. Statistical–dynamical models combine the features of energy-balance and radiative–convective models in order to
study horizontal energy flows and processes that disrupt such flows.

4. General circulation models attempt to capture the fundamental physics and chemistry of the climate system,
including the exchange of energy and materials between the components of this system.

An energy-balance model can take one of two simple forms, the zero-dimensional model such that Earth is a
single compartment with a global mean effective temperature or the one-dimensional model such that temperature is
latitudinally resolved. In the one-dimensional model, each latitudinal zone is described by the following equation

(Shortwave in) = (Transport out)+ (Longwave out), (125)

or more formally

S(φ){1− α(φ)} = c{T (φ)− T̄ } + {A+ BT (φ)}, (126)

where S(φ) is the mean annual radiation incident at latitude φ, α(φ) is the albedo at latitude φ (0.62 for T < −10 ◦C
and 0.3 otherwise), c is the horizontal heat-transport coefficient (3.81Wm−2 ◦C−1), T (φ) is the surface temperature at
latitude φ, T̄ stands for the mean global surface temperature, and A and B are constants governing the longwave radiation
loss (A = 204.0Wm−2 and B = 2.17Wm−2 ◦C−1). Of note is that some implementations of energy-balance models also
simulate energy transfers between the atmosphere and the ocean.

Radiative–convective models add complexity relative to the energy balance models. Thus, one-dimensional radiative–
convective models account for the vertical dimension, while two-dimensional models additionally account for one
horizontal dimension. Using such models it possible to predict how GHGs modify effective emissivity and surface
temperature. A radiative–convective model has the following mathematical form

S = αcS + αg (1− ac)2 (1− αc) S + εσT 4
c + (1− ε)σT 4

g , (127a)

ac (1− αc) S + acαg (1− ac) (1− αc) S + εσT 4
g = 2εσT 4

c , (127b)(
1− αg

)
(1− ac) (1− αc) S + εσT 4

c = σT
4
g . (127c)

These equations respectively represent the energy balances at (i) the top of the atmosphere, (ii) the cloud level, and
(iii) the surface. The equations are directly solvable upon setting the values for the cloud shortwave absorption, ac , the
cloud albedo, αc , infrared emissivity, ε, and the surface albedo, αg . The parameter σ is the Stefan–Boltzmann constant.
Radiative–convective models, as seen here, incorporate information about radiation fluxes throughout the atmosphere,
including the fluxes of solar radiation, cloud cover, and land.

While statistical–dynamical models make more of a practical leap, general circulation models mark the next true
conceptual leap in climate modelling. General circulation models are the most complex and ‘complete’ model type used
in climate-change science. These three-dimensional models are constructed by discretising the differential equations that
express the conservation of momentum, mass, and energy. The model closure is achieved by adding an equation of state
for the atmosphere. Expressed in a mathematical form, we have:
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1. Conservation of momentum
Dv
Dt
= −2Ω× v− ρ−1∇p+ g+ F. (128)

2. Conservation of mass
Dρ
Dt
= −ρ∇ · v+ C − E. (129)

3. Conservation of energy
DI
Dt
= −p

D
Dt
ρ−1 + Q . (130)

4. Ideal gas law

p = ρRT . (131)

he physical meanings of the symbols are as follows:

• v = velocity relative to Earth,
• t = time,
•

D
Dt =

∂
∂t + v · ∇ = total time derivative,

• Ω = Earth’s angular velocity vector,
• ρ = atmospheric density,
• p = atmospheric pressure,
• g = apparent gravitational acceleration,
• F =force (other than gravity) per unit mass,
• C = creation rate of atmospheric constituents,
• E = destruction rate of atmospheric constituents,
• I = cpT = internal energy per unit mass,
• T = temperature,
• Q = heating rate per unit mass,
• R = gas constant, and
• cp = specific heat of air at constant pressure.

Aside from the aforementioned model types, there are other classes of climate models that attempt to capture specific
aspects of the climate system, but in a simplified way. These are known as intermediate complexity models. A representative
xample is the Cane–Zebiak model [1098], developed to simulate El Niño events, as well as conduct experimental climate
redictions.
Notably, the physical models of the climate system lack any form of human dynamics, treating instead Earth’s global

opulation as an outside force. Attempts to fill this gap produced integrated assessment models in which human dynamics
lays a prominent part [1099,1100]. These models aim to link socioeconomics with the biosphere and the atmosphere
nto one modelling framework for the purpose of simulating costs of specific climate-stabilisation policies.

Integrated assessment models ‘‘represent many of the most important interactions among technologies, relevant
uman systems (e.g., energy, agriculture, the economic system), and associated greenhouse gas emissions in a single
ntegrated framework’’ [1054]. This means not only an integrated representation of the physical laws driving natural
ystems, but also the changing preferences that drive human society. Typically, there are two main types of integrated
ssessment models—simple and complex. Simple models are run in a spreadsheet by utilising simplified equations, while
etailed relationships between the economy, energy, and Earth systems are left out [1101]. These models are commonly
sed to evaluate the ‘social cost of carbon’. By contrast, complex integrated assessment models account for energy
echnologies and uses, changes in land use, and societal trends. Separate modules represent the global economy and
he climate system. The basic structure of an integrated assessment model can be broken down as follows:

• Model inputs—assumptions about how the world works and changes, such as the GDP, populations, policies, and so
on;
• Model itself—modules that represent economic, energy, land, and climate systems;
• Model outputs—quantitative predictions about the economy, land-use changes, greenhouse gas emissions and

energy-use pathways, and future human development.

espite their comprehensiveness, complex models are imperfect, often failing to capture nuanced social mores, habits, and
ehaviours, both present and future. Such imperfections notwithstanding, complex integrated assessment models are a
aluable tool in exploring the contributions of social factors to climate change. The key questions that can be addressed in
his way include, for instance, how to avoid global warming of more than 1.5 ◦C at the lowest cost or what the implications
re of current national pledges to reduce the emissions of GHGs. Taken together, global circulation, integrated assessment,
nd other climate models offer powerful means to explore Earth system dynamics at a range of spatial and temporal scales,
ll the while incorporating both physical and social mechanisms and processes.
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Fig. 73. Constructing and utilising a climate network. In step 1, a spatial grid of nodes where climatological time series have been observed is
defined. In step 2, the cross-correlation between time series at two node locations is calculated. When such a cross-correlation is strong, the node
locations are deemed to be linked. In step 3, the topology of the climate network is analysed using the methods of network science to reveal the
properties of the climate system.

12.2. Climate networks

In recent years, network science has emerged as a novel framework to study climate phenomena such as El Niño–
Southern Oscillation (ENSO), extreme-rainfall patterns, and air-pollution variability [1102]. It is, of course, worthwhile to
review this topic in its own right, but even more so given that network science interfaces physics with so many other
disciplines.

Basic concepts. Networks have proven to be a versatile tool to explore the structural and dynamical properties of
complex systems beyond physics, for example, in biological, ecological, and social sciences [485]. A particular strength of
the network representation of a complex system is the ability to map out the system’s topological features. Climate,
as mentioned previously, is a quintessential example of a complex system comprising many non-linearly coupled
subsystems with multiple forcings and feedbacks. The desire to model climate’s complexity has, therefore, led to the
birth of the idea of climate networks in which geographical locations on a longitude–latitude grid become network
nodes, while the degree of similarity, or ‘connectedness’, between the climate records obtained at two different locations
determines whether there is a network link between these locations [1103,1104]. The climate-network framework has
been applied successfully to analyse, model, and predict various climate phenomena, such as ENSO [1105–1112], extreme
rainfall [1113,1114], Indian summer monsoon [1115], Atlantic meridional overturning circulation [1116,1117], Atlantic
multidecadal oscillation [1118], teleconnection paths [1119], the impacts of CO2 [1120], and others.

Climate networks are constructed and utilised in three steps (Fig. 73):

1. Step 1. Define a spatial grid of nodes containing the climatological variable of interest (e.g., temperature, geopotential
height, precipitation, etc.).

2. Step 2. Build links between nodes pairs based on statistical correlations between the time series recorded at the
two node locations.

3. Step 3. Interpret the dynamical processes of the climate system (e.g., winds, ocean currents, atmospheric circulation,
Rossby waves, etc.) via the structural properties of the climate network.

A detailed overview of methodology for constructing and analysing climate networks can be found, for example, in
Ref. [1121].

Building links between nodes is of central importance in constructing climate networks. Among the most direct ways
to decide whether, or how strongly, two nodes are connected is the Pearson correlation. Let us suppose that a climate
observable T (e.g., the sea-surface temperature anomaly) is measured at a number of fixed stations. At station i, which is
to be identified with the ith node in the climate network, measuring the climate observable yields a time series Ti(t). If
the time series is subdivided into, for instance, calendar years, months, or days, this is further indexed with the index y
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i (t). Then, the time-delayed Pearson cross-correlation function between nodes i and j is [1112],

Cy
i,j(−τ ) =

⟨T y
i (t)T

y
j (t − τ )⟩ − ⟨T

y
i (t)⟩⟨T

y
j (t − τ )⟩√

⟨(T y
i (t)− ⟨T

y
i (t)⟩)2⟩

√
⟨(T y

j (t − τ )− ⟨T
y
j (t − τ )⟩)2⟩

, (132)

nd

Cy
i,j(τ ) =

⟨T y
i (t − τ )T

y
j (t)⟩ − ⟨T
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i (t − τ )⟩⟨T

y
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i (t − τ )⟩)2⟩

√
⟨(T y

j (t)− ⟨T
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j (t)⟩)2⟩

, (133)

here 0 ≤ τ ≤ τmax is the time lag and ⟨·⟩ denotes averaging over the variable t . Next, it is possible to define the positive
nd negative link strengths of between nodes i and j as [1122]

W+,yi,j =
max(Cy

i,j)−mean(Cy
i,j)

std(Cy
i,j)

, (134)

nd

W−,yi,j =
min(Cy

i,j)−mean(Cy
i,j)

std(Cy
i,j)

, (135)

where max, min, mean, and std respectively denote the maximum, minimum, mean, and the standard deviations of
the cross-correlation function over the time lag τ . The direction of the link is taken to be from node i to node j if
W+,yi,j >

⏐⏐W−,yi,j

⏐⏐ and from node j to node i otherwise [1111].
An alternative method to construct climate networks is the event synchronisation method, which was originally

eveloped to measure synchronisation and infer the direction of time delay between signals [1123]. The method is based
n the relative timings of events in a time series, where an event is defined as, for instance, reaching a threshold or a
ocal maximum. Supposing two time series, X(t) and Y (t), an event l seen in X at time txl is considered to be synchronised
ith an event m seen in Y at time tym, if 0 <

⏐⏐txl − tym
⏐⏐ < τ

xy
lm , where

τ
xy
lm =

1
2
min

{
txl+1 − txl , t

x
l − txl−1, t

y
m+1 − tym, t

y
m − tym−1

}
. (136)

he quantity τ xylm represents a minimum time lag between two consecutive events of the same type occurring in one of
he two time series. Synchronisation thus requires that when the event of interest is seen in one time series, say, X , the
ame event should occur in the other time series Y too before being seen again in the time series X . If, furthermore, ex
and ey denote the number of events in X and Y , respectively, then l = 1, 2, . . . , ex and m = 1, 2, . . . , ey. A counter of
nstances when the event happens in X shortly after happening in Y is

c(x|y) =
ex∑
l=1

ey∑
m=1

J lmxy (137)

with

J lmxy =

⎧⎨⎩ 1, if 0 < txl − tym ≤ τ
xy
lm,

1/2, if txl = tym,
0, otherwise.

(138)

Analogous reasoning is used to define c(y|x). Finally, the symmetrical and anti-symmetrical combinations of these counters
are

Qxy =
c(y|x)+ c(x|y)
√
exey

, qxy =
c(y|x)− c(x|y)
√
exey

. (139)

ere, Qxy measures the strength of event synchronisation, while qxy estimates the direction of time delay. In the
onstruction of climate networks, the former (latter) quantity determines the link strength (direction).
Other methods to quantify time-series, and thus node, similarity exist and can be used in the construction of climate

etworks. Examples are the mutual information method [1118] and the ϵ-recurrence method [1124]. Whichever method
f quantifying similarity is adopted, it is common to discard weak links by applying a thresholding criterion. The network
an, in fact, be made unweighted and undirected by defining the adjacency matrix as

Ai,j = H
(
Wi,j −Wc

)
. (140)

here H is the Heaviside function, Wi,j are link weights calculated using, say, the Pearson cross-correlation, and Wc is
threshold. Once the climate network is constructed, it can be subjected to structural analyses using the methods of
etwork science. Several examples of such analyses are outlined next, showing how the climate-network framework
eveals new knowledge about climatic events of great societal relevance, for example, ENSO, extreme rainfall, and air
ollution.
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l Niño-Southern Oscillation (ENSO) forecasting. ENSO is among the most prominent phenomena of climate variability on
he interannual time scale [1125,1126]. The term refers to fluctuations between anomalous warm El Niño and cold La Niña
onditions in the eastern Pacific Ocean. The occurrence of an El Niño event can trigger numerous disruptions around the
lobe, causing climate-related disasters, such as droughts, floods, fishery declines, famines, plagues, and even political and
ocial unrest. To adequately prepare for these potential disruptions, it is pivotal to develop reliable prediction skills for
hen and where climate may turn extreme. After the first forecasting model from the 1980s, that is, the aforementioned
ane–Zebiak model, a number of dynamical and statistical models have been proposed to predict the El Niño events.
nternational Research Institute for Climate and Society, for example, offers some 20 climate models for ENSO forecasts.
odel richness notwithstanding, early and reliable ENSO forecasting remains a substantial challenge. Good prediction
kill is generally limited to about 6 months ahead, due to the presence of the ‘spring predictability barrier’, which greatly
mplifies errors arising from the coupling and feedbacks in the equatorial atmosphere–ocean system [1127].
To improve the El Niño forecasting skill, especially beyond the spring predictability barrier, Ref. [1128] resorted to an

pproach based on climate networks that yields reliable predictions about one year in advance. Nodes for the construction
f the climate network were mainly located in the tropical Pacific (Fig. 74, upper panel), with only a minority of nodes,
enoted in red, inside the El Niño basin. Link weights were calculated using the Pearson cross-correlation method (see
qs. (132) and (134)). To obtain the mean strength of dynamical teleconnections in the climate network, link strength
as averaged across all links

W y
=

1
n1n2

n1∑
i=1

n2∑
j=1

W+,yi,j . (141)

ere, n1 and n2 respectively stand for the number of red and blue nodes in the upper panel of Fig. 74. The quantity
y was then compared with a decision threshold Θ = 2.82, which had to be crossed from below in order to consider

signalling an alarm. Additionally, the NINO3.4 index, that is, NOAA’s primary indicator for monitoring El Niño and La
Niña events, needed to be below 0.5 ◦C. If both conditions were satisfied, then the alarm would be signalled for the
following calendar year (Fig. 74, lower left panel). The prediction accuracy of the climate network, as measured by a
type of receiver-operating-characteristic analysis, turned out to be much higher than that of the state-of-the-art climate
models, for example, Kirtman [1129] and Chen-Cane [1130] models. The approach, in fact, successfully predicted in 2013
the onset of the 2014–2016 strong El Niño event (Fig. 74C, lower right panel).

Afterwards, Ref. [1110] proposed another framework for predicting the onset of El Niño events that combined a time-
evolving, weighted climate network with the elements of percolation theory. In this approach, nodes near-homogeneously
covered the entire globe rather than just the tropical Pacific. The climate network was shown to undergo abrupt
percolation transitions usually about one year before an El Niño event, thus providing a reliable early-warning indicator.
These research efforts were followed by yet another approach based on climate networks that successfully predicted one
year in advance the onset of the 2018–2019 El Niño event [1112]. In this last approach the climate network was located
entirely in the El Niño basin.

ENSO greatly affects atmospheric circulation patterns and exhibits strong regional and remote influences on weather.
To investigate the global impacts of ENSO, Ref. [1111] resorted to constructing a series of directed and weighted climate
networks based on the near-surface air temperature. Regions that are characterised by larger positive or negative network
links correlated more with the NINO3.4 index, thus becoming warmer (cooler) during El Niño (La Niña) periods. Although
regions affected by ENSO vary from one event to another, and are difficult to predict, the climate network analysis offered
a new perspective on the problem with much potential for further successes.

ENSO, as referred to heretofore, is sometimes called Eastern Pacific ENSO to distinguish it from a temperature anomaly
that arises in the central Pacific [1131], which is called Central Pacific ENSO [1132] or ENSO Modoki [1133] (Japanese
‘modoki’ translates as ‘pseudo’). ENSO Modoki has distinct teleconnections and affects many parts of the world, yet
distinguishing and predicting the type of ENSO in practice remains a challenge. Climate networks may help, as evidenced
by a novel method to predict the type of El Niño events, as well as estimate their impacts in advance [1134].

Extreme-precipitation patterns. Precipitation, at its extremes, poses a threat to society, resulting in the loss of life and
property in floods and landslides. Flooding due to extreme precipitation in India, for example, affected over 800 million
people in the period between 1950–2015, leaving 17 million without homes and causing 69,000 deaths [1135]. In early
2017 in coastal Peru, a series of extreme precipitation events caused severe floods, killing 114 people, displacing 184,000
people, and creating damages in excess of $3 billion USD [1136].

Even more disconcerting than historical records is the fact that the intensity of extreme weather events is expected
to strengthen under global warming. The basic mechanism of how a temperature rise fuels extreme rainfall is clear,
(i) warmer ocean waters carry energy more easily to the atmosphere when storms form, and (ii) for every degree of
surface-temperature warming, the atmosphere holds about 7% more water vapour [1137]. Accordingly, climate models
also predict intensification in the annual maximum precipitation, although they possibly underestimate the true future
state of affairs [1138], thus exposing gaps in our understanding of the factors involved. Such gaps, for example, include
limited knowledge of global and regional teleconnection patterns associated with extreme rainfall. Recent progress in this
context has relied heavily on climate networks, not only by mapping extreme-rainfall teleconnections, but also suggesting
the underlying mechanisms behind the observed phenomena.
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Fig. 74. Climate network scheme for forecasting El Niño events. The upper panel shows the geographical locations of grid points (i.e., nodes). The
network consists of 14 nodes in the El Niño basin (solid red symbols) and 193 nodes outside this domain (open symbols). The red rectangle denotes
the NINO3.4 region (5 ◦S–5 ◦N, 170 ◦W–120 ◦W). In the lower left panel, the red curve is the average link weight W of the climate network as it
changes through time, the horizontal line indicates the decision threshold Θ = 2.82, and the blue areas show the El Niño events. When W crosses
the threshold from below, an alarm is sounded indicating that there is an impending El Niño event in the following calendar year. Correct predictions
are marked by solid green arrows and false alarms by dashed black arrows. The lower right panel is a magnification for August (A), September (S),
October (O), and November (N) of 2013.
Source: Reprinted figure from Ref. [1128].

Ref. [1113] offered a new conceptual route to study the spatial characteristics of the synchronicity of extreme
rainfall in South America during the monsoon seasons. First, the study defined extreme-rainfall events as those above
the 99th percentile over the spatial domain covering 40 ◦S–15 ◦N and 30 ◦W–85 ◦W at a resolution of 0.25 ◦, and the
temporal domain extending from 1998 to 2012 at a resolution of 3 h. A climate network was then constructed using
the aforementioned event-synchronisation method. The synchronisation strength into S ini (out of Souti ) a climate-network
node was defined as the sum of weights of all links pointing to (from) this node. The network divergence ∆S was then
introduced to spatially resolve the temporal order of extreme-rainfall events,

∆Si = S ini − Souti =

N∑
j=1

Aij −

N∑
j=1

Aji, (142)

where Aij is the adjacency matrix of the climate network. The positive (negative) values of ∆Si indicated sink (source)
nodes, that is, locations where extreme events occur shortly, within two days, after (before) occurring at many other
locations. Typical propagation pathways of extreme events could thus be identified along which extreme events have
high predictability. The method was applied to the real-time satellite-derived rainfall data to successfully predict more
than 60% of extreme-rainfall events in the Central Andes of South America, with the success rate going above 90% during
El Niño conditions.

A similar methodology based on climate networks, and specifically on the event-synchronisation method, has been
applied to investigate the spatial configuration of synchronisation between extreme-rainfall events around the globe.
Ref. [1114], using a network with 576,000 nodes, found that the distribution of distances between significant links (p-value
p < 0.005) decays according to a power law with a coefficient ≈1 up to distances of about 2500km, while the probability
f significant longer-distance links is much larger than expected from the power law. The relative underabundance of
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Fig. 75. Distance distribution and teleconnection pattern in south-central Asia for different extreme-event percentiles. Left-column panels show the
probability density function of the significant link distances (red and blue circles), the power-law fit over the range 100–2500km (dashed line), and
the kernel-density estimate (KDE) of the distribution of all possible great-circle distances (solid black line) for extreme-event percentiles α = 0.94,
.95, and 0.96, respectively. Right-column panels show link bundles attached to south-central Asia for extreme-event percentiles α = 0.94, 0.95, and
.96, respectively. Links shorter (longer) than 2500km are denoted in red (blue).
ource: Reprinted figure from Ref. [1114].

horter-distance links is due to regional weather systems, yet the relative overabundance of longer-distance links, which
orm a global rainfall teleconnection pattern, is probably dominated by the Rossby waves. The described picture is robust
o the choice of the extreme-event percentile (Fig. 75, left-column panels). Furthermore, climate networks revealed that
he extreme-rainfall events in the monsoon systems of south-central Asia, east Asia, and Africa are strongly synchronised
Fig. 75, right-column panels). The use of climate networks thus made inroads towards the global predictability of natural
azards associated with extreme rainfall.

2.3. Impact of Rossby waves on air pollution

Air pollution is a major health concern worldwide. According to the World Health Organisation (WHO) [1139]:

An estimated 9 out of 10 people worldwide are exposed to air pollutants that exceed World Health Organisation
(WHO) air quality guidelines. [P]olluted air kills some 7 million people each year, causes long-term health problems,
such as asthma, and reduces children’s cognitive development. According to the World Bank, air pollution costs
societies more than $5 trillion every year.

limate change and air pollution are closely related. For example, the main sources of CO2 emissions are also a major
ource of air pollutants. Conversely, many air pollutants, such as particulate matter, ozone, nitrogen dioxide, etc. contribute
o climate change by affecting the amount of incoming radiation that is reflected or absorbed by the atmosphere. The exact
118
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Fig. 76. Schematic representation of Rossby waves influencing air pollution. Panel (a) shows low-pollution conditions. Panel (b) shows high-pollution
conditions. Blue and red colours respectively represent the negative and positive out-degree clusters of the climate network.
Source: Reprinted figure from Ref. [1140].

eedbacks between weather and climate dynamics at different pressure levels, on the one hand, and the fluctuations in
ir pollution, on the other hand, is a subject of intense study.
To study air-pollution spreading and diffusion patterns, Ref. [1140] employed a multilayer and multivariable network

nalysis designed to delineate the influence of the upper air dynamics (at 500hPa geopotential height) on the temporal
ariability of the surface air pollution (PM2.5) in China and U.S. Two multilayer networks were considered, one with domi-
ant negative-correlated interlinks and the other with positive-correlated interlinks, corresponding to negative, Eq. (135),
nd positive, Eq. (134), weights, respectively. Only the links for which |W | > Wc = 4.5 were selected based on shuffled

data-significance tests. Applying this methodology showed that the upper air critical regimes substantially influence
the surface air pollution. Specifically, Rossby waves influence the air-pollution fluctuations through the development of
cyclone and anticyclone systems that control local winds and air stability (Fig. 76). High-pressure anticyclones form on the
ridges, while low-pressure cyclones form on the troughs of Rossby waves. The former, identified by negative out-degree
clusters in climate networks, cause the air to downwell. The latter, identified by positive out-degree clusters in climate
networks, cause the air to upwell. The described downwelling and upwelling pattern induces strong winds that keep air
pollution low. As Rossby waves travel, upwelling replaces downwelling and vice versa, which weakens the winds and
leads to subsequent accumulation of pollution in the air. Recognising the outlined mechanism behind the air-pollution
fluctuations helps to improve the prediction of extreme pollution events, and once again highlights the potential of climate
networks to unveil intricate interactions and feedbacks in the climate system.

12.4. Critical phenomena in the climate system

Critical points, exponents, and universality. The concept of critical phenomena is most commonly associated with physical
systems that undergo phase transitions at a critical point. Examples include the vapour-to-liquid-to-solid transitions of
substances at their critical points characterised by a specific value of temperature and pressure, or the ferromagnetism-to-
paramagnetism transition of some solids at their Curie point under zero magnetic field. Critical phenomena are present in
both nature (lakes, oceans, terrestrial ecosystems, etc.) and society [1141], including the climate system itself. Ref. [781]
offers a general overview of the subject.
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Fig. 77. Critical phenomena in atmospheric precipitation. A, The average precipitation rates ⟨P⟩(w) (order parameter) and their variances σ 2
p (w)

susceptibility) are shown as a function of the water vapour (tuning parameter) for the eastern (red, 170 ◦W–70 ◦W) and the western (green,
20 ◦E–170 ◦W) Pacific Ocean. The solid curve stands for a power-law fit above the critical point. The inset shows, using double-logarithmic scales,
P⟩(w) as a function of the reduced water vapour, ∆w ≡ (w − wc) /wc , for the western Pacific (green, 120 ◦E–170 ◦W), the eastern Pacific (red,
70 ◦W–70 ◦W), the Atlantic (blue, 70 ◦W–20 ◦E), and the Indian Ocean (pink, 30 ◦E–120 ◦E). Note the same slope irrespective of the climatic region.
, Finite-size scaling of the variance σ 2

p (w; L) of the order parameter in the western Pacific. Near the critical point, w > 57mm, the collapse of the
urves is good, indicating σ 2

p (wc; L) ∝ L−0.42 , as expected from the theory of critical phenomena. The inset shows that relatively far away from the
ritical point, w < 40mm, trivial scaling σ 2

p (w; L) ∝ L−2 works adequately. The error bars represent standard errors.
ource: Reprinted figure from Ref. [1143].

Curiously, critical phenomena seem to be independent of the details of the physical system at hand. Instead, only the
ystem’s general features seem to matter [1142], such as (i) the spatial dimensionality (e.g., the system’s arrangement in a
wo-dimensional, three-dimensional, or more-dimensional lattice), (ii) the dimensionality of the order parameter (e.g., the
ystem’s spin dimensionality), and (iii) the range of microscopic interactions (e.g., only first neighbours interact). Many
hysical quantities that describe the system’s state near a critical point have a power-law form whose main feature is the
ritical exponent. The ubiquity of power laws is often referred to as universality—different systems with the same values
f the critical exponent are said to belong to the same universality class. In what follows, we focus on some of the critical
henomena specific to the Earth climate system.

ritical phenomena in atmospheric precipitation. Earth’s atmosphere is a fluid in complex motion that dynamically varies
n space and time. Despite its dynamic complexity, from a meteorological perspective, the atmosphere is driven by slow
arge-scale forcing (moisture convergence, evaporation, and radiative cooling) and rapid convective-buoyancy release
small-scale convection). Convection intensifies above a critical point in the water vapour, causing the onset of heavy
recipitation. This intensification is reflected in the average precipitation rate as a function of the water vapour, which
xhibits a relatively simple power-law behaviour as predicted by the theory of critical phenomena [1143].
Using satellite data from the Tropical Rainfall Measuring Mission, Ref. [1143] analysed the relationship between the

recipitation rate, P , and the water vapour, w. Various major ocean basins were covered by oceanic grid points between
20 ◦S–20 ◦N. The precipitation and water-vapour data were collected at 0.25 ◦ latitude–longitude resolution. From a
tatistical physics perspective, quantities P andw were regarded as the order parameter and tuning parameter, respectively.
t was found that, when the tuning parameter crosses its critical value, wc, the order parameter can be well approximated
y a power-law of the form

⟨P⟩(w) = a (w − wc)
β , (143)

here a is a system-dependent constant and β is a critical exponent. The operator ⟨·⟩ refers to averaging over all
bservations in a given region. The same power-law fits the data irrespective of the climatic region (Fig. 77A). Similarly,
he critical exponent is universal and independent of the climatic region, with the value of 0.215±0.02 (inset in Fig. 77A).

The susceptibility of the system, χ (w; L), was defined by means of the variance of the order parameter such that

χ (w; L) = Ldσ 2
p (w; L), (144)

where d stands for the system’s dimensionality and L for the spatial resolution. Near the critical point wc, however, the
theory of critical phenomena suggests that [1144]

χ (w; L) = Lγ /ν χ̃
(
∆wL1/ν

)
, (145)
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here γ and ν are the standard critical exponents, ∆w ≡ (w − wc) /wc is the reduced water vapour, and χ̃ (x) is the usual
inite-size scaling function. When ∆w = 0 (i.e., w = wc), χ̃ (0) is constant, implying the scaling relationship σ 2

P (wc; L) ∝
γ /ν−d. Data confirm this relationship with the critical exponent ratio of γ /ν = 1.58 (Fig. 77B). For w > 57mm, all data
ndeed collapse into a single function. Furthermore, relatively far from the critical point, w < 40mm, scaling is expectedly
rivial (inset in Fig. 77B). These results show that the balance between slow large-scale forcing via moisture convergence,
vaporation, and radiative cooling and rapid convective buoyancy release via small-scale convection leads to continuous
i.e., second order) phase transition such that below the critical point, there is very little precipitation, but once the critical
oint is crossed, precipitation rapidly increases with the water vapour. Interestingly, the balance between forcing and
uoyancy release is stable, further suggesting that the described atmospheric criticality is in fact self-organised.

adley cell and percolation. The Hadley cell is a global-scale three-dimensional tropical atmospheric circulation that
ransports energy and angular momentum poleward. This circulation enables, among others, the trade winds, hurricanes,
nd the jet streams. The locations of the subtropical dry zones and the major tropical and subtropical deserts are strongly
ssociated with the subsiding branches of the Hadley cell [1145]. Therefore, understanding how structure and intensity of
he Hadley cell may change under global warming has attracted widespread attention. For example, an analysis of satellite
bservations indicated a poleward expansion by ≈2 ◦ of the Hadley cell over the period from 1979 to 2005 [1146]. A
hysical mechanism for the expansion of the Hadley cell was proposed shortly afterwards [1147], followed by a discovery
f a robust weakening of the Hadley cell in the 21st century through the analysis of 30 different CMIP5 coupled model
imulations [1148]. Observations, theory, and climate models are thus coming together to suggest the poleward expansion
nd weakening of the Hadley cell under global warming.
A standard approach to determining the strength of the Hadley cell is to compute the observed zonal-mean mass-

tream function, Ψ . This function relates to the zonal-mean meridional wind velocity V via

[V ] =
g

2πR cosφ
∂Ψ

∂p
, (146)

here the operators ·̄ and [·] stand for temporal and zonal averaging, respectively. The quantity g is the gravitational
cceleration, R is the mean Earth radius, φ is the latitude, and p designates pressure coordinates. When calculating the
field, it is common to assume Ψ = 0 at the top of the atmosphere. Based on Eq. (146), the edges of the Hadley cell

re identified as the first latitude poleward of the maximum of Ψ500 at which Ψ500 = 0, where the index 500 indicates
he value of the stream function at 500hPa [1147]. Although this conventional analysis has been applied to investigate
he structure and intensity of the Hadley cell, there are some important limitations: (i) the latitude–longitude structure
f the Hadley cell is not fully resolved because Eq. (146) only accounts for the latitudinal direction, and (ii) in contrast to
heory and models that predict the decreasing intensity of the Hadley cell, the reanalysis datasets point to an increasing
ntensity [1149].

To circumvent the limitations of the conventional approach, Ref. [1122] analysed the structure and intensity of the
adley cell using climate networks and percolation theory. The main question of percolation theory [1150] can be posed
n several different ways, but in the context of network science, one seeks the probability q of node failure such that after
% of nodes do fail, the network changes from being connected to being disconnected. It turns out that there exist a critical
robability qc below which (i.e., for q < qc) the network remains connected with probability one, but above which (i.e., for

q > qc) the network gets disconnected with probability one. This criticality strictly holds only for infinite networks, but
is, in fact, easily observed in practice in networks with O(100) nodes. In Ref. [1122], the near-surface atmosphere was
epresented with a two-dimensional grid of points that turned into a lattice by adding links between nearest neighbours.
hese links were added as follows. First, the strength of each link, Wi,j, was calculated based on Eq. (134). Link strengths
ere then sorted in descending order. The strongest link was the first one to be added, then the second strongest, the
hird strongest, and so on. The resulting lattice-shaped climate network was found to undergo an abrupt phase transition
n the order parameter G1, defined as the largest connected network component. Because the original grid points were
mbedded into the spherical Earth surface, the right expression for the order parameter was

G1(M) =
max

[∑
i∈S1(M) cos(φi), . . . ,

∑
i∈Sm(M) cos(φi), . . . ,

]
∑N

i=1 cos(φi)
, (147)

here M is the number of added links, φi is the latitude of grid point i, and Sj is the jth connected network component
n terms of the number of nodes. The percolation threshold at M = Mc was determined by recording jumps in G1(M)
with each added link, and singling out the largest jump to mark the value Gc = G1(Mc) and the corresponding critical
link weight Wc [1151]. By altering the resolution of grid points, the theory of critical phenomena was used to confirm
that the order parameter is indeed discontinuous at the percolation threshold and thus consistent with a first-order phase
transition. The largest connected component of the climate network at the percolation threshold, obtained upon applying
the described methodology, is located in the tropics, as expected from an analogue of the Hadley cell.

The purpose here was more than just finding a climate-network analogue of the Hadley cell. To determine the
temporal evolution of the quantities G and W , a sequence of climate networks was constructed using successive and
c c
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Fig. 78. Comparing the rates of change of the Hadley cell and its climate-network analogue under three climate-change scenarios. The climate
network analogue of the Hadley cell is the largest connected network component at the percolation threshold. Panels A–C show that this component
is getting larger over time, while the critical link weight is decreasing under all scenarios for most of the CMIP5 climate models. Panels D–F show that
the size of the Hadley cell and its intensity exhibit qualitatively similar behaviour as their climate-network analogues, although there is somewhat
more ambiguity in the results, especially in the Historical scenario. Panels G–I show that the rates of change obtained via the climate-network
analysis and the conventional approach show significant correlation. Numbering in the circles indexes the 31 CMIP5 climate models.
Source: Reprinted figure from Ref. [1122].

on-overlapping temporal windows with the length of 60mos. The results could be fitted adequately with simple linear
elationships

Gc(t) = a+ ξGt, (148a)

Wc(t) = b+ ξW t, (148b)

here a and b are constants, while ξG and ξW are the rates of change of the quantities Gc and Wc. Denoting the analogous
rates of change for the Hadley cell, obtained via the conventional approach, with ξφH and ξΨ , the results show a consistent
expansion from the tropics poleward of the largest connected network component at the percolation threshold, as well
as the weakening of the corresponding critical link weight. The same holds for the 31 CMIP5 21st century climate models
and the reanalysis data (ERA-Interim and ERA-40). Put more quantitatively, most of the CMIP5 models exhibit ξG > 0
and ξW < 0, and similarly ξφH > 0 and ξΨ < 0 irrespective of the climate scenario (Fig. 78, cf. panels A–C and D–F). The
results obtained via climate-network analysis and using the conventional approach are highly correlated (Fig. 78, panels
G–I).

The poleward expansion of the Hadley cell may result in (i) a drier future in some tropical or subtropical regions [1147]
and (ii) a poleward migration of the location of the maximum tropical-cyclone intensity [1152]. The climate-network
analysis described herein may therefore help to identify regions that are more probable to experience precipitation decline
or hurricane intensification. Among the prime candidate regions to be affected by the Hadley-cell expansion are northern
India, southern Africa, and western Australia. Local governments in these and other potentially exposed regions should
keep a close eye on climate science and take risk-mitigating actions until there is still time.

12.5. Future outlook

This chapter started by outlining the social consequences of global climate change and briefly venturing into the history
of climate modelling. Thereafter, two research topics central to the current climate-change discourse—climate networks
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nd critical phenomena—were introduced. Both of these topics originate from statistical physics, thus sharing their origins
ith many other themes in the present review that fall more squarely into the domain of social physics. The reason for
he shared origins of the climate-change research and the social-physics research in the stricter sense is that the climate
ystem is an epitome of complexity as much as human society is. Despite the fast-paced progress seen over the past two
ecades, there is still a lot of work ahead, especially in the context of integrating climate predictions into social dynamics.
Because climate networks are constructed by applying similarity measures to observational data, the underlying

hysical mechanisms and processes often remain hidden or unclear. Shedding light on such mechanisms and processes
ay, however, substantially impact our understanding of climate change and subsequently improve the predictive power
f numerical climate models. A promising methodology that has emerged in recent years and could play an instrumental
ole in demystifying climate change is machine learning and AI [1153]. Considering the inherent ‘black box’ structure of
limate systems, the integration of AI and visual analytics provides a potential solution [1154].
Another key issue is the question of analysing the climate resilience of ecosystems and economies. Currently, for

xample, there is a lack of appropriate models to fully understand and predict the effects of cascading failures [266],
riggered by extreme climate and weather events, on critical interdependent infrastructures. Closing this knowledge gap
s a crucial step towards climate-resilient society.

3. Epilogue: Keeping the dialogue open

We hope this review has given the reader an overview of physicists’ contributions to multidisciplinary social science.
o make the story contiguous, we had to sacrifice some topics, like the physics of art (music [1155], painting [1156],
ance [1157], etc.), agriculture [1158], gastronomy [1159], ethnology (how ethnic groups remember their shared his-
ory) [1160], civil unrest [1161], etc. Conversely, we imagine some readers finding our definition of social physics too
enerous, especially at the border between physics and engineering, artificial intelligence, and climate modelling. Perhaps
better title would be Human physics—‘human’ as in ‘topics affecting humans’.
We started our exposé arguing that physics has played a fundamental role in the modern movement towards

ultidisciplinarity. However, physicists entering multidisciplinary research have a bad reputation for their imperious
ttitude: ‘‘Step aside! We’ll show you how it’s done’’. When this happens, even if unintentional, it threatens mutual
espect and understanding between collaborators and jeopardises the overall success of collaborative interactions. But
hat better way to ensure mutual respect and understanding than to keep the dialogue open.
To illustrate what we have in mind, a physicist’s strength lies in putting quantitative methods to good use, be it rigorous

ata analyses or complex numerical simulations. The use of quantitative methods, however, is preceded by formulating
esearch hypotheses of interest or model assumptions of relevance to the problem at hand. Seeking inputs from experts is
bsolutely crucial in this stage because intuition and common sense cannot replace expert knowledge, and may easily lead
o simplistic and naive hypotheses or assumptions. Accordingly, before quantitative methods are employed, physicists for
he most part need to be on the receiving end of the dialogue with their multidisciplinary collaborators.

Another strength that is rather unique to physicists is seeing the big picture and consequently making approximations
hat simplify the problem, but still account for the main processes at play. It is important to recognise that such approxima-
ions and subsequent simplifications go against the training received by researchers from many other disciplines. Among
cologists, for example, the focus on biodiversity is so prevalent that general patterns often come secondary to exceptions.
ccordingly, when quantitative methods are employed, physicists for the most part need to be on the transmitting end
f the dialogue with their multidisciplinary collaborators.
Many more situations are bound to arise in practice in which keeping the dialogue open will be crucial to success.

hey demand patience and care, but when resolved satisfactorily, they lead to insightful and impactful research that is
o much needed to ensure the continued prosperity of humankind.
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